JPH0210546B2 - - Google Patents

Info

Publication number
JPH0210546B2
JPH0210546B2 JP54063630A JP6363079A JPH0210546B2 JP H0210546 B2 JPH0210546 B2 JP H0210546B2 JP 54063630 A JP54063630 A JP 54063630A JP 6363079 A JP6363079 A JP 6363079A JP H0210546 B2 JPH0210546 B2 JP H0210546B2
Authority
JP
Japan
Prior art keywords
anode
molded
metal
battery
foamed metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54063630A
Other languages
Japanese (ja)
Other versions
JPS55155473A (en
Inventor
Yoshitane Tsuburaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP6363079A priority Critical patent/JPS55155473A/en
Publication of JPS55155473A publication Critical patent/JPS55155473A/en
Publication of JPH0210546B2 publication Critical patent/JPH0210546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/12Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with flat electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は特定の固体体積を有する発泡金属と
陽極合剤とを一体に加圧成形して発泡金属の表面
の空隙部にも陽極合剤を包含させてなる成形陽極
をその発泡金属側がセパレータと当接するように
陽極缶内に収納したボタン型電池に関する。 一般にボタン型電池では酸化銀、二酸化マンガ
ンなどの陽極活物質を主成分とする陽極合剤を電
池内に収納する前にあらかじめ円板状に加圧成形
しているが、この加圧成形に際して陽極合剤の周
縁に断面L字状の金属製環状台座を固着させ、こ
れをそのまま電池内部に収納して封口時に加わる
圧を前記の台座で食い止めることにより封口圧に
起因する成形陽極の変形ないし崩れを防止するよ
うにしている。 ところが、このような台座付き成形陽極は、通
常所定の金型内に環状台座を配置し、これに陽極
合剤を充填して上方から加圧成形することによつ
て製造されているが、金型内から取り出したとき
に加圧力や周囲を包囲していた金型から解放され
るため成形物の陽極合剤部分が径方向および厚さ
方向に伸びようとする、いわゆるスプリングバツ
ク現象を引きおこす。 この場合、環状台座の固着された側では径方向
外方への伸張が食い止められ、環状台座が固着さ
れていない側では径方向外方に伸びるため、第3
図に示すように成形陽極21の中心部が彎曲し、
成形陽極の厚さが薄いものでは、この彎曲部21
aに亀裂ないし割れが生じたり、あるいは環状台
座22が成形陽極から離脱してしまうなどの問題
がある。 そのような問題は、成形陽極の厚さが従来のよ
うに約1.8mm程度あるものの場合には、それほど
発生せずしたがつて特に懸念すべきものとならな
かつたが、近年は電池の薄型化に伴ない成形陽極
の厚さも薄くすることが要請されており、そのよ
うな薄い成形陽極を製造する場合には、前記の問
題は頻繁に発生し、たとえば酸化第一銀の陽極活
物質とするボタン型アルカリ電池では成形陽極の
厚さが0.6mm以下になると急激に不良発生件数が
増大し、厚さが0.5mmのものでは不良発生率が実
に70%にも達するというように、深刻な問題とな
つている。 そこで、そのような問題を解決するために、ニ
ツケル、銀などの発泡金属と陽極合剤とを一体に
加圧成形することによつて成形陽極を製造するこ
とが案出され、この出願人によつて既に特許出願
されているが、そのような発泡金属によるばあい
は、金属製環状台座における垂直部に相当するよ
うなものがないので、成形物にスプリングバツク
が生じても、径方向外方への伸張力を金属製環状
台座のように強力に阻止することがないため、成
形陽極の中心部に亀裂ないし割れを発生すること
がなく、また加圧成形後には発泡金属は圧縮され
ているので、電池の封口圧に耐え、そのため封口
圧による成形陽極の変形ないし崩れが防止される
のであるが、第2図に示されるように、発泡金属
2は、金属製環状台座とは異なり、セパレータ4
側の陽極合剤3の全面域に接しているため、加圧
成形後の発泡金属の厚さが大きすぎたり、あるい
は発泡金属がその空隙部に陽極合剤を包含した状
態で圧縮されていないと、所望の電気容量が得ら
れなかつたり、電池の内部抵抗が高くなつたりす
るという問題が発生する。 この発明者はそのような事情に鑑み種々研究を
重ねた結果、固体体積が1.43〜8.00μ/cm2の発
泡金属を用い、該発泡金属と陽極合剤とを一体に
加圧成形して発泡金属の表面の空隙部にも陽極合
剤が包含されるようにしてなる成形陽極を作製
し、該成形陽極をその発泡金属側がセパレータと
当接するように収納するときは、成形陽極の厚さ
が0.6mm以下という非常に薄いばあいでも亀裂な
いし割れの発生が抑制しうることはもとより、金
属製環状台座を用いていたときに比べて同等また
はそれ以上の電気容量を有しかつ低温でも内部抵
抗の小さい電池が得られうることを見出し、それ
に基づいてこの発明を完成するにいたつた。 すなわち、発泡金属の固体体積が1.43〜8.00μ
/cm2の範囲、より好ましくは2.83〜4.98μ/
cm2の範囲にあるばあいは、前記のごとく大きな電
気容量を有しかつ内部抵抗の小さい電池が得られ
るのであるが、発泡金属の固体体積が前記範囲よ
り大きくなると成形過程で空気が放出されにくく
なり成形陽極中の発泡金属側部分に残る空気量が
多くなり陽極活物質の充填量が少なくなるととも
に、発泡金属表面の酸化被膜による電解液をはじ
く力が大きくなり、かつ陽極表面の金属固体のし
める面積が大になつて、陽極表面の電解液のつな
がりを保つ目の面積が小さくなるので電解液の流
通が行なわれがたくなるために、所望の放電電圧
および電気容量が得られなくなり、また発泡金属
がその表面の空隙部に陽極合剤を包含した状態で
圧縮されることができなくなるために電池の放電
に際して分極が増大し、逆に発泡金属の固体体積
が前記範囲より小さいばあいは、そのような発泡
金属の製造が現時点では不可能であるし、また電
池の封口時の圧力に耐えにくくなるのではないか
という懸念が生じてくる。なお、この発明におい
ては、成形陽極を陽極缶に収納するにあたつて
は、その発泡金属側がセパレータと当接しうるよ
うに陽極缶内に収納されるが、これは発泡金属が
多孔質で電解液の保持能力が優れているという特
性を利用して、陽極合剤を電解液と広い面積で接
触させて、電池性能を向上させるためであり、そ
のためには、陽極合剤が発泡金属の表面の空隙部
にも包含されていることが必要であり、それ故に
前述のごとく固体体積が8.00μ/cm2以下という
表面の金属固体の占める体積が少ない発泡金属が
用いられる。 この発明において使用する発泡金属とは、たと
えばポリウレタン発泡体の網状部分の全表面に金
属メツキを行なつて、内部に連通孔を有する連続
した三元網状構造体を形成し、ついで加熱してポ
リウレタン部分を燃焼させ、そのうち還元処理を
施すことによつて製造されるような金属の発泡体
であり、通常ニツケルまたは銀の発泡体、特にニ
ツケルの発泡体が用いられ、通常その空隙率が45
〜99容量%のものが使用される。 この発明において、固体体積とは面密度、つま
り板状の発泡金属の平面の密度を当該金属の比重
で割つたもので、板状の発泡金属の表面の面積1
cm2あたりの金属固体の占める体積をいい、たとえ
ば発泡ニツケルのばあい前記固体体積の範囲を面
密度で表示すると、12.6〜70.8mg/cm2、好ましく
は21.5〜44.1mg/cm2の範囲になる。 なお、この発明は成形陽極の厚さが0.85mm以下
のもの、とくに成形陽極の厚さが0.6mm以下のも
ののばあいに好適に適用されるが、成形陽極の厚
さが0.85mm以上のものに適用しても何らさしつか
えない。 また、この発明によれば発泡金属が陽極合剤と
広い面積で接触しているので、陽極合剤の導電性
がよくなり、そのため黒鉛などの導電助剤の添加
を削減ないしは皆無にすることができ、それに応
じて陽極活物質の添加量を増加させることができ
る。 第1図はこの発明において使用する成形陽極を
製造する際の状態を示す断面表示による説明図で
あり、発泡金属2は金型11の筒枠12に沿つて
金型11内に入れられ台枠13上に載置され、そ
の上に酸化第一銀、酸化第二銀、二酸化マンガ
ン、酸化水銀、過酸化ニツケル、酸化銅、硫化
鉄、塩化銀などの陽極活物質と、必要に応じて添
加される黒鉛のような導電助剤などからなる陽極
合剤3を充填し、上枠14上方から通常4300〜
6480Kg/cm2の圧力で加圧することによつて成形陽
極1が製造される。なお成形陽極1は、実際には
図面に示すような発泡金属2と陽極合剤3とが明
確な境界線をもつて積層されたようなものではな
く、陽極合剤の一部が発泡金属の空隙内に入り、
その状態で加圧圧縮された構造のものである。し
かも、使用された発泡金属は固体体積が1.43〜
8.00μ/cm2という表面の金属固体の占める体積
が少ないものであるため、発泡金属2の金型11
底部側の表面、つまり電池に組み込んだときにセ
パレータと当接する側の表面にいたるまで、その
空隙部に陽極合剤3が包含された状態で圧縮され
ている。 第2図はこの発明の一実施例を示すボタン型ア
ルカリ電池の断面図であり、前記のようにしてつ
くられた成形陽極1はその発泡金属2側がセパレ
ータ4に当接するように陽極缶6内に収納され、
該成形陽極1には苛性カリ、苛性ソーダなどのア
ルカリ電解液の一部が含浸されている。なおセパ
レータ4はたとえば親水処理された微孔性樹脂フ
イルムと、セロハンと、ビニロン−レーヨン混抄
紙などからなる吸液層とを積み重ねたものであ
る。5はアマルガム化された亜鉛活物質にアルカ
リ電解液の大半量を注入してなる陰極剤である。 陽極缶6は成形陽極1およびセパレータ4を内
填させる鉄にニツケルメツキが施された缶などか
らなり、缶開口部に陰極剤5を内填させた陰極端
子板7をポリエチレン、ポリプロピレン、ナイロ
ンなどの各種樹脂もしくはゴムからなる断面ほぼ
L字状の環状ガスケツト8を介装して嵌合させ、
陽極缶6の開口端部を内方へ締付けて電池内部を
密閉構造にしている。 陰極端子板7は鋼板の外面側に美観ないし耐腐
食性を満足させるニツケル層を、内面側に亜鉛活
物質との局部電池の形成を防止するための銅層を
設けた構成からなり、通常鋼板、ニツケル層およ
び銅層からなるクラツド板を絞り加工によつて周
辺折り返し部9を有する形状に加工するか、ある
いは鋼板だけをあらかじめ同様の手段で成形加工
し、その後メツキ法によりニツケル層および銅層
を形成したものである。なお環状ガスケツト8と
陽極缶6および陰極端子板7との接面にはアスフ
アルトピツチ、フツ素系オイルなどの液状パツキ
ング材が介在している。 第4図は発泡金属の固体体積と放電電気量との
関係を示す特性図であり、第5図は発泡金属の固
体体積と電池の2kΩ放電開始後5秒の電圧および
電池の内部抵抗との関係を示す特性図である。な
お第4図および第5図に示す特性図を求めるため
に使用された電池は、第2図に例示したような構
成からなり、その成形陽極として酸化第一銀96.5
重量%、二酸化マンガン3.0重量%および黒鉛0.5
重量%からなる陽極合剤と各種の固体体積を有す
る発泡ニツケルとを5270Kg/cm2で厚さ0.44mmの円
板状に加圧成形したものを用いたものであり、電
解液としては5重量%の酸化亜鉛を溶解させた35
重量%苛性カリ水溶液を用いたものである。また
放電電気量は2kΩの負荷のもとに連続的に放電す
る方法で測定されたデータである。第5図に示す
ように電池の閉路電圧は固体体積が大きくなるに
したがつて一旦高くなり、そののち次第に低下す
る。一方、電池の内部抵抗は一旦小さくなつたの
ち次第に大きくなる。この閉路電圧と内部抵抗と
のバランスを考えた場合、発泡金属の固体体積は
1.43〜8.00μ/cm2が好ましいといえる。放電電
気量は第4図に示すように固体体積が増加するに
したがつて次第に小さくなつていくが、固体体積
が8.00μ/cm2の場合でも約36mAhという大きな
放電電気量を有している。 次の第1表は第2図に例示したような構成から
なるボタン型アルカリ電池Aと従来のボタン型ア
ルカリ電池Bとの電池特性を示したものである。 なお電池Aは成形陽極として酸化第一銀96.5重
量%、二酸化マンガン3.0重量%および黒鉛0.5重
量%からなる陽極合剤と固体体積4.3μ/cm2の発
泡ニツケル(空隙率94容量%)とを5270Kg/cm2
厚さ0.44mmの円板状(直径10.93mm)に加圧成形
したものを用いたものであり、電池Bは電池Aと
同様の陽極合剤と厚さ0.13mm、台座高さ0.37mm、
外径10.75mm、内径8.25mmのステンレス製環状台
座とを5270Kg/cm2で厚さ0.44mmの円板状(直径
10.91mm)に加圧成形したものを用いたものであ
る。そして電池AおよびBとも、電解液としては
5.0重量%の酸化亜鉛を溶解させた35重量%苛性
カリ水溶液を用いたものである。
This invention provides a molded anode in which a foamed metal having a specific solid volume and an anode mixture are integrally pressure-molded so that the anode mixture is also included in the voids on the surface of the foamed metal, with the foamed metal side serving as a separator. This invention relates to a button type battery housed in an anode can so as to be in contact with each other. Generally, in button-type batteries, the anode mixture, which is mainly composed of anode active materials such as silver oxide and manganese dioxide, is pressure-formed into a disk shape before being stored in the battery. By fixing a metal annular pedestal with an L-shaped cross section to the periphery of the mixture, storing it as it is inside the battery, and using the pedestal to stop the pressure applied during sealing, the molded anode can be prevented from deforming or collapsing due to the sealing pressure. We are trying to prevent this. However, such a molded anode with a pedestal is usually manufactured by placing an annular pedestal in a predetermined mold, filling it with an anode mixture, and press-molding it from above. When taken out from the mold, the anode mixture portion of the molded product tends to expand in the radial and thickness directions because it is released from the pressurizing force and the surrounding mold, causing a so-called springback phenomenon. In this case, the side to which the annular pedestal is fixed is prevented from expanding radially outward, and the side to which the annular pedestal is not fixed extends radially outward, so that the third
As shown in the figure, the center of the shaped anode 21 is curved,
If the thickness of the molded anode is thin, this curved part 21
There are problems such as cracks or fractures occurring in a, or the annular pedestal 22 separating from the molded anode. Such problems did not occur as much when the thickness of the molded anode was about 1.8 mm, as was the case in the past, so it was not a particular cause for concern, but in recent years, batteries have become thinner. It is also required to reduce the thickness of molded anodes, and when manufacturing such thin molded anodes, the above-mentioned problem frequently occurs. In molded alkaline batteries, the number of defects increases rapidly when the thickness of the molded anode becomes 0.6 mm or less, and for batteries with a thickness of 0.5 mm, the defect rate reaches 70%, which is a serious problem. It's summery. Therefore, in order to solve such problems, it was devised to manufacture a molded anode by integrally press-molding a foamed metal such as nickel or silver and an anode mixture, and this applicant proposed Although a patent application has already been filed for this, in the case of such a foamed metal, there is no vertical part in the metal annular pedestal, so even if spring back occurs in the molded product, it will not move outward in the radial direction. Since it does not strongly block the stretching force in the direction like a metal annular pedestal, there is no possibility of cracks or cracks occurring in the center of the formed anode, and the foamed metal is compressed after pressure forming. The foamed metal 2 can withstand the sealing pressure of the battery, thereby preventing the molded anode from deforming or collapsing due to the sealing pressure.As shown in FIG. Separator 4
Because it is in contact with the entire area of the anode mixture 3 on the side, the thickness of the foamed metal after pressure forming is too large, or the foamed metal is not compressed with the anode mixture included in its voids. This causes problems such as not being able to obtain the desired electrical capacity or increasing the internal resistance of the battery. In view of these circumstances, the inventor conducted various studies and found that a foamed metal with a solid volume of 1.43 to 8.00 μ/cm 2 was used, and the foamed metal and anode mixture were integrally pressure-molded. When producing a molded anode in which the anode mixture is included in the voids on the surface of the metal, and storing the molded anode so that the foamed metal side contacts the separator, the thickness of the molded anode must be In addition to being able to suppress the occurrence of cracks or cracks even in extremely thin cases of 0.6 mm or less, it has the same or higher electric capacity than when using a metal annular pedestal, and has a lower internal resistance even at low temperatures. It was discovered that a small battery of 100 mL can be obtained, and based on this finding, the present invention was completed. That is, the solid volume of foam metal is 1.43~8.00μ
/cm 2 range, more preferably 2.83-4.98μ/
cm 2 range, a battery with large capacitance and low internal resistance can be obtained as mentioned above, but if the solid volume of the foam metal exceeds the above range, air will be released during the molding process. As a result, the amount of air remaining on the foamed metal side of the formed anode increases, reducing the amount of anode active material filled, and the force of repelling the electrolyte due to the oxide film on the foamed metal surface increases, and the metal solid on the anode surface increases. As the area of the anode becomes larger, the area of the holes that keep the electrolyte connected on the anode surface becomes smaller, making it difficult for the electrolyte to flow, making it impossible to obtain the desired discharge voltage and capacitance. In addition, since the foamed metal cannot be compressed while containing the anode mixture in the voids on its surface, polarization increases during battery discharge, and conversely, if the solid volume of the foamed metal is smaller than the above range, However, it is currently impossible to manufacture such foamed metal, and there are concerns that it will be difficult to withstand the pressure when sealing the battery. In addition, in this invention, when storing the molded anode in the anode can, it is stored in the anode can so that the foamed metal side can come into contact with the separator, but this is because the foamed metal is porous and electrolytic. This is to improve battery performance by bringing the anode mixture into contact with the electrolyte over a wide area by taking advantage of its excellent ability to retain liquid. Therefore, as mentioned above, a foam metal is used, which has a solid volume of 8.00 μ/cm 2 or less, which is a small volume occupied by the metal solid on the surface. The foamed metal used in this invention is, for example, metal-plated on the entire surface of the net-like part of a polyurethane foam to form a continuous ternary network structure having communicating holes inside, and then heated to form a polyurethane foam. A metal foam produced by burning a part and subjecting it to a reduction process, usually nickel or silver foam, especially nickel foam, and usually has a porosity of 45
~99% by volume is used. In this invention, the solid volume is the areal density, that is, the density of the plane of the plate-shaped foam metal divided by the specific gravity of the metal, and the area of the surface of the plate-shaped foam metal 1
It refers to the volume occupied by a metal solid per cm 2. For example, in the case of foamed nickel, the solid volume range is expressed as an areal density of 12.6 to 70.8 mg/cm 2 , preferably 21.5 to 44.1 mg/cm 2. Become. This invention is suitably applied to molded anodes with a thickness of 0.85 mm or less, especially molded anodes with a thickness of 0.6 mm or less; however, it is suitable for molded anodes with a thickness of 0.85 mm or more. There is no harm in applying it to Furthermore, according to this invention, since the foamed metal is in contact with the anode mixture over a wide area, the conductivity of the anode mixture is improved, and therefore it is possible to reduce or eliminate the addition of conductive additives such as graphite. The amount of anode active material added can be increased accordingly. FIG. 1 is an explanatory cross-sectional view showing the state when manufacturing the molded anode used in the present invention, in which the foamed metal 2 is put into the mold 11 along the cylindrical frame 12 of the mold 11 and the underframe 13, and anode active materials such as first silver oxide, second silver oxide, manganese dioxide, mercury oxide, nickel peroxide, copper oxide, iron sulfide, and silver chloride are added as necessary. The anode mixture 3 made of a conductive additive such as graphite is charged from above the upper frame 14.
The molded anode 1 is manufactured by applying a pressure of 6480 kg/cm 2 . The molded anode 1 is not actually a layered metal foam 2 and anode mixture 3 with a clear boundary line as shown in the drawing, but a part of the anode mixture is made of foam metal. enter the void,
It has a structure that is compressed under pressure. Moreover, the solid volume of the foam metal used is 1.43 ~
Since the volume occupied by the metal solid on the surface is small (8.00 μ/cm 2 ) ,
The anode mixture 3 is compressed to be contained in the gap up to the bottom surface, that is, the surface that will come into contact with the separator when assembled into a battery. FIG. 2 is a cross-sectional view of a button-type alkaline battery showing an embodiment of the present invention. The formed anode 1 made as described above is placed inside the anode can 6 so that the foamed metal 2 side is in contact with the separator 4. is stored in
The molded anode 1 is partially impregnated with an alkaline electrolyte such as caustic potash or caustic soda. The separator 4 is a stack of, for example, a hydrophilically treated microporous resin film, cellophane, and a liquid-absorbing layer made of vinylon-rayon mixed paper. 5 is a cathode material made by injecting most of the alkaline electrolyte into an amalgamated zinc active material. The anode can 6 is made of nickel-plated iron in which the molded anode 1 and the separator 4 are housed, and the cathode terminal plate 7 with the cathode agent 5 filled in the opening of the can is made of polyethylene, polypropylene, nylon, etc. An annular gasket 8 made of various resins or rubber and having an approximately L-shaped cross section is interposed and fitted,
The open end of the anode can 6 is tightened inward to create a sealed structure inside the battery. The cathode terminal plate 7 is made of a steel plate, with a nickel layer on the outer side to satisfy aesthetics and corrosion resistance, and a copper layer on the inner side to prevent the formation of local batteries with the zinc active material. , a clad plate consisting of a nickel layer and a copper layer is drawn into a shape having a peripheral folded part 9, or a steel plate is formed in advance by a similar method, and then the nickel layer and copper layer are formed by a plating method. was formed. Note that a liquid packing material such as asphalt pitch or fluorine-based oil is interposed between the annular gasket 8, anode can 6, and cathode terminal plate 7 at their contact surfaces. Figure 4 is a characteristic diagram showing the relationship between the solid volume of the foam metal and the amount of discharged electricity, and Figure 5 is a characteristic diagram showing the relationship between the solid volume of the foam metal and the battery's voltage at 5 seconds after the start of 2kΩ discharge and the internal resistance of the battery. It is a characteristic diagram showing a relationship. The battery used to obtain the characteristic diagrams shown in FIGS. 4 and 5 had the configuration shown in FIG.
wt%, manganese dioxide 3.0 wt% and graphite 0.5
% by weight and foamed nickel having various solid volumes were pressure-molded into a disk shape with a thickness of 0.44 mm at 5270 Kg/ cm2 , and the electrolyte was 5% by weight. 35% dissolved zinc oxide
A wt % caustic potassium aqueous solution was used. In addition, the amount of discharge electricity is data measured by a method of continuous discharge under a load of 2 kΩ. As shown in FIG. 5, the closed-circuit voltage of the battery increases as the solid volume increases, and then gradually decreases. On the other hand, the internal resistance of a battery once decreases and then gradually increases. Considering the balance between this closed circuit voltage and internal resistance, the solid volume of the foam metal is
It can be said that 1.43 to 8.00 μ/cm 2 is preferable. As shown in Figure 4, the amount of discharged electricity gradually decreases as the solid volume increases, but even when the solid volume is 8.00μ/ cm2 , it still has a large amount of discharged electricity of about 36mAh. . Table 1 below shows the battery characteristics of a button-type alkaline battery A having the configuration as illustrated in FIG. 2 and a conventional button-type alkaline battery B. Battery A used a molded anode containing an anode mixture consisting of 96.5% by weight of silver oxide, 3.0% by weight of manganese dioxide, and 0.5% by weight of graphite, and foamed nickel (porosity: 94% by volume) with a solid volume of 4.3 μ/cm 2 . Battery B uses the same anode mixture as Battery A, 0.13 mm thickness, and pedestal height. 0.37mm,
A stainless steel annular pedestal with an outer diameter of 10.75 mm and an inner diameter of 8.25 mm is combined with a circular pedestal of 5270 Kg/cm 2 and a thickness of 0.44 mm (diameter
10.91 mm). In both batteries A and B, the electrolyte is
A 35% by weight aqueous solution of caustic potassium in which 5.0% by weight of zinc oxide was dissolved was used.

【表】 第1表に示すように、この発明の電池Aは従来
の電池Bに比べて、開路電圧、閉路電圧とも高
く、かつ内部抵抗が小さく、特に低温においては
その差異が顕著であり、しかも放電持続時間が長
いという優れた電池性能を有している。 以上詳述したように、この発明はボタン型電池
の成形陽極として、固体体積が1.43〜8.00μ/
cm2の発泡金属と陽極合剤とを一体に加圧成形して
その発泡金属の表面の空隙部にも陽極合剤を包含
させたものを用い、該成形陽極をその発泡金属側
がセパレータと当接するようにして陽極缶内に収
納したものであり、この発明によれば成形陽極製
造時の成形陽極の亀裂ないし割れの発生が抑制さ
れ、薄型の成形陽極の大量生産が可能になるとと
もに、電気容量が大きくかつ低温でも内部抵抗の
小さい電池を得ることができる。
[Table] As shown in Table 1, the battery A of the present invention has higher open-circuit voltage and closed-circuit voltage and lower internal resistance than the conventional battery B, and the difference is particularly noticeable at low temperatures. Moreover, it has excellent battery performance with a long discharge duration. As described in detail above, the present invention can be used as a molded anode for a button battery with a solid volume of 1.43 to 8.00μ/
cm 2 of foamed metal and an anode mixture are integrally pressure-molded, and the anode mixture is also included in the voids on the surface of the foamed metal. According to the present invention, the occurrence of cracks or fractures in the molded anode during the production of molded anodes is suppressed, and the mass production of thin molded anodes becomes possible. A battery with large capacity and low internal resistance even at low temperatures can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明において使用する成形陽極を
製造する際の状態を示す断面表示による説明図、
第2図はこの発明の一実施例を示すボタン型アル
カリ電池の断面図、第3図は従来電池の成形陽極
がスプリングバツクによつて彎曲した状態を示す
断面図であり、第4図は発泡金属の固体体積と放
電電気量との関係を示す特性図、第5図は発泡金
属の固体体積と内部抵抗および閉路電圧との関係
を示す特性図である。 1……成形陽極、2……発泡金属、3……陽極
合剤、4……セパレータ、6……陽極缶。
FIG. 1 is an explanatory cross-sectional view showing the state of manufacturing the molded anode used in this invention;
Fig. 2 is a sectional view of a button-type alkaline battery showing an embodiment of the present invention, Fig. 3 is a sectional view showing a conventional battery in which the molded anode is bent due to spring back, and Fig. 4 is a sectional view of a button-type alkaline battery showing an embodiment of the present invention. FIG. 5 is a characteristic diagram showing the relationship between the solid volume of metal and the amount of discharged electricity, and FIG. 5 is a characteristic diagram showing the relationship between the solid volume of foam metal, internal resistance, and closed circuit voltage. 1... Molded anode, 2... Foamed metal, 3... Anode mixture, 4... Separator, 6... Anode can.

Claims (1)

【特許請求の範囲】[Claims] 1 固体体積が1.43〜8.00μ/cm2の発泡金属を
用い、該発泡金属と陽極合剤とを一体に加圧成形
して発泡金属の表面の空隙部にも陽極合剤を包含
させてなる成形陽極を、発泡金属側がセパレータ
と当接するように、陽極缶内に収納したことを特
徴とするボタン型電池。
1 Using a foamed metal with a solid volume of 1.43 to 8.00μ/cm 2 , the foamed metal and anode mixture are integrally pressure-molded so that the anode mixture is included in the voids on the surface of the foamed metal. A button-type battery characterized in that a molded anode is housed in an anode can such that the foamed metal side is in contact with a separator.
JP6363079A 1979-05-22 1979-05-22 Button type cell Granted JPS55155473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6363079A JPS55155473A (en) 1979-05-22 1979-05-22 Button type cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6363079A JPS55155473A (en) 1979-05-22 1979-05-22 Button type cell

Publications (2)

Publication Number Publication Date
JPS55155473A JPS55155473A (en) 1980-12-03
JPH0210546B2 true JPH0210546B2 (en) 1990-03-08

Family

ID=13234849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6363079A Granted JPS55155473A (en) 1979-05-22 1979-05-22 Button type cell

Country Status (1)

Country Link
JP (1) JPS55155473A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122838A (en) * 1976-04-07 1977-10-15 Sumitomo Electric Industries Silver plate for silver battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122838A (en) * 1976-04-07 1977-10-15 Sumitomo Electric Industries Silver plate for silver battery

Also Published As

Publication number Publication date
JPS55155473A (en) 1980-12-03

Similar Documents

Publication Publication Date Title
US4091178A (en) Rechargeable alkaline MnO2 -zinc cell
US4054726A (en) Galvanic primary element with air electrode
JPH1154095A (en) Battery and its manufacture
US4209479A (en) Means for improving manufacture of solid state cells
US4783384A (en) Electrochemical cell
US4207389A (en) Solid state cells
US5752987A (en) Method for producing improved electrolyte-retention bipolar cells and batteries
JP4772185B2 (en) Positive electrode plate for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
JPH1126013A (en) Sealed metal oxide-zinc storage battery and its manufacture
US4174565A (en) Method of precharging rechargeable metal oxide-hydrogen cells
JPH0210546B2 (en)
JPH11185767A (en) Manufacture of nickel-hydrogen secondary battery and electrode
US20010016282A1 (en) Gastight-sealed alkaline storage battery in the form of a button cell
JPH048899B2 (en)
JPH11144715A (en) Manufacture of electrode for secondary battery
JPH0713896B2 (en) Sealed nickel cadmium battery
JPS6221227B2 (en)
JPH06163026A (en) Alkaline button battery
JP3115574B2 (en) Battery
JPH06283196A (en) Sealed nickel-hydrogen secondary battery
JPS59101772A (en) Silver oxide battery
JPS6259410B2 (en)
JP2000200612A (en) Rectangular alkaline secondary battery
JPS60221959A (en) Alkaline battery
JPS5852617Y2 (en) silver oxide battery