JP3115574B2 - Battery - Google Patents

Battery

Info

Publication number
JP3115574B2
JP3115574B2 JP01164347A JP16434789A JP3115574B2 JP 3115574 B2 JP3115574 B2 JP 3115574B2 JP 01164347 A JP01164347 A JP 01164347A JP 16434789 A JP16434789 A JP 16434789A JP 3115574 B2 JP3115574 B2 JP 3115574B2
Authority
JP
Japan
Prior art keywords
electrode layer
battery
powder
negative electrode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01164347A
Other languages
Japanese (ja)
Other versions
JPH0330258A (en
Inventor
哲也 米田
光治 南野
元男 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP01164347A priority Critical patent/JP3115574B2/en
Publication of JPH0330258A publication Critical patent/JPH0330258A/en
Application granted granted Critical
Publication of JP3115574B2 publication Critical patent/JP3115574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、電池に関する。特に水素貯蔵合金を用い
る電池に関する。
The present invention relates to a battery. In particular, it relates to a battery using a hydrogen storage alloy.

(ロ)従来の技術 従来の電池は、正極活物質を含んだ正極合剤粉末と、
負極活物質の水素貯蔵合金を含んだ負極合剤粉末との間
に、粉末状のセパレータを載置し、一体に加圧成型して
三層錠剤状電池要素を得、これに電解液を供給して集電
体を熔接したボタン形容器内に入れ、かしめて封口する
ことにより作製していた。
(B) Conventional technology Conventional batteries include a positive electrode mixture powder containing a positive electrode active material,
A powdery separator is placed between the negative electrode mixture powder containing the hydrogen storage alloy of the negative electrode active material, and pressed integrally to obtain a three-layer tablet-shaped battery element, which is supplied with an electrolytic solution. Then, the current collector was placed in a welded button-shaped container, swaged and sealed.

また、ニッケル−水素電池は、正極活物質のニッケル
酸化物を含んだ正極活物質粉末を、ニッケルメッキを施
した鉄製のパンチングメタル、若しくは、ニッケル製の
多孔体等の基板に塗るか含浸させた後、水酸化カリウム
水溶液等のアルカリ電解液中において、電気化学的に化
成処理を行い、その後所定の大きさに打ち抜くか、切り
取って正極層とし、電池容器の、缶と熔接する。
Further, in the nickel-hydrogen battery, a positive electrode active material powder containing nickel oxide as a positive electrode active material was applied or impregnated on a substrate such as a nickel-plated iron punching metal or a nickel porous body. Thereafter, a chemical conversion treatment is performed electrochemically in an alkaline electrolyte such as an aqueous solution of potassium hydroxide, and then punched or cut into a predetermined size to form a positive electrode layer, which is welded to a can of a battery container.

一方、正極と同様の基板に負極活物質の水素貯蔵合金
を含んだ負極合剤粉末を基板に取り付け、水酸化カリウ
ム水溶液等のアルカリ電解液中において、電気化学的に
化成処理を行い、その後所定の大きさに打ち抜くか切り
取って負極層とし、電池容器の蓋と熔接する。そして、
正極層と負極層の間にセパレータを挿入し、さらに前述
のアルカリ電解液を供給した後、缶と蓋をかしめるなど
して封口して作製していた。
On the other hand, a negative electrode mixture powder containing a hydrogen storage alloy of a negative electrode active material is attached to the same substrate as the positive electrode, and chemically converted in an alkaline electrolyte such as an aqueous potassium hydroxide solution. Punched or cut out to the size of the negative electrode layer and welded to the lid of the battery container. And
After the separator was inserted between the positive electrode layer and the negative electrode layer, and the above-mentioned alkaline electrolyte was supplied, the can and the lid were closed by caulking or the like.

(ハ)発明が解決しようとする課題 上述の水素貯蔵合金を含んだ負極からなる電池は、負
極合剤粉末の使用量の僅かの違いや電極界面での接触抵
抗等による電池の内部抵抗の僅かの違いによって、電池
の充放電特性においてばらつきが生じ易く、均一な充放
電特性を呈する電池を高い歩留まりで製造するのが困難
であった。
(C) Problems to be Solved by the Invention A battery comprising a negative electrode containing the above-mentioned hydrogen storage alloy has a slight difference in the internal resistance of the battery due to a slight difference in the amount of the negative electrode mixture powder used or a contact resistance at the electrode interface. Due to this difference, the charge-discharge characteristics of the battery tend to vary, making it difficult to produce a battery exhibiting uniform charge-discharge characteristics at a high yield.

この発明は、上記従来の電池がもつ問題点を解消する
ためになされたものであって、製造工程が簡略化できる
とともに、均一な充放電特性を呈し、かつ高い歩留まり
で製造できる電池を提供しようとするものである。
The present invention has been made in order to solve the problems of the conventional battery described above, and it is an object of the present invention to provide a battery which can simplify the manufacturing process, exhibit uniform charge / discharge characteristics, and can be manufactured at a high yield. It is assumed that.

(ニ)課題を解決するための手段 本発明によれば、正極層、電解液が含浸されたセパレ
ータ層及び負極層とが順に積層され電池容器に封入され
てなり、前記負極層は、表面側からニッケルと銅とがこ
の順にメッキされている水素吸蔵合金粉末を構成材料と
することを特徴とする電池が提供される。
(D) Means for Solving the Problems According to the present invention, a positive electrode layer, a separator layer impregnated with an electrolytic solution, and a negative electrode layer are sequentially laminated and sealed in a battery container. The present invention provides a battery comprising, as a constituent material, a hydrogen storage alloy powder plated with nickel and copper in this order.

また、本発明によれば、正極層、電解液が含浸された
セパレータ層及び負極層とが順に積層され電池容器に封
入されてなり、前記負極層は、表面側からニッケルと銅
とがこの順にメッキされている水素吸蔵合金粉末と表面
にニッケルをメッキされている水素吸蔵合金粉末との混
合物を構成材料とすることを特徴とする電池が提供され
る。
Further, according to the present invention, a positive electrode layer, a separator layer impregnated with an electrolytic solution, and a negative electrode layer are sequentially laminated and sealed in a battery container, and the negative electrode layer includes nickel and copper in this order from the surface side. There is provided a battery characterized by comprising, as a constituent material, a mixture of a plated hydrogen storage alloy powder and a hydrogen storage alloy powder whose surface is plated with nickel.

負極層は、表面側からニッケルと銅とがこの順にメッ
キされている水素吸蔵合金粉末、又は表面側からニッケ
ルと銅とがこの順にメッキされている水素吸蔵合金粉末
と表面にニッケルをメッキされている水素吸蔵合金粉末
との混合物からなる。これらの水素貯蔵合金は、水素の
酸化又は水素イオンの還元反応によって電池の放充電を
行うためのものであって、表面にニッケルと銅とが順に
メッキされている水素貯蔵合金は、例えば、TixNi(1
≦x≦2)、TiFe、LaNi5、MmNi5等の粉末に、例えば無
電解メッキ法、真空蒸着法等によって、まず、ニッケル
メッキを施し、更にこの上に銅メッキを施し、脱気処理
を施した後、水素雰囲気中で水素を吸蔵させて作製する
ことができ、表面にニッケルがメッキされている水素貯
蔵合金は、前記作製の方法において銅メッキを施す工程
を行わず、この他は前記作製の方法と同様にして作製す
ることができる。前記負極層は、表面にニッケルと銅と
が順にメッキされている水素貯蔵合金又は表面にニッケ
ルがメッキされている水素貯蔵合金との混合物を用い、
更に必要に応じて導電剤及び結着剤を混合して、負極層
の粉末とし、例えば加圧成形等によって形成することが
できる。この混合量は、表面にニッケルと銅が順にメッ
キされている水素貯蔵合金が、通常20重量%以上に、表
面にニッケルがメッキされている水素貯蔵合金が、通常
80重量%以下、導電剤及び結着剤それぞれが通常20重量
%以下である。
The negative electrode layer is formed by plating nickel and copper on the surface of the hydrogen storage alloy powder in which nickel and copper are plated in this order from the surface side, or hydrogen storage alloy powder in which nickel and copper are plated in this order from the surface side. Of hydrogen storage alloy powder. These hydrogen storage alloys are for discharging and charging a battery by oxidation of hydrogen or reduction reaction of hydrogen ions.Hydrogen storage alloys whose surfaces are sequentially plated with nickel and copper are, for example, Ti. x Ni (1
≦ x ≦ 2), a powder of TiFe, LaNi5, MmNi5, etc. was first subjected to nickel plating by, for example, electroless plating, vacuum deposition, etc., and then further subjected to copper plating and degassing. Thereafter, it can be manufactured by absorbing hydrogen in a hydrogen atmosphere, and a hydrogen storage alloy having a surface plated with nickel is not subjected to the step of applying copper plating in the method of manufacturing, and the others are manufactured in the same manner as in the above-described manufacturing. It can be produced in the same manner as in the method. The negative electrode layer, using a mixture of a hydrogen storage alloy whose surface is plated with nickel and copper in order or a hydrogen storage alloy whose surface is plated with nickel,
Further, if necessary, a conductive agent and a binder may be mixed to form a powder of the negative electrode layer, which may be formed by, for example, pressure molding. This mixture amount is usually 20% by weight or more for hydrogen storage alloys whose surfaces are plated with nickel and copper in order. Hydrogen storage alloys whose surfaces are plated with nickel are usually
It is usually 80% by weight or less, and each of the conductive agent and the binder is usually 20% by weight or less.

前記導電剤は、負極層の電子導電性を確保するために
加えられる電子導電性物質であり、例えばアセチレンブ
ラック、グラファイト、カーボンブラック、ニッケル粉
末等が挙げられるが、アセチレンブラック及びグラファ
イトが好適である。前記結着剤は、前記二種の粉末の結
着性を高めるために加えられる物質である。この結着剤
としては、例えばカルボキシメチルセルロース、ポリテ
トラフルオロエチレン、カルボキシメチルセルロース
塩、ポリビニルアルコール、ポリエチレン、寒天、メチ
ルセルロース等が挙げられる。
The conductive agent is an electron conductive substance added to secure the electron conductivity of the negative electrode layer, and includes, for example, acetylene black, graphite, carbon black, nickel powder, and the like.Acetylene black and graphite are preferable. . The binder is a substance added to enhance the binding properties of the two powders. Examples of the binder include carboxymethylcellulose, polytetrafluoroethylene, carboxymethylcellulose salt, polyvinyl alcohol, polyethylene, agar, methylcellulose and the like.

次に、三層錠剤状電池要素を用いる負極容量支配のボ
タン形電池の製造方法の例を図に沿って具体的に述べる
が、この例に限定されるものではない。
Next, an example of a method for manufacturing a button-shaped battery in which a negative electrode capacity is controlled using a three-layer tablet-shaped battery element will be specifically described with reference to the drawings, but the present invention is not limited to this example.

第1図において、1は成形用金型、2は金型内に投入
した粉末を加圧して成形する押棒、3は成形用金型1の
受台である。この受台3は成形用金型1の深さを調整す
るため、成形用金型1内において、上下に可動となされ
ている。
In FIG. 1, reference numeral 1 denotes a molding die, reference numeral 2 denotes a push bar for pressing and molding the powder put into the die, and reference numeral 3 denotes a receiving stand for the molding die 1. The pedestal 3 is vertically movable within the molding die 1 to adjust the depth of the molding die 1.

まず、このような状態に設定された成形用金型1に正
極層の粉末4を投入し(第1図)、その後押棒2で正極
層の粉末4を軽く加圧して整地し、続いてセパレータ層
の粉末5を成形用金型1内に置かれた正極層の粉末4の
上に投入する。その状態を第2図に示す。その後押棒2
でセパレータ層の粉末5を軽く加圧して整地する。
First, the powder 4 of the positive electrode layer is put into the molding die 1 set in such a state (FIG. 1), and then the powder 4 of the positive electrode layer is lightly pressed with the push rod 2 to level the ground. The powder 5 of the layer is put on the powder 4 of the positive electrode layer placed in the molding die 1. The state is shown in FIG. Then push rod 2
And lightly pressurize the powder 5 of the separator layer to level the ground.

次に、負極層の粉末6を成形用金型1内に置かれたセ
パレータ層の粉末5の上に投入する。この状態を第3図
に示す。次いで、成形用金型1内に置かれた正極層の粉
末4、セパレータ層の粉末5、負極層の粉末6を押棒2
によって加圧し、一体成形する。その状態を第4図に示
す。この後、成形体(三層錠剤状電池要素)を成形用金
型1より取り出す。尚、前記正極層と負極層の粉末を成
形用金型1内に投入する順序は、上述の逆であってもよ
い。また、前記正極層の粉末は、正極活物質、導電剤及
び結着剤を含む。正極活物質としては、例えば二酸化マ
ンガン、酸化ニッケル、三酸化タングステン、二酸化
鉛、三酸化モリブデン等の酸化剤が挙げられるが、二酸
化マンガン及び酸化ニッケルが好適である。導電剤及び
結着剤は前記負極層に対して用いることのできるものと
同様のものを用いることができ、正極層の粉末中にそれ
ぞれ、通常3〜20重量パーセント配合される。
Next, the negative electrode layer powder 6 is put on the separator layer powder 5 placed in the molding die 1. This state is shown in FIG. Next, the powder 4 of the positive electrode layer, the powder 5 of the separator layer, and the powder 6 of the negative electrode layer placed in the molding die 1
To form a single piece. The state is shown in FIG. Thereafter, the molded body (three-layer tablet-shaped battery element) is taken out of the molding die 1. The order of charging the powder of the positive electrode layer and the powder of the negative electrode layer into the molding die 1 may be reversed. The powder of the positive electrode layer contains a positive electrode active material, a conductive agent, and a binder. Examples of the positive electrode active material include oxidizing agents such as manganese dioxide, nickel oxide, tungsten trioxide, lead dioxide, and molybdenum trioxide, and manganese dioxide and nickel oxide are preferred. The conductive agent and the binder may be the same as those used for the negative electrode layer, and are usually mixed in the powder of the positive electrode layer in an amount of 3 to 20% by weight.

セパレータ層の粉末は、電解液支持体及び結着剤を含
む。電解液支持体は、絶縁性を有するものであればよ
く、この条件を満足する電解液支持体の例としては、二
酸化ケイ素及び酸化アルミニウム等が挙げられる。この
発明のために好適な結着剤としては、前記負極層に対し
て用いるものと同様なものが選ばれる。この結着剤は電
解液支持体100重量部に対し、必要に応じて40重量部以
下の量配合される。
The powder of the separator layer contains an electrolyte support and a binder. The electrolyte support may be any as long as it has an insulating property. Examples of the electrolyte support satisfying this condition include silicon dioxide and aluminum oxide. As the binder suitable for the present invention, the same binder as that used for the negative electrode layer is selected. The binder is added in an amount of not more than 40 parts by weight, as needed, with respect to 100 parts by weight of the electrolyte support.

次に、第5図に示すように、予め集電用ネット7が熔
接され、ガスケット8が載置された電池容器9内に前記
成形体(三層錠剤状電池要素)を載置する。その後、電
解液10を供給し、含浸させる。
Next, as shown in FIG. 5, the molded body (three-layer tablet-shaped battery element) is placed in a battery container 9 on which a current collecting net 7 has been welded in advance and a gasket 8 has been placed. Thereafter, the electrolytic solution 10 is supplied and impregnated.

最後に、第6図に示すように電池容器9に、集電用ネ
ット7を熔接した蓋11を取り付け、電池容器7と蓋11と
をかしめて封口して電池とする。
Finally, as shown in FIG. 6, a lid 11 to which the current collecting net 7 is welded is attached to the battery container 9, and the battery container 7 and the lid 11 are caulked and sealed to form a battery.

(ホ)作用 水素貯蔵合金の表面に施されたニッケルメッキ層が水
素貯蔵合金の酸化を防止し、銅メッキ層が過放電を防ぎ
放電カーブを平坦にする。
(E) Action The nickel plating layer applied to the surface of the hydrogen storage alloy prevents oxidation of the hydrogen storage alloy, and the copper plating layer prevents overdischarge and flattens the discharge curve.

(ヘ)実施例 以下、本発明を実施例及び比較例により更に詳細に説
明する。
(F) Examples Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1 正極合剤は、γ−二酸化マンガンを20重量部と、導電
剤であるアセチレンブラックを2重量部および結着剤で
あるポリテトラフルオロエチレン粉末およびカルボキシ
メチルセルロースナトリウムとを1重量部ずつ混合した
粉末である。この200mgをとり、内径15mmの成形用金型
に投入し、上から押棒で軽く押さえる。
Example 1 A positive electrode mixture was prepared by mixing 20 parts by weight of γ-manganese dioxide, 2 parts by weight of acetylene black as a conductive agent, and 1 part by weight of polytetrafluoroethylene powder and sodium carboxymethylcellulose as a binder. Powder. Take 200 mg of this and put it into a molding die with an inner diameter of 15 mm, and press lightly with a push rod from above.

セパレータ合剤は、電解液支持体であるα−アルミナ
の粉末を20重量部および結着剤であるカルボキシメチル
セルロースを1重量部混合した粉末である。この200mg
をとり、成形用金型内に置かれた正極合剤の上に投入
し、上から押棒で軽く押さえる。
The separator mixture is a powder obtained by mixing 20 parts by weight of α-alumina powder as an electrolyte support and 1 part by weight of carboxymethyl cellulose as a binder. 200mg of this
And put it on the positive electrode mixture placed in the molding die, and gently press with a push rod from above.

負極合剤は、TiNi粉末の表面に無電解メッキ法によっ
てニッケルメッキを施し、更にこの上に銅メッキを施し
た後、ガス状の水素を耐圧容器内において、25℃、1気
圧の条件下で一晩吸蔵させた水素貯蔵合金180mgに、導
電剤であるアセチレンブラックおよび結着剤であるカル
ボキシメチルセルロースを10mgずつ混合した粉末であ
る。これを成形用金型内に置かれたセパレータ合剤の上
に投入し、上から押棒で200Kgw/cm2の圧力で加圧し、成
型体を得る。こうして、電池内容物である三層構造をも
つ圧粉成形体を得、成形用金型より取り出す。
The negative electrode mixture is obtained by applying nickel plating to the surface of TiNi powder by electroless plating, and then applying copper plating on the surface, and then applying gaseous hydrogen in a pressure vessel at 25 ° C and 1 atmosphere. This powder is obtained by mixing 10 mg each of acetylene black as a conductive agent and carboxymethylcellulose as a binder with 180 mg of a hydrogen storage alloy absorbed overnight. This is put on a separator mixture placed in a molding die, and pressed from above with a push rod at a pressure of 200 kgw / cm 2 to obtain a molded body. Thus, a green compact having a three-layer structure, which is a battery content, is obtained and taken out from the molding die.

次に、この電池内容物を電池容器に入れ、30重量パー
セントの水酸化カリウム水溶液を100μ加え、蓋を
し、かしめて封口する。このようにして電池(A)を10
個作製する。この電池(A)は、図7に示すように2KΩ
定負荷放電曲線が後述の比較例に比べて電圧の平坦性が
高く選れており、また、第1表に示すように25℃におい
て2KΩ定負荷放電した場合の0.5Vまでの放電時間(容
量)を10個のサンプルについて測定したところ、容量の
均一性に優れていることが認められた。
Next, the battery content is placed in a battery container, 100 μl of a 30% by weight aqueous solution of potassium hydroxide is added, the cap is closed, and the cap is closed by caulking. In this way, battery (A) is
Make pieces. This battery (A) has a capacity of 2 kΩ as shown in FIG.
The constant load discharge curve was selected to have higher voltage flatness than the comparative example described later, and as shown in Table 1, the discharge time (capacity up to 0.5 V when 2 KΩ constant load discharge was performed at 25 ° C.) ) Was measured for 10 samples, and it was found that the samples had excellent capacity uniformity.

比較例1 実施例1において、TiNi粉末の表面に、ニッケルメッ
キを施し、更にこの上に銅メッキを施した後、水素を吸
蔵させた水素貯蔵合金を用いる代わりに、メッキを施さ
ないTiNi粉末を用い、この他は実施例1と同様にして電
池(B)を作製する。
Comparative Example 1 In Example 1, the surface of the TiNi powder was nickel-plated, and further plated with copper. Then, instead of using a hydrogen storage alloy storing hydrogen, unplated TiNi powder was used. A battery (B) was produced in the same manner as in Example 1 except for the above.

この電池(B)は、実施例1と同様にして2KΩ定負荷
放電特性及び容量を測定したところ、放電電圧の平坦性
が低く、容量にばらつきが認められた。
The battery (B) was measured for constant-load discharge characteristics and capacity at 2 KΩ in the same manner as in Example 1. As a result, the flatness of the discharge voltage was low, and variations were observed in the capacity.

(ト)発明の効果 この発明によれば、放電電圧の平坦性に優れ、容量が
均一な電池を提供することができる。また、容量が均一
なためこの電池の製造歩留まりを向上させることができ
る。
(G) Effects of the Invention According to the present invention, it is possible to provide a battery having excellent flatness of discharge voltage and uniform capacity. Further, since the capacity is uniform, the production yield of this battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第6図は、この発明の電池の製造工程の説明
図、第7図および第8図は、それぞれこの発明の実施例
及び比較例で作製した電池の2KΩ定負荷放電曲線の図で
ある。 1……成形用金型、2……押棒、 5……セパレータ層の粉末、 6……負極層の粉末、7……集電用ネット、 8……ガスケット、9……電池容器、 10……電解液、11……蓋。
1 to 6 are explanatory views of the manufacturing process of the battery of the present invention, and FIGS. 7 and 8 are diagrams of 2 KΩ constant load discharge curves of the batteries manufactured in the example of the present invention and the comparative example, respectively. It is. DESCRIPTION OF SYMBOLS 1 ... Molding die, 2 ... Push rod, 5 ... Powder of separator layer, 6 ... Powder of negative electrode layer, 7 ... Net for current collection, 8 ... Gasket, 9 ... Battery container, 10 ... ... electrolyte, 11 ... lid.

フロントページの続き (56)参考文献 特開 昭61−168866(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/38 H01M 4/24 - 4/26 (56) References JP-A-61-168866 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/38 H01M 4/24-4/26

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極層、電解液が含浸されたセパレータ層
及び負極層とが順に積層され電池容器に封入されてな
り、前記負極層は、表面側からニッケルと銅とがこの順
にメッキされている水素吸蔵合金粉末を構成材料とする
ことを特徴とする電池。
1. A positive electrode layer, a separator layer impregnated with an electrolytic solution, and a negative electrode layer are sequentially laminated and sealed in a battery container. The negative electrode layer is formed by plating nickel and copper in this order from the surface side. A hydrogen storage alloy powder as a constituent material.
【請求項2】正極層、電解液が含浸されたセパレータ層
及び負極層とが順に積層され電池容器に封入されてな
り、前記負極層は、表面側からニッケルと銅とがこの順
にメッキされている水素吸蔵合金粉末と表面にニッケル
をメッキされている水素吸蔵合金粉末との混合物を構成
材料とすることを特徴とする電池。
2. A positive electrode layer, a separator layer impregnated with an electrolytic solution, and a negative electrode layer are sequentially laminated and sealed in a battery container. The negative electrode layer is formed by plating nickel and copper in this order from the surface side. A battery comprising a mixture of a hydrogen storage alloy powder and a hydrogen storage alloy powder whose surface is plated with nickel.
【請求項3】負極層が、表面側からニッケルと銅とがこ
の順にメッキされている水素吸蔵合金粉末を20重量%以
上、表面にニッケルをメッキされている水素吸蔵合金粉
末を80重量%以下の割合で含む請求項2に記載の電池。
3. The negative electrode layer contains 20% by weight or more of a hydrogen storage alloy powder having nickel and copper plated in this order from the surface side, and 80% by weight or less of a hydrogen storage alloy powder having nickel plated on the surface. The battery according to claim 2, which is contained at a ratio of:
JP01164347A 1989-06-27 1989-06-27 Battery Expired - Fee Related JP3115574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01164347A JP3115574B2 (en) 1989-06-27 1989-06-27 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01164347A JP3115574B2 (en) 1989-06-27 1989-06-27 Battery

Publications (2)

Publication Number Publication Date
JPH0330258A JPH0330258A (en) 1991-02-08
JP3115574B2 true JP3115574B2 (en) 2000-12-11

Family

ID=15791441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01164347A Expired - Fee Related JP3115574B2 (en) 1989-06-27 1989-06-27 Battery

Country Status (1)

Country Link
JP (1) JP3115574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006298A (en) * 2002-04-17 2004-01-08 Matsushita Electric Ind Co Ltd Alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006298A (en) * 2002-04-17 2004-01-08 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP4601911B2 (en) * 2002-04-17 2010-12-22 パナソニック株式会社 Alkaline storage battery

Also Published As

Publication number Publication date
JPH0330258A (en) 1991-02-08

Similar Documents

Publication Publication Date Title
US5004657A (en) Battery
JP4617105B2 (en) Coin-type all-solid-state battery
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JP3345889B2 (en) Manufacturing method of alkaline storage battery and its negative electrode
JP3115574B2 (en) Battery
JPH048899B2 (en)
JPH1126013A (en) Sealed metal oxide-zinc storage battery and its manufacture
US20050019663A1 (en) Coin-shaped all solid battery
JP3567021B2 (en) Alkaline secondary battery
JP2608561B2 (en) Stacked battery
JP2002033116A (en) Alkaline storage battery
JP2000200612A (en) Rectangular alkaline secondary battery
JP2752158B2 (en) Stacked battery
JP5135579B2 (en) Flat alkaline battery
JP2634859B2 (en) Electrode manufacturing method
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0325863A (en) Internally stacked battery
JP3464717B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JPH11111280A (en) Hydride secondary battery
JP3069767B2 (en) Hydrogen storage alloy electrode
JP4767515B2 (en) Pocket hydrogen storage alloy electrode and nickel / hydrogen storage battery
JP2831381B2 (en) Battery
JPH0690923B2 (en) Manufacturing method of hydrogen storage electrode
JPH06231761A (en) Nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees