JPH02160662A - Carbon-metal composite material - Google Patents

Carbon-metal composite material

Info

Publication number
JPH02160662A
JPH02160662A JP63315611A JP31561188A JPH02160662A JP H02160662 A JPH02160662 A JP H02160662A JP 63315611 A JP63315611 A JP 63315611A JP 31561188 A JP31561188 A JP 31561188A JP H02160662 A JPH02160662 A JP H02160662A
Authority
JP
Japan
Prior art keywords
carbon
composite material
metal
content
metallic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63315611A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sutani
酢谷 潔
Yukihiro Sugimoto
杉本 行廣
Masato Kano
鹿野 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63315611A priority Critical patent/JPH02160662A/en
Priority to CA 2000805 priority patent/CA2000805C/en
Priority to KR1019890014828A priority patent/KR930009894B1/en
Priority to AT89119290T priority patent/ATE135415T1/en
Priority to EP89119290A priority patent/EP0364972B1/en
Priority to EP19930111037 priority patent/EP0572045A2/en
Priority to DE68925936T priority patent/DE68925936T2/en
Priority to EP19930111036 priority patent/EP0572044A2/en
Priority to US07/422,898 priority patent/US5158828A/en
Publication of JPH02160662A publication Critical patent/JPH02160662A/en
Priority to US08/177,791 priority patent/US5531943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title composite material excellent in resistance to wear and impact and electrical properties, etc., thus suitable for pantograph sliding plates by incorporating a carbonaceous raw material with metallic fiber so as to develop domains differing in said metallic fiber content from one another. CONSTITUTION:Metallic fiber (e. g. steel fiber) is incorporated in a carbonaceous raw material such as solf-sinterable mesophase powder, coke powder plus pitch, or phenolic resin so as to develop domains differing in said metallic fiber content from one another. For example, as for a pantograph sliding plate for railroad, the upper part sliding with trolley lines is made lower in said content so as to improve the frictional and/or sparking characteristics, while the lower part not sliding with the trolley lines is made higher in said content to improve the impact strength. To produce the objective composite material, several kinds of mixed material differing in metallic fiber content from one another are successively charged into a mold followed by forming and baking.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、主に鉄道用パンタグラフ摺板に利用可能な
複合材料に係り、特に耐摩耗性に優れ、かつ高耐衝撃性
と、優れた電気的特性を有する炭素・金属複合材に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a composite material that can be used mainly for pantograph sliding plates for railways. Concerning carbon-metal composite materials with special characteristics.

従来の技術 電気車両等の摺動、集電用炭素材料としては、車両の高
速化と冷房設備等による消費電力の増大に対応するため
、炭素の優れた摺動特性と金属の電気伝導性を生かした
炭素・金属複合)W板が採用されつつある。
Conventional technology Carbon materials for sliding and current collection in electric vehicles, etc., are based on the excellent sliding properties of carbon and the electrical conductivity of metals, in order to cope with the increasing speed of vehicles and the increase in power consumption due to air conditioning equipment, etc. Carbon/metal composite) W plates are being adopted.

この種の炭素・金属複合材としては、例えば■炭素材の
気孔に特定の金属を加圧含浸させる方法により製造した
複合材、■炭素材用原料に金属繊維を配合し、通常の炭
素材の成型方法で成型後、炭化する方法により製造した
複合材(特開昭62−72564> 、■炭素材用原料
に金属繊維を一方向に配向させて配合した後、成型、焼
成する方法により製造した複合材(特開昭62−197
352 >がある。
This type of carbon-metal composite material includes, for example: ■ Composite material manufactured by pressurizing and impregnating the pores of a carbon material with a specific metal; Composite material manufactured by a method in which carbonization is performed after molding using a molding method (Japanese Unexamined Patent Application Publication No. 62-72564), ■ Manufactured by a method in which metal fibers are oriented in one direction and blended into raw materials for carbon materials, and then molded and fired. Composite materials (JP-A-62-197
There is 352 >.

しかし、上記■■■の炭素・金属系摺板は、現用品であ
る金属焼結系摺板から炭素・金属系摺板への移行期、す
なわち金属焼結系と炭素・金属系摺板の混合使用時を想
定したトロリー線(銅製)の荒れた状態での摺動時の摺
板摩耗が大きいという欠点がある。
However, the carbon/metal based sliding plates mentioned above are in the transition period from the current sintered metal based sliding plates to the carbon/metal based sliding plates, that is, the transition between the metal sintered and carbon/metal based sliding plates. The drawback is that the sliding plate is subject to a large amount of wear when the trolley wire (made of copper) is slid in a rough condition, which is intended for mixed use.

かかる欠点を解消するため、本発明者らは、■炭素材骨
材粉とバインダーピッチを主成分とする炭素材原料に、
金属繊維や金属粉を配合し、この原料を加圧加熱成型し
た後焼成することによって、耐摩耗性の優れた炭素・金
属複合材を得る方法を先に提案した(特願昭63−26
2110>。
In order to eliminate such drawbacks, the present inventors have developed a carbon material raw material whose main components are carbon material aggregate powder and binder pitch.
We previously proposed a method to obtain a carbon-metal composite material with excellent wear resistance by blending metal fibers and metal powder, molding this raw material under pressure and heating, and then firing it (Japanese Patent Application No. 63-26).
2110>.

ところで、摺板の使用時、トロリー線に付着した結氷や
何等かの原因により外れたトロリー線吊具(ハンガイヤ
)に1習板が激しく当ることがある。
By the way, when using a sliding board, the sliding board may hit hard against a trolley wire hanger that has come off due to ice forming on the trolley wire or for some other reason.

その時、摺板の衝撃強度が低いと摺板が破損し、その破
片等が周囲に飛散し、非常に危険でおる。
At that time, if the impact strength of the sliding plate is low, the sliding plate will break and its fragments will be scattered around, which is extremely dangerous.

したがって、摺板には耐摩耗性に加え、耐衝撃性も要求
される。
Therefore, the sliding plate is required to have not only wear resistance but also impact resistance.

しかるに、前記した炭素・金属複合材は、従来の金属焼
結系摺板と比較し、著しく衝撃強度が劣るという共通の
欠点がある。
However, the carbon-metal composite materials described above have a common drawback of being significantly inferior in impact strength compared to conventional metal sintered sliding plates.

この衝撃強度が劣る原因は、基本的に炭素の衝撃強度が
低いことにおる。そこで、これを補うために金属成分の
配合量を増せば衝撃強度を向上できるが、金属成分が多
くなるとトロリー線との間で発生するスパークが多くな
り、トロリー線および摺板の摩耗が大きくなり好ましく
ない。
The reason for this poor impact strength is basically that the impact strength of carbon is low. Therefore, impact strength can be improved by increasing the amount of metal components blended to compensate for this, but as the amount of metal components increases, more sparks will be generated between the contact wire and the contact wire, resulting in greater wear on the contact wire and sliding plate. Undesirable.

発明が解決しようとする課題 この°発明は前に述べたような実情よりみて、仮に結氷
や外れたトロリー線吊具に摺板が激しく当るようなこと
があっても、摺板が破損したりすることがない耐衝撃性
を具備し、ざらに安定したスパーク特性と良好な耐摩耗
性をもつ炭素・金属複合材を提供しようとするものであ
る。
Problems to be Solved by the Invention In view of the actual situation described above, the present invention has been designed to prevent damage to the sliding plate even if the sliding plate hits hard against ice or a detached trolley wire hoist. The present invention aims to provide a carbon-metal composite material that has excellent impact resistance, roughly stable spark characteristics, and good wear resistance.

課題を解決するための手段 この発明者は、炭素材原料に金属繊維を配合した複合材
において、金属繊維の含有量を増加させずに耐摩耗性と
耐衝撃性の両特性を併せ持つ炭素・金属複合材について
種々検討した結果、成型体の中に金属繊維の多い部分と
少ない部分をつくることにより、同一配合量で耐摩耗性
、耐衝撃性、スパーク特性を併せ持たすことが可能であ
ることを見い出した。
Means for Solving the Problems The inventor has developed a carbon-metal composite material that has both wear resistance and impact resistance without increasing the content of metal fibers in a composite material that combines metal fibers with carbon material raw materials. As a result of various studies on composite materials, we found that it is possible to have wear resistance, impact resistance, and spark properties with the same amount by creating parts with a lot of metal fibers and parts with a small amount of metal fibers in the molded product. I found it.

すなわち、摺板を例にとると、トロリー線と摺動する部
分(上部)は摩耗特性やスパーク特性が良好となるよう
に金属繊維の含有量を少なくし、他方トロリー線と摺動
しない部分(下部)は、金属繊維の含有量を多くするこ
とにより、全体として耐摩耗性および耐衝撃性に優れ、
かつスパーク特性の良好な炭素・金属複合材が得られる
ということである。
In other words, taking a sliding plate as an example, the part that slides on the trolley wire (the upper part) has a low content of metal fibers to improve wear and spark characteristics, while the part that does not slide on the trolley wire (the upper part) The lower part) has excellent abrasion resistance and impact resistance as a whole by increasing the content of metal fibers,
Moreover, a carbon-metal composite material with good spark characteristics can be obtained.

すなわち、この発明は炭素材原料に金属繊維を配合した
複合材において、金属繊維の含有率を部分的に異ならせ
た炭素・金属複合材を要旨とするものでおる。
That is, the gist of the present invention is a carbon-metal composite material in which the content of metal fibers is partially varied in a composite material in which metal fibers are blended with a carbon material raw material.

作   用 この発明における炭素材原料としては、自己焼結性メソ
フェーズ粉や、コークス粉のような炭素質骨材粉とピッ
チからなる2元系原料、フェノール樹脂のような熱硬化
性樹脂等種々のものが使用できる。
Function As the carbon material raw material in this invention, there are various types such as self-sintering mesophase powder, binary raw material consisting of carbonaceous aggregate powder and pitch such as coke powder, and thermosetting resin such as phenolic resin. Things can be used.

ここで、2元系原料における炭素質の骨材としては、ピ
ッチや石炭等を1ooo℃程度で炭化処理したコークス
粉や、フェノール樹脂を炭化して得られる等方性炭素等
の硬度の高いものが好ましい。
Here, as the carbonaceous aggregate in the binary raw material, materials with high hardness such as coke powder obtained by carbonizing pitch, coal, etc. at about 100°C, and isotropic carbon obtained by carbonizing phenolic resin are used. is preferred.

炭素質骨材の粒度は、強度や耐摩耗性の面から粒径の小
さいものが良好であり、20Atm以下に粉砕して使用
するのが好ましい。
Regarding the particle size of the carbonaceous aggregate, from the viewpoint of strength and wear resistance, a small particle size is preferable, and it is preferable to use the carbonaceous aggregate by pulverizing it to 20 Atm or less.

バインダーピッチとしては、コールタール中ピッチや、
これをさらに熱処理して得られる高軟化点ピッチ等を使
用できる。
Binder pitches include coal tar medium pitch,
A high softening point pitch obtained by further heat-treating this or the like can be used.

なお、ピッチとしては、加熱時流動性を示すもので、か
つ可及的に低揮発分の方が複合材の強度、摩耗性が向上
し好ましい。
The pitch is preferably one that exhibits fluidity when heated and has as low a volatile content as possible, since this improves the strength and abrasion resistance of the composite material.

金属繊維は、金属粒子や含浸した金属と比べ、アスペク
ト比が大きく補強効果が大きいため、同一配合量で比較
した場合、複合材の静的強度、衝撃強度の向上効果は大
きい。
Metal fibers have a larger aspect ratio and a greater reinforcing effect than metal particles or impregnated metals, so when compared with the same blending amount, the effect of improving the static strength and impact strength of the composite material is large.

金属繊維としては、スチールファイバー、スチールウー
ル、銅ファイバー等の種々の金属繊維が使用できる。こ
の中では低炭素鋼製スチールファイバーが最も良好な性
能を示す。
Various metal fibers such as steel fiber, steel wool, copper fiber, etc. can be used as the metal fiber. Among these, steel fiber made from low carbon steel shows the best performance.

金属繊維の形状、サイズ等は特に限定されるものではな
いが、高強度の成型体を得るという観点から規定すると
、太さ0.5mm以下、長さ1mm以上のものが好まし
い。
The shape, size, etc. of the metal fibers are not particularly limited, but from the viewpoint of obtaining a molded product with high strength, those having a thickness of 0.5 mm or less and a length of 1 mm or more are preferable.

金属繊維の配合量は、摺板を例にとると摩耗代に相当す
る部分は含有率を高くし、摩耗代以外の部分は含有率を
低くする。その場合の量的割合としては、例えば摩耗代
に相当する部分は10〜40体積%、摩耗代以外の部分
は40〜65体積%が好ましい。また金属繊維以外に、
金属粉を若干添加することも可能である。
Taking a sliding plate as an example, the content of the metal fibers is set high in the portion corresponding to the wear allowance, and low in the portion other than the wear allowance. In this case, the quantitative ratio is preferably 10 to 40% by volume for the portion corresponding to the wear allowance, and 40 to 65% by volume for the portion other than the wear allowance. In addition to metal fibers,
It is also possible to add some metal powder.

このような炭素・金属繊維複合材は、金属繊維含有率の
異なる複数の混合原料を成形用金型に順次装入し、その
後成形、焼成することにより得られる。
Such a carbon/metal fiber composite material is obtained by sequentially charging a plurality of mixed raw materials with different metal fiber contents into a mold, followed by molding and firing.

成型方法としては、冷間型込め成型、押出し成型、加圧
加熱成型等柱々の方法が採用できる。このうち、バイン
ダーとしてピッチを使用し、加圧加熱成型する方法が最
も強度、耐摩耗性の良好な炭素・金属複合材が得られる
As the molding method, various methods such as cold molding, extrusion molding, pressurized heating molding, etc. can be adopted. Among these, the method of using pitch as a binder and pressurizing and heating molding yields a carbon-metal composite material with the best strength and wear resistance.

加圧加熱成型条件としては、バインダーピッチが固化す
る温度域、すなわち480℃以上、好ましくは500℃
以上の温度域を加圧加熱することが必要であるため、加
圧加熱最高温度は480℃以上、好ましくは500℃以
上とする。
The pressure and heat molding conditions are in the temperature range where the binder pitch solidifies, that is, 480°C or higher, preferably 500°C.
Since it is necessary to pressurize and heat in the above temperature range, the maximum pressure and heating temperature is 480°C or higher, preferably 500°C or higher.

加圧加熱成型の圧力は少なくとも常温〜加圧加熱最高温
度の一部の領域で40kg−J以上、好ましくは80k
qJ以上とする。これは、成型圧力が4014未満では
バインダー−金属間の結合力が低下し、良好な摩耗特性
を有する炭素・金属複合材が1qられないためである。
The pressure of pressurized and heated molding is at least 40 kg-J or more in a part of the range from normal temperature to the maximum temperature of pressurized heating, preferably 80 K.
qJ or more. This is because if the molding pressure is less than 4014, the bonding force between the binder and the metal decreases, and a carbon-metal composite material having good wear characteristics cannot be produced.

加圧加熱成型法で得られた成型体は、通常の炭素材と同
様の方法で焼成する。
The molded body obtained by the pressure and heat molding method is fired in the same manner as ordinary carbon materials.

実  施  例 第1図は加圧加熱成型用金型の一例を示す概略図で、(
1)は上プレスヘッド、(2)は下プレスヘッド(固定
) 、(3)は上金型、(4)は下金型、(5)は金枠
、(6)は成型原料、(7)はシーズヒーター(7−1
)入り熱板、(8)は断熱材でおる。
Example Figure 1 is a schematic diagram showing an example of a pressurized and heated mold.
1) is the upper press head, (2) is the lower press head (fixed), (3) is the upper mold, (4) is the lower mold, (5) is the metal frame, (6) is the molding raw material, (7 ) is a sheathed heater (7-1
) hot plate, (8) is covered with heat insulating material.

すなわち、上金型(3)と下金型(4)との間に成型原
料(6)を充填した後、シーズヒーター(7−1)に通
電して熱板(7)を加熱し、プレスヘッド(1)により
加圧する。上記金型は予熱しておいてもよい。
That is, after filling the molding raw material (6) between the upper mold (3) and the lower mold (4), the sheath heater (7-1) is energized to heat the hot plate (7), and the press Pressure is applied by head (1). The mold may be preheated.

このような加圧加熱成型法で得られた成型体は、非酸化
性雰囲気中において金属ファイバーの融点以下の温度で
焼成することができる。
The molded body obtained by such a pressure-heat molding method can be fired in a non-oxidizing atmosphere at a temperature below the melting point of the metal fiber.

次に、第1図に示す金型を用いた加圧加熱成形法と通常
の焼成法により製造した炭素・金属複合材について説明
する。
Next, a carbon-metal composite material manufactured by a pressure and heat molding method using a mold shown in FIG. 1 and a normal firing method will be described.

成型用骨材としては、レギュラーグレード石油コークス
を1ooo°cで炭化後、直径10mのステンレス球を
詰めた振動ミルで4時間粉砕して得た平均粒径12通の
コークス粉を用いた。
As the molding aggregate, coke powder with an average particle size of 12 particles obtained by carbonizing regular grade petroleum coke at 100°C and pulverizing it for 4 hours in a vibrating mill packed with stainless steel balls with a diameter of 10 m was used.

バインダーピッチとしては、コールタールを100mf
−Itの減圧下420’Cで6時間熱処理して得られた
高化式フローテスターで測定した軟化点が250°Cの
コールタールピッチを、60メツシユ以下に粉砕したも
のを用いた。
As the binder pitch, use 100mf of coal tar.
-It was heat treated at 420'C under reduced pressure for 6 hours and had a softening point of 250°C measured with a Koka type flow tester, which was pulverized to 60 mesh or less.

金属繊維としては、0.05 sX O,05#X長ざ
3mの低炭素鋼ファイバーを用いた。
As the metal fiber, a low carbon steel fiber having a size of 0.05 sX O, 05#X and a length of 3 m was used.

本実施例ではこれら3種の原料を第1表に示す配合比で
混合して得たA−Dの4種の配合原料を組合せ、内寸が
幅100mX長さ2oosの金型内に下部、上部の順に
、各々成型後の厚みが5#IIIになる量を分割して装
入し上下のファイバー含有量を変化させた状態で、加圧
能力500tOnの油圧プレスを用いて加圧加熱成形(
成型圧力200に、4の加圧下5℃/分で550℃まで
昇温し、1時間保持後冷却)し、幅100fiX長ざ2
00InM×厚さ10#の成形体を得た。
In this example, four types of blended raw materials A to D obtained by mixing these three types of raw materials at the blending ratio shown in Table 1 were combined, and the lower part was placed in a mold with inner dimensions of 100 m width x 2 oos length. In order, the upper part was divided and charged in an amount that would have a thickness of 5#III after molding, and the fiber content of the upper and lower parts was varied, and then pressure and heat molding was performed using a hydraulic press with a pressure capacity of 500 tOn (
The molding pressure was 200, the temperature was raised to 550°C at 5°C/min under the pressure of 4, held for 1 hour and then cooled), and the width was 100fiX the length was 2
A molded body of 00 InM x 10 #thickness was obtained.

得られた成型体は、粉コークスを詰めたステンレス製容
器に入れ、窒素雰囲気下12°C/Hrの昇温速度で1
000℃まで昇温し、4時間保持後冷却して焼成した。
The obtained molded body was placed in a stainless steel container filled with coke powder and heated at a heating rate of 12°C/Hr in a nitrogen atmosphere.
The temperature was raised to 000°C, held for 4 hours, and then cooled and fired.

得られた炭素・金属複合材から、幅10#×長ざ60m
(、厚みは焼上り後の厚みと同じ)のテストピースを切
出し、シャルピー衝撃値、曲げ強度を測定した。
From the obtained carbon-metal composite material, width 10# x length 60m
(The thickness is the same as the thickness after firing) was cut out, and the Charpy impact value and bending strength were measured.

テストピースの切出し方向は、長さ60#の方向が成型
体の長さ200mの方向と一致するようにした。
The direction in which the test piece was cut out was such that the direction of length 60# coincided with the direction of length 200 m of the molded body.

シャルピー衝撃値は、打撃方向が成型時のプレス方向と
垂直になるようにして測定した。
The Charpy impact value was measured with the impact direction perpendicular to the pressing direction during molding.

曲げ強度は、曲げスパン40mで成型時の上部に当る部
分より圧下して測定した。
The bending strength was measured with a bending span of 40 m by rolling down from the upper part during molding.

次に、同じ炭素・金属複合材から、幅8#IX長さ81
111+1X高さ約10.のテストピースを、高さ方向
が成型時のプレス方向と一致するように切出し、このテ
ストピースを成型時の上面に当る面を摺動面とし、下記
条件で摩耗試験を実施し、摩耗試験後、テストピースの
厚み変化を測定し、1習動距離100−当りの摩耗体積
を算出した。
Next, from the same carbon-metal composite material, width 8#IX length 81
111+1X height approx. 10. Cut out a test piece so that the height direction matches the press direction during molding, use the surface that corresponds to the top surface during molding as the sliding surface, perform a wear test under the following conditions, and after the wear test The thickness change of the test piece was measured, and the wear volume per 1 learning distance of 100 was calculated.

高い比較例6,7は摩耗量が大ぎく、摩耗量と衝撃強度
を両立させることが困難であるのに対し、上下異なる原
料で構成した試験FJb、1〜3の本発明の炭素・金属
複合材の場合は、摩耗特性およびシャルピー衝撃強度共
に優れている。
Comparative Examples 6 and 7 had a large amount of wear and it was difficult to achieve both wear and impact strength, whereas the carbon-metal composites of the present invention in Tests FJb and 1 to 3, which were made of different raw materials on the upper and lower sides, had a large amount of wear. The material has excellent wear properties and Charpy impact strength.

第1表 上記シャルピー衝撃値、曲げ強度、摩耗量を第2表に示
す。
Table 1 The Charpy impact value, bending strength, and wear amount are shown in Table 2.

なお第2表には比較のため、ファイバー含有率を上下で
同一とした原料で本発明と同一の方法により加圧加熱成
型、焼成処理を行なって1qられた炭素・金属複合材の
物性を併せて示す。
For comparison, Table 2 also includes the physical properties of carbon-metal composites obtained by pressurizing, heating, molding, and firing using the same method as in the present invention using raw materials with the same fiber content on the top and bottom. Shown.

第1表より明らかなごとく、上下同一の原料で構成した
比較例の場合、摩耗量の小さい試験陽4゜5はシャルピ
ー衝撃強度が低く、また衝撃強度の以下余白 発明の詳細 な説明したごとく、この発明に係る炭素・金属複合材は
、耐摩耗性に優れるだけでなく、耐衝撃性も優れるため
、特にパンタグラフ用摺板として優れた特性を発揮し、
そのもたらす効果は甚大でおる。
As is clear from Table 1, in the case of the comparative example made of the same raw materials for the upper and lower sides, the Charpy impact strength of test positive 4°5, which had a small amount of wear, was low, and as explained in detail in the margin of the invention below, the impact strength was The carbon-metal composite material according to the present invention not only has excellent wear resistance but also has excellent impact resistance, so it exhibits excellent properties especially as a sliding plate for pantographs.
The effect it brings is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明方法を実施するための加圧加熱成型用
金型の一例を示す概略図でおる。 1・・・上ブレスヘッド   2・・・下プレスヘッド
3・・・上金型       4・・・下金型5・・・
金枠        6・・・成型原料7・・・熱板 
       8・・・断熱材代理人  弁理士 押田
良久1iJ
FIG. 1 is a schematic diagram showing an example of a pressure-heat molding mold for carrying out the method of the present invention. 1... Upper press head 2... Lower press head 3... Upper mold 4... Lower mold 5...
Metal frame 6... Molding raw material 7... Hot plate
8... Insulation material agent Patent attorney Yoshihisa Oshida 1iJ

Claims (1)

【特許請求の範囲】[Claims] 炭素材原料に金属繊維を配合した複合材であつて、当該
金属繊維の含有率が部分的に異なることを特徴とする炭
素・金属複合材。
A carbon-metal composite material, which is a composite material in which metal fibers are blended into a carbon material raw material, and the content of the metal fibers is partially different.
JP63315611A 1988-10-17 1988-12-13 Carbon-metal composite material Pending JPH02160662A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP63315611A JPH02160662A (en) 1988-12-13 1988-12-13 Carbon-metal composite material
CA 2000805 CA2000805C (en) 1988-10-17 1989-10-16 Carbon/metal composite
KR1019890014828A KR930009894B1 (en) 1988-10-17 1989-10-16 Carbon/metal composite
EP19930111037 EP0572045A2 (en) 1988-10-17 1989-10-17 Carbon/metal composite
EP89119290A EP0364972B1 (en) 1988-10-17 1989-10-17 Carbon/metal composite
AT89119290T ATE135415T1 (en) 1988-10-17 1989-10-17 CARBON/METAL COMPOSITE
DE68925936T DE68925936T2 (en) 1988-10-17 1989-10-17 Carbon / metal composite
EP19930111036 EP0572044A2 (en) 1988-10-17 1989-10-17 Carbon/metal composite
US07/422,898 US5158828A (en) 1988-10-17 1989-10-17 Carbon/metal composite
US08/177,791 US5531943A (en) 1988-10-17 1994-01-05 Method of making a carbon/metal composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63315611A JPH02160662A (en) 1988-12-13 1988-12-13 Carbon-metal composite material

Publications (1)

Publication Number Publication Date
JPH02160662A true JPH02160662A (en) 1990-06-20

Family

ID=18067445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63315611A Pending JPH02160662A (en) 1988-10-17 1988-12-13 Carbon-metal composite material

Country Status (1)

Country Link
JP (1) JPH02160662A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272564A (en) * 1985-09-27 1987-04-03 住友金属工業株式会社 Manufacture of carbon material for sliding and electricity collecting
JPS63129069A (en) * 1986-11-17 1988-06-01 株式会社 曙ブレ−キ中央技術研究所 Metal fiber reinforced carbonaceous material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272564A (en) * 1985-09-27 1987-04-03 住友金属工業株式会社 Manufacture of carbon material for sliding and electricity collecting
JPS63129069A (en) * 1986-11-17 1988-06-01 株式会社 曙ブレ−キ中央技術研究所 Metal fiber reinforced carbonaceous material

Similar Documents

Publication Publication Date Title
CN102034561B (en) Carbon base sliding block material for track vehicle and preparation method thereof
CN102923008B (en) Carbon based sliding plate material of high speed railway pantograph and preparation method thereof
KR930009894B1 (en) Carbon/metal composite
US20070072440A1 (en) Composite collectors
JPH02160662A (en) Carbon-metal composite material
JP2511705B2 (en) Carbon / metal composite
JPH02160664A (en) Carbon-metal composite material
JPH02160663A (en) Carbon-metal composite material
CN110436924B (en) Copper-impregnated carbon sliding plate material for high-speed train pantograph and preparation method thereof
CN110436925B (en) Pure carbon sliding plate for high-speed train pantograph and preparation method thereof
JP4133105B2 (en) Carbon-based sintered sliding plate material with crack resistance
JPH04280865A (en) Carbon-metal composite material
RU2150444C1 (en) Material for current-conducting contact products, method of making said material, and product
JPH02107564A (en) Production of carbon-metal composite material
CN1061960C (en) Carbon-carbon composition material for electric collection
JPH0333063A (en) Carbon/metal composite material
JPS62197352A (en) Manufacture of carbon material for sliding and electric power collecting
CN1062841C (en) Current collecting composite material containing nm-carbon tube
RU2207962C1 (en) Method of manufacture of electric vehicle current collector contact slipper
JP2916038B2 (en) Method for producing carbon-based current collector sliding material
JPS61245957A (en) Production of current collecting material
JP2697581B2 (en) Current collector slides made of sintered copper impregnated carbon material with high toughness and high conductivity
JPH06172029A (en) Carbon-metal composite material and its production
JP2000302578A (en) Current collecting slider material consisting of copper- impregnated carbon fired compact and having excellent wear resistance at high speed traveling
JPH0456787B2 (en)