JP4767515B2 - Pocket hydrogen storage alloy electrode and nickel / hydrogen storage battery - Google Patents

Pocket hydrogen storage alloy electrode and nickel / hydrogen storage battery Download PDF

Info

Publication number
JP4767515B2
JP4767515B2 JP2004260625A JP2004260625A JP4767515B2 JP 4767515 B2 JP4767515 B2 JP 4767515B2 JP 2004260625 A JP2004260625 A JP 2004260625A JP 2004260625 A JP2004260625 A JP 2004260625A JP 4767515 B2 JP4767515 B2 JP 4767515B2
Authority
JP
Japan
Prior art keywords
pocket
hydrogen storage
electrode
nickel
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004260625A
Other languages
Japanese (ja)
Other versions
JP2006079875A (en
Inventor
英俊 阿部
孝光 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2004260625A priority Critical patent/JP4767515B2/en
Publication of JP2006079875A publication Critical patent/JP2006079875A/en
Application granted granted Critical
Publication of JP4767515B2 publication Critical patent/JP4767515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、ポケット式水素吸蔵合金極及びニッケル/水素蓄電池に関する。   The present invention relates to a pocket type hydrogen storage alloy electrode and a nickel / hydrogen storage battery.

近年、環境問題が大きく取り上げられることにより、有害物質を含むニッケル−カドミウム蓄電池や鉛蓄電池の管理基準の引き上げや、使用規制等が進行している。既に小型密閉蓄電池に関しては、リチウムイオン蓄電池やニッケル/水素蓄電池への代替が急速に進んでいる。
特に従来のニッケル/水素蓄電池用の負極として用いられる水素吸蔵合金極としては、古くから負極活物質ペーストを発泡ニッケルなどの多孔基板に塗着したペースト式があるが、これを用いたベント形蓄電池では水素吸蔵合金粉末の脱落や酸化が起こり、長期間に亘る満足な性能を維持する蓄電池の製作が不可能であった。
この問題を解決するため、特開平4−280066号公報に記載の発明が提案されている。即ち、該公報に記載の発明では、水素吸蔵合金粉末の脱落を防止するため、従来添加されている結着剤を使用しないでも高容量を長期間保つことができるポケット式水素吸蔵電極を提供するべく、水素吸蔵合金粉単独又は導電材粉と共に耐アルカリ性の高いポケット型又はチューブ型の多孔性金属容器内に充填した電極体を製作し、その複数個の周辺部を集電体で接続一体化し、該集電体にリード線を接続して成るポケット式水素吸蔵電極が提案されている。
また、特開2002−203544公報に記載の発明も、同様に、バインダーを添加すれば、その添加量だけ水素吸蔵合金や粉末の量が減少する不都合を解消するため、バインダーを添加することなくサイクル寿命の向上したポケット式水素吸蔵電極を提案している。即ち、その発明は、コ字状に折り曲げた多孔金属ニッケルストリップから成る集電体間に水素吸蔵合金粉を夫々充填した後、該集電体に外圧を加えて充填粉に圧着せしめて成るニッケル/水素貯蔵合金二次電池用陰極を提案したものである。
一方、特公昭42−21236号公報には、アルカリ蓄蓄電池用陰極として、カドミウム粉末又はカドミウムと鉄粉の混合粉を圧縮成形して圧粉体(ブリケット)としたものを、多孔金属ポケット内に充填、封口して成るポケット式陰極板に係る発明が開示されている。
特開平4−280066号公報 特開2002−203544公報 特公昭42−21236号公報
In recent years, environmental issues have been greatly taken up, and management standards for nickel-cadmium storage batteries and lead storage batteries containing toxic substances have been raised, and regulations on use have progressed. Already, for small sealed storage batteries, replacement with lithium ion storage batteries or nickel / hydrogen storage batteries is rapidly progressing.
In particular, as a hydrogen storage alloy electrode used as a negative electrode for a conventional nickel / hydrogen storage battery, there is a paste type in which a negative electrode active material paste is applied to a porous substrate such as foamed nickel for a long time. In this case, the hydrogen storage alloy powder was dropped and oxidized, making it impossible to produce a storage battery that maintained satisfactory performance over a long period of time.
In order to solve this problem, an invention described in JP-A-4-280066 has been proposed. That is, the invention described in the publication provides a pocket type hydrogen storage electrode capable of maintaining a high capacity for a long time without using a conventionally added binder in order to prevent the hydrogen storage alloy powder from falling off. Therefore, an electrode body filled in a pocket-type or tube-type porous metal container with high alkali resistance together with hydrogen storage alloy powder alone or with conductive material powder is manufactured, and a plurality of peripheral parts thereof are connected and integrated with a current collector. There has been proposed a pocket type hydrogen storage electrode in which a lead wire is connected to the current collector.
Similarly, the invention described in Japanese Patent Application Laid-Open No. 2002-203544 also eliminates the disadvantage that the amount of hydrogen storage alloy or powder is reduced by the amount of addition of the binder. A pocket-type hydrogen storage electrode with improved life is proposed. That is, the invention relates to nickel obtained by filling hydrogen collector alloy powder between current collectors made of porous metal nickel strips folded in a U-shape, and then applying external pressure to the current collector to press-fit the current collector. / A cathode for a hydrogen storage alloy secondary battery is proposed.
On the other hand, in Japanese Examined Patent Publication No. 42-21236, as a cathode for an alkaline storage battery, a cadmium powder or a mixed powder of cadmium and iron powder is compressed and formed into a green compact (briquette) in a porous metal pocket. An invention relating to a pocket type cathode plate formed by filling and sealing is disclosed.
JP-A-4-280066 JP 2002-203544 A Japanese Patent Publication No.42-21236

しかし乍ら、上記特許文献1の発明のように、水素吸蔵合金単独又は導電材との混合物を粉末の状態で多孔金属製のポケット容器内に充填して成るポケット式水素吸蔵電極では、容量密度が比較的小さくなり、エネルギー密度の低下をもたらし、また、高容量の電池が得られないばかりでなく、電池への組立中に、充填粉体の粒子間及び粉体とポケットの間に空気が侵入したり、電池の使用中に発生する酸素ガスが侵入し、粒子表面に酸化皮膜を生成し、導電性が低下し、電気抵抗が増大する一方、また、水素吸蔵合金粉や導電材粉がポケットの孔から脱落し、従って、電池は長期に亘り高容量を維持できず、放電時の分極が非常に大きくなり、エネルギー密度の低下、サイクル寿命の低下、トリクル寿命の低下などの不都合をもたらす。
かゝる不都合は、特許文献2のように、ポケットに封入した粉体を、ポケットの外部から加圧し、ポケットを粉体の表面に圧着した水素吸蔵電極としても、粉体とポケット間の空気や酸素ガスの侵入は阻止できるが、上記の不都合は殆ど解消できない。
また、特許文献3のポケット式陰極板では、粉体をポケットに加圧成形したため、充填密度は増大したが、ブリケットとポケットとの間の接触が悪く、電気抵抗が増大し、伝導性能の低下をもたらし、放電時の分極が増大したり、電池への組立作業中、ポケット式電池におけるポケットが変形することがあり、機械的強度が弱く、長期に亘り高容量を維持することができず、サイクル寿命などの低下をもたらす不都合をもたらす。
本発明は、上記の課題を解消し、機械的強度が増大し、分極を小さくし、充放電性能が向上し、高密度のエネルギーを保持し、サイクル寿命、トリクル寿命などの向上したニッケル/水素蓄電池をもたらすポケット式水素吸蔵合金極を容易且つ確実に提供することを目的とする。
However, as in the invention of Patent Document 1, a pocket-type hydrogen storage electrode in which a hydrogen storage alloy alone or a mixture with a conductive material is filled in a porous metal pocket container in a powder state has a capacity density. Is relatively small, resulting in a decrease in energy density and not being able to obtain a high-capacity battery, and during assembly into the battery, air is present between the particles of the filled powder and between the powder and the pocket. Intrusion or oxygen gas generated during use of the battery intrudes to form an oxide film on the particle surface, resulting in a decrease in electrical conductivity and an increase in electrical resistance. It will fall out of the pocket hole, so the battery will not be able to maintain high capacity for a long time, the polarization during discharge will be very large, resulting in inconveniences such as reduced energy density, reduced cycle life, reduced trickle life .
Such inconvenience is that, as in Patent Document 2, a hydrogen storage electrode in which powder sealed in a pocket is pressurized from the outside of the pocket and the pocket is pressure-bonded to the surface of the powder. Intrusion of oxygen gas can be prevented, but the above disadvantages can hardly be solved.
Further, in the pocket type cathode plate of Patent Document 3, since the powder was press-molded into a pocket, the packing density is increased, poor contact between the blanking Ricketts and the pocket, the electrical resistance increases, the conduction performance Resulting in lowering, increasing polarization during discharge, and deforming the pocket in the battery during assembly to the battery, weak mechanical strength, unable to maintain high capacity for a long time , Resulting in inconveniences such as cycle life reduction.
The present invention eliminates the above problems, increases the mechanical strength, reduces the polarization, improves the charge / discharge performance, maintains the high density energy, and improves the cycle life, trickle life, etc. An object of the present invention is to easily and reliably provide a pocket-type hydrogen storage alloy electrode that provides a storage battery.

本発明は、請求項1に記載のように、水素吸蔵合金粉とニッケル粉の混合粉を圧縮成形して成るブリケットを、一枚の穿孔テープをコ字状に折り曲げた多孔金属製ポケット内に装填し、互いに重合する側縁部をかしめ結着して成るブリケット装填ポケットを、その外側から平板プレスにより500MPa以上の圧力で加圧し、該ポケットをブリケットに圧着せしめたことを特徴とするポケット式水素吸蔵合金極に存する。
更に本発明は、請求項2に記載のように、ニッケル/水素蓄電池に係り、その負極として、請求項1のポケット式水素吸蔵合金極を用いることを特徴とする。
According to the present invention, as described in claim 1, a briquette formed by compression molding a mixed powder of hydrogen storage alloy powder and nickel powder is placed in a porous metal pocket formed by folding a single perforated tape into a U-shape. A pocket type in which briquette loading pockets formed by loading and caulking and binding side edges that overlap each other are pressed from the outside with a flat plate press at a pressure of 500 MPa or more, and the pockets are pressure-bonded to the briquettes. It exists in the hydrogen storage alloy electrode.
Furthermore, the present invention relates to a nickel / hydrogen storage battery as described in claim 2, wherein the pocket type hydrogen storage alloy electrode of claim 1 is used as the negative electrode.

請求項1によれば、ポケット式水素吸蔵合金極は、水素吸蔵合金粉とニッケル粉の混合粉を圧縮成形して成るブリケットを、一枚の穿孔テープをコ字状に折り曲げた多孔金属性ポケットに装填し、互いに重合する側縁部をかしめ結着して成るブリケット装填ポケットを、その外側から平板プレスにより500MPaの圧力で加圧し、該ポケットを該ブリケットに圧着せしめたので、該ポケットを該ブリケットの全面に圧着できると共に、外力により変形しない機械的強度の大きいポケット式水素吸蔵合金極が容易且つ確実に得られ、これを請求項2に記載のように、ニッケル/水素蓄電池の負極として用いるときは、その電池の組み込む作業中や組み込み後などにおいて、ポケット式水素吸蔵合金極が空気酸化を受けたり、電池の使用中発生する酸素ガスにより酸化することが防止されると共に、水素吸蔵合金粉やニッケル粉のポケットの孔からの脱落が全く或いは殆どなくなり、電気抵抗を著しく小さくでき、従来のポケット式水素吸蔵電極の課題を解消し、また、放電時の分極が著しく低下し、高率放電に優れ、且つ長期に亘り高容量を維持し、サイクル寿命、トリクル寿命などの向上をもたらし、特にベント形電池として適用できるニッケル/水素蓄電池をもたらす。 According to claim 1, the pocket type hydrogen storage alloy electrode is a porous metal pocket in which a briquette formed by compression molding a mixed powder of hydrogen storage alloy powder and nickel powder is folded into a U-shaped perforated tape. was loaded into a briquette loading pocket formed by caulking binding the side edges of polymerizing with each other, pressed at a pressure of 500MPa by the flat plate pressed from the outside, since the pocket was allowed crimped to the briquette, the said pocket A pocket-type hydrogen storage alloy electrode having high mechanical strength that can be crimped to the entire surface of the briquette and is not deformed by an external force can be obtained easily and reliably, and used as a negative electrode of a nickel / hydrogen storage battery as described in claim 2 Occasionally, the pocket-type hydrogen storage alloy electrode is subject to air oxidation during or after the battery is being installed. That with that oxidation is prevented by the oxygen gas, from falling out of the pocket hole of the hydrogen storage alloy powder and nickel powder disappears completely or almost, the electric resistance can be significantly reduced, the problems of the conventional pocket type hydrogen storage electrode In addition, the polarization at the time of discharge is remarkably reduced, excellent in high rate discharge, maintaining a high capacity for a long time, improving cycle life, trickle life, etc. Bring hydrogen storage battery.

次に、本発明の実施形態を詳述する。
水素吸蔵合金としては、AB5 系のもの、(Aは希土類元素、Bはニッケル及びニッケルの一部が複数種の金属で置換された元素)が使用でき、また、Ti−Cr系、Zr−Mn系などのAB2 系のラーベス水素吸蔵合金が使用できる。導電材としては、例えば、ニッケル、カーボンブラックなどが好ましく使用できる。
Next, an embodiment of the present invention will be described in detail.
As the hydrogen storage alloy, an AB 5 type alloy (A is a rare earth element, B is an element in which nickel and a part of nickel are substituted with a plurality of kinds of metals) can be used, and Ti—Cr type, Zr— AB 2 type Laves hydrogen storage alloy such as Mn type can be used. As the conductive material, for example, nickel, carbon black and the like can be preferably used.

本発明のニッケル/水素蓄電池に負極として使用するポケット式水素吸蔵合金極の製造例を以下説明する。
AB5 系の水素吸蔵合金として、例えば、MmNi3.10Mn0.59Al0.21(但、Mmはミッシュメタル)の組成から成る水素吸蔵合金粉と導電材としてニッケル粉、好ましくは、例えば、INCO社製#255ニッケル粉を夫々多量に準備し、該水素吸蔵合金粉90重量部とニッケル粉10重量部とを計り取り、混合機で、例えばVブレンダーにより混合し、混合粉を調製した。次いで、該混合粉をブリケット成形機に入れて加圧成形し、所望の寸法、角形のブリケットを作製する。次いで、該ブリケットを、コ字状又はU字状に折り曲げた穿孔により、多数の小孔をもつ耐アルカリ性、良導電性の肉薄の多孔金属製ポケット内に装填してブリケット装填ポケットを作製した後、その外側から、平板プレスで500MPa以上の加圧力で加圧し、該ブリケットの少なくとも両側面にこれらに対向するポケットの両側多孔板面を圧着せしめて本発明のポケット式水素吸蔵合金極を製造する。
A production example of a pocket type hydrogen storage alloy electrode used as a negative electrode in the nickel / hydrogen storage battery of the present invention will be described below.
As AB 5 type hydrogen-absorbing alloy, for example, MmNi 3.10 Mn 0.59 Al 0.21 (however, Mm is the mischmetal) nickel powder as hydrogen-absorbing alloy powder and a conductive material having the composition of, preferably, for example, INCO Co. # 255 A large amount of nickel powder was prepared, 90 parts by weight of the hydrogen storage alloy powder and 10 parts by weight of nickel powder were measured, and mixed with a mixer, for example, using a V blender to prepare a mixed powder. Next, the mixed powder is put into a briquette molding machine and subjected to pressure molding to produce a square briquette having a desired size. Next, the briquette is loaded into an alkali-resistant, highly conductive, thin porous metal pocket having a large number of small holes by perforation bent in a U-shape or U-shape, and a briquette loading pocket is produced. The pocket type hydrogen storage alloy electrode of the present invention is manufactured by pressurizing from the outside with a pressing force of 500 MPa or more with a flat plate press, and pressing both sides of the briquette on both side porous plate surfaces of the facing pockets. .

而して、本発明のポケット式水素吸蔵合金極は、その1個でニッケル/水素蓄電池の所定の負極の面積に相当する面積を有するものに構成するか、その複数個を互いに結着したもので、所定の負極の面積を有するものに構成するか任意である。
これらの水素吸蔵合金極の製造法を述べれば、該混合粉から、該負極の有する所要面積に相当する所定の面積を有するブリケットを作製し、このブリケットをこれを装填するに適した面積を有する多孔金属ポケットに装填して成るブリケット装填ポケットをその外側から平板プレスで500MPa以上の圧力で加圧することにより1個のブリケット装填ポケットでポケット式水素吸蔵合金極を製造することができる。
Thus, the pocket type hydrogen storage alloy electrode of the present invention is configured such that one of them has an area corresponding to the area of a predetermined negative electrode of a nickel / hydrogen storage battery, or a plurality of them are bonded together. Thus, it may be configured to have a predetermined negative electrode area or may be arbitrary.
The production method of these hydrogen storage alloy electrodes will be described. A briquette having a predetermined area corresponding to a required area of the negative electrode is produced from the mixed powder, and the briquette has an area suitable for loading the briquette. A pocket-type hydrogen storage alloy electrode can be manufactured with one briquette loading pocket by pressurizing a briquette loading pocket formed by loading into a porous metal pocket from the outside with a flat plate press at a pressure of 500 MPa or more.

また、該混合粉から、所定の負極の面積を縦方向に等分した矩形状のブリケットを多数作製しておく一方、該負極の横(幅)寸法と同じ長さ寸法を有するU字状の多孔金属ポケットを多数作製しておき、その各ブリケットを各多孔金属ポケットに装填し、その両側において装填されたブリケットより上方に突出する該ポケットの両側板の閉塞用余端部を互いに内側に折り曲げて該U字状ポケットの開口面を封口結着してブリケット装填ポケットを多数個作製した後、負極の面積の縦方向の等分に相当する数の複数個のブリケット装填ポケットをその各長辺において互いに当接させ、その当接部間を溶接などにより互いに結着せしめ、次いで、これらブリケット装填ポケットの連結体を、平板プレスで500MPa以上で加圧することにより複数個のブリケット装填ポケットでポケット式水素吸蔵合金極を製造することができる。
また、別の製造法として、上記の平板プレスによる500MPa以上の加圧は、各ブリケット装填ポケットを連結する前に、その各ブリケット装填ポケットにつき実施するようにしてもよい。
In addition, while preparing a large number of rectangular briquettes in which the area of the predetermined negative electrode is equally divided in the vertical direction from the mixed powder, the U-shaped having the same length as the lateral (width) dimension of the negative electrode A large number of porous metal pockets are prepared, each briquette is loaded into each porous metal pocket, and the closing end portions of both side plates of the pocket projecting upward from the briquettes loaded on both sides thereof are folded inward. A plurality of briquette loading pockets are formed by sealing the opening surface of the U-shaped pocket to form a plurality of briquette loading pockets, and a number of briquette loading pockets corresponding to the vertical division of the negative electrode area The contact portions are bonded to each other by welding or the like, and then the briquette loading pocket coupling is pressed by a flat plate press at 500 MPa or more. It is possible to produce a pocket-type hydrogen storage alloy electrode in number of briquettes loading pocket.
As another manufacturing method, pressurization of 500 MPa or more by the flat plate press may be performed for each briquette loading pocket before connecting each briquette loading pocket.

また、長尺のU字状多孔金属ポケットとしては、負極の幅寸法の数倍の長さの長尺のU字状多孔金属ポケットを作製し、これに多数個の上記ブリケットの多数個を装填、封口した後、所定寸法に切断するようにしてもよい。   In addition, as a long U-shaped porous metal pocket, a long U-shaped porous metal pocket having a length several times the width of the negative electrode is produced, and a large number of the above-mentioned briquettes are loaded into this. After sealing, it may be cut to a predetermined size.

更にまた、ブリケットは、矩形状の他、正四角形とし、これに対応して多孔金属ポケットも正四角形の面を存し、且つ閉塞用余端部を有するものに形成してもよい。
而して、これらで作製したブリケット装填ポケットは、縦方向又は/及び横方向で互いに連結して、所要面積のポケット式水素吸蔵合金極に製造してもよい。
更にまた、ブリケット装填ポケットの作製は、次のように行ってもよい。即ち、U字状多孔金属ポケットの高さを、予め、装填するべきブリケットの高さの半部に形成したものを多数作製しておき、そのU字状の多孔金属ポケット内にブリケットを装填した後、その常法から下向きにしたU字状多孔金属ポケットをかぶせると共に、その両側の下縁をU字状多孔金属ポケットの両側の上縁に当接させ、その当接部間を溶接したり、かしめにより結着してブリケット装填ポケットを作製するようにしてもよい。
Furthermore, the briquette may be formed in a square shape or a regular square shape, and the porous metal pocket corresponding to the square shape may have a regular square surface and have a closing end portion.
Thus, the briquette loading pockets manufactured by these may be connected to each other in the vertical direction and / or the horizontal direction to produce a pocket type hydrogen storage alloy electrode having a required area.
Furthermore, the briquette loading pocket may be produced as follows. That is, a large number of U-shaped porous metal pockets formed in advance in half of the height of the briquette to be loaded were prepared, and briquettes were loaded into the U-shaped porous metal pocket. After that, the U-shaped porous metal pocket faced downward from the usual method is covered, the lower edges of both sides are brought into contact with the upper edges of both sides of the U-shaped porous metal pocket, and the abutting portions are welded. The briquette loading pocket may be produced by binding by caulking.

このような種々の製造法で製造した本発明のポケット式水素吸蔵合金極には、その上縁隅角部に電気導出用タブを溶接で取り付けることが一般であった。また、その両側縁にリード線を接続するための金属性の鞘を嵌合加圧して機械的強度を更に増大せしめると共に通電性の向上した電極とすることが一般であり好ましい。   In the pocket type hydrogen storage alloy electrode of the present invention manufactured by such various manufacturing methods, it is common to attach an electric lead tab to the corner portion of the upper edge by welding. In addition, it is generally preferable that a metal sheath for connecting the lead wire is fitted and pressed to both side edges to further increase the mechanical strength and improve the conductivity.

次に、本発明のニッケル/水素蓄電池の負極として用いるに適したポケット式水素吸蔵合金極の各種態様の製造例を詳述する。
製造例1
MmNi3.10Co1.10Mn0.59Al0.21の組成から成る水素吸蔵合金粉とINCO社製#255ニッケル粉を準備した。水素吸蔵合金粉90質量部に対し、ニッケル粉10質量部を計り取って、Vブレンダで混合し、混合粉を調製した。この混合粉をブリケット成形機に入れてプレスし、負極ブリケットを多数作製した。ついで、鉄−ニッケルメッキの厚み0.1mmの穿孔テープを成形機でコ字状に加工された長尺の多孔金属ポケットにブリケットを隙間なく装填した後、該長尺の多孔金属ポケットの上面開口面に長尺の穿孔テープを覆いかぶせ、その互いに重合する側面縁部をかしめ結着して封口し、該ブリケットを四周面を完全に囲繞した長尺のブリケット装填ポケットを形成した後、該ブリケット装填ポケットを製造するべき所定の極板の高さに相当する数だけその各長さ方向の上下面を互いに当接させた後、エンボスローラーによりその各当接部分を加圧結着し、或いは溶接により結着した後、この互いに一体に連結されて成るブリケット装填ポケット連結体を、製造するべき負極板の幅寸法に等しい間隔で切断し、該切断面をコ字状の金属鞘で封口し、平板プレスで500MPaで加圧し、極板耳を取り付け、かくして、所要面積を有する本発明のポケット式水素吸蔵合金極を製造した。この電極を負極1と称する。
Next, production examples of various embodiments of the pocket type hydrogen storage alloy electrode suitable for use as the negative electrode of the nickel / hydrogen storage battery of the present invention will be described in detail.
Production Example 1
A hydrogen storage alloy powder having a composition of MmNi 3.10 Co 1.10 Mn 0.59 Al 0.21 and # 255 nickel powder manufactured by INCO were prepared. 10 mass parts of nickel powder was measured with respect to 90 mass parts of hydrogen storage alloy powder, and it mixed with V blender, and prepared mixed powder. This mixed powder was put into a briquette molding machine and pressed to produce a large number of negative electrode briquettes. Next, a briquette was loaded in a long porous metal pocket processed into a U-shape with an iron-nickel-plated 0.1 mm thick perforated tape with a molding machine without any gap, and then the upper surface opening of the long porous metal pocket was opened. After covering the surface with a long perforated tape, caulking and sealing the side edges that overlap each other to form a long briquette loading pocket that completely surrounds the four circumferences, the briquette After contacting the upper and lower surfaces in the length direction with each other by the number corresponding to the height of a predetermined electrode plate for manufacturing the loading pocket, the contact portions are pressure-bonded by an embossing roller, or After being bonded by welding, the briquette loading pocket connected body integrally connected to each other is cut at intervals equal to the width dimension of the negative electrode plate to be manufactured, and the cut surface is sealed with a U-shaped metal sheath. , Pressurized with 500MPa a flat press, fitted with a plate ears, thus, to produce a pocket-type hydrogen-absorbing alloy electrode of the present invention having a desired area. This electrode is referred to as negative electrode 1.

製造例2
製造例1で用いた混合粉をブリケット成形機でプレス成形する前に、PTFEの5%処理液に含浸した後、窒素ガスの雰囲気下80℃で乾燥した以外は、製造例1と同様の製造法でポケット式水素吸蔵合金極を製造し、この電極を負極2と称する。
Production Example 2
Manufacture similar to Manufacture Example 1 except that the mixed powder used in Manufacture Example 1 is impregnated with a 5% PTFE treatment solution and then dried at 80 ° C. in an atmosphere of nitrogen gas before being pressed with a briquetting machine. A pocket type hydrogen storage alloy electrode is manufactured by the method, and this electrode is referred to as a negative electrode 2.

製造例3
製造例1のAB5 型水素吸蔵合金粉に代え、Zr0.9Ti0.1Ni1.1Co0.1Mn0.60.2の組成から成るラーベス合金系の水素吸蔵合金粉を用い、これをニッケル粉と混合した以外は、製造例1と同様の製造法で水素吸蔵合金極を製造した。次いで、これを下記の化成処理を行って本発明のポケット式水素吸蔵合金極を製造した。
即ち、その化成処理は、従来のポケット式ニッケル−カドミウム電池製造設備を使用した。上記に製造したポケット式水素吸蔵合金極とステンレス板の対極を、化成用セパレータを介して積み重ね、比重1.30(20℃)の水酸化カリウム水溶液の電解液中へ入れ、0.1CA相当の電流密度で充電を4時間、放電を2時間のサイクルを10サイクル繰り返した。その後、水洗と窒素ガス中80℃で乾燥を実施して化成済のポケット式水素吸蔵合金極を製造した。この電極を負極3と称する。
Production Example 3
Instead of the AB 5 type hydrogen storage alloy powder of Production Example 1, a Laves alloy type hydrogen storage alloy powder having a composition of Zr 0.9 Ti 0.1 Ni 1.1 Co 0.1 Mn 0.6 V 0.2 was used, except that this was mixed with nickel powder. A hydrogen storage alloy electrode was produced by the same production method as in Production Example 1. Next, this was subjected to the following chemical conversion treatment to produce a pocket type hydrogen storage alloy electrode of the present invention.
That is, the chemical conversion treatment used a conventional pocket type nickel-cadmium battery manufacturing facility. The pocket type hydrogen storage alloy electrode manufactured above and the counter electrode of the stainless steel plate are stacked through a chemical separator, and are put into an electrolytic solution of a potassium hydroxide aqueous solution having a specific gravity of 1.30 (20 ° C.). The cycle of charging at current density for 4 hours and discharging for 2 hours was repeated 10 times. Then, it washed with water and dried at 80 degreeC in nitrogen gas, and manufactured the pocket type hydrogen storage alloy electrode which was formed. This electrode is referred to as the negative electrode 3.

製造例4
製造例3で用いた混合粉をブリケット成形機でプレス成形する前に、PTFEの5%処理液に含浸した後、窒素ガス雰囲気下80℃で乾燥した以外は、製造例1と同様の製造法で水素吸蔵合金極を製造した。次いで、これを製造例3と同様の化成処理を行い、本発明の水素吸蔵合金極を製造した。この電極を負極4とする。
Production Example 4
The same production method as in Production Example 1, except that the mixed powder used in Production Example 3 was impregnated with a 5% PTFE treatment solution and then dried at 80 ° C. in a nitrogen gas atmosphere before being pressed with a briquetting machine. A hydrogen storage alloy electrode was manufactured. Subsequently, this was subjected to the same chemical conversion treatment as in Production Example 3 to produce the hydrogen storage alloy electrode of the present invention. This electrode is referred to as a negative electrode 4.

比較用に焼結式カドミウム極を次のように製造した。
即ち、INCO社製ニッケル粉#255とメチルセルロース水溶液からスラリーを調製し、鉄−ニッケルのパンチングシートに塗布、乾燥し、分解ガス中で焼成することによって、焼結基板を作製した。次いで、硝酸カドミウムの水溶液に硝酸を加えてpH調整して含浸液を焼結基板に作製し焼結基板に含浸と、水酸化ナトリウム水溶液によるソークとを繰り返して、水酸化カドミウムを充填した。最後に水洗乾燥して焼結式カドミウム極を製造した。この電極を負極5と称する。
For comparison, a sintered cadmium electrode was produced as follows.
That is, a slurry was prepared from nickel powder # 255 manufactured by INCO and an aqueous methylcellulose solution, applied to an iron-nickel punching sheet, dried, and fired in a decomposition gas to prepare a sintered substrate. Subsequently, nitric acid was added to an aqueous solution of cadmium nitrate to adjust the pH to prepare an impregnating solution on the sintered substrate, and the sintered substrate was impregnated and soaked with an aqueous sodium hydroxide solution, and filled with cadmium hydroxide. Finally, it was washed with water and dried to produce a sintered cadmium electrode. This electrode is referred to as the negative electrode 5.

更に、比較用にポケット式カドミウム極を次のように製造した。
酸化カドミウム粉と黒鉛粉を準備した。酸化カドミウム粉95質量部に対し、黒鉛粉5質量部を計り取って、Vブレンダで混合した。この混合粉を上記の製造例1の製造法における最終工程の平板プレスにより500MPaで加圧する工程処理を施さない以外は、製造例1と同様の処理工程でポケット式カドミウム極を製造した。この電極を負極6と称する。
Furthermore, a pocket type cadmium electrode was manufactured for comparison as follows.
Cadmium oxide powder and graphite powder were prepared. 5 parts by mass of graphite powder was measured with respect to 95 parts by mass of cadmium oxide powder, and mixed with a V blender. A pocket-type cadmium electrode was produced by the same treatment process as in Production Example 1, except that the mixed powder was not subjected to a process of pressing at 500 MPa by a flat plate press in the final process in the production method of Production Example 1. This electrode is referred to as the negative electrode 6.

更に比較のため、ペースト式水素吸蔵合金極を次のように製造した。
即ち、MmNi3.10Co1.10Mn0.59Al0.21の組成から成る水素吸蔵合金粉末とカーボンブラック粉末を準備した。水素吸蔵合金99質量部に対し、カーボンブラック1質量部を計り取って、Vブレンダで混合した。混合粉と1%カルボキシメチルセルロース水溶液及びSBR分散液をミキサーに投入して撹拌後、負極ペーストを得た。次いで、鉄−ニッケルメッキパンチングシートへ該負極ペーストを塗布後、乾燥し、ロールプレスでプレスした。その後、窒素ガス中で焼成を行った後、裁断して製造例1と同じ面積を有するペースト式水素吸蔵合金極を製造した。この電極を負極7と称する。
Further, for comparison, a paste-type hydrogen storage alloy electrode was manufactured as follows.
That is, a hydrogen storage alloy powder and a carbon black powder having a composition of MmNi 3.10 Co 1.10 Mn 0.59 Al 0.21 were prepared. With respect to 99 parts by mass of the hydrogen storage alloy, 1 part by mass of carbon black was measured and mixed with a V blender. The mixed powder, 1% carboxymethylcellulose aqueous solution, and SBR dispersion were charged into a mixer and stirred to obtain a negative electrode paste. Next, the negative electrode paste was applied to an iron-nickel plating punching sheet, dried, and pressed with a roll press. Then, after baking in nitrogen gas, it cut and manufactured the paste type hydrogen storage alloy electrode which has the same area as manufacture example 1. This electrode is referred to as the negative electrode 7.

次に、各負極の単極容量を次のように確認した。
即ち、上記のように製造した負極1〜7(10mm×30mm×厚みは任意)に、ニッケルタブをスポット溶接して電極を作製した。対極にニッケル板、参照極に水銀/酸化水銀電極、電解液は1.30/20℃水酸化カリウム水溶液を用いて、フラッディッド式の電気化学セルを構成した。0.05CA相当の電流で25時間の初充電を実施後、0.2CA相当の電流で参照極に対して−0.75Vまでの放電を行った。次に0.2CA相当の電流で6時間の充電と、0.2CA相当の電流で参照極に対して−0.75Vまでの放電を3サイクル実施し、3サイクル目の放電持続時間と充填量から、各吸蔵合金又はカドミウム活物質の容量密度を算出した。その結果を下記表1に示す。
Next, the single electrode capacity of each negative electrode was confirmed as follows.
That is, a nickel tab was spot-welded to the negative electrodes 1 to 7 (10 mm × 30 mm × thickness arbitrary) manufactured as described above to produce electrodes. A flooded electrochemical cell was constructed using a nickel plate as the counter electrode, a mercury / mercury oxide electrode as the reference electrode, and a 1.30 / 20 ° C. potassium hydroxide aqueous solution as the electrolyte. After performing the initial charge for 25 hours with a current corresponding to 0.05 CA, the reference electrode was discharged to −0.75 V with a current corresponding to 0.2 CA. Next, charging was performed for 6 hours with a current equivalent to 0.2 CA, and discharging was performed to -0.75 V with respect to the reference electrode with a current equivalent to 0.2 CA for 3 cycles. From these, the capacity density of each storage alloy or cadmium active material was calculated. The results are shown in Table 1 below.

Figure 0004767515
Figure 0004767515

表1から明らかなように、本発明に係るポケット式水素吸蔵合金極である負極1〜4は、従来の焼結式及びポケット式のカドミウム極5,6と比較して、著しく大きな容量が得られることが判明した。特にラーベス合金で作製した負極3及び4は非常に大きな容量が得られた。また、試験終了後の観察では、ペースト式のAB5 系水素吸蔵合金の負極7は大きい容量が得られたが、試験条件が圧迫のないフラッディッド状態であったために、3サイクル目で水素吸蔵合金層は多孔基板から剥離して脱落寸前であった。このような状態から、ペースト式はベント形電池では使用できないことが判った。PTFE処理をしていない負極1と3では極めて混合粒子の僅かな脱落があったが、ポケットの変形は見られなかった。PTFE処理した負極2,4は活物質の脱落もポケットの変形も全く見られなかった、これは、PTFEが加圧により繊維化し、混合粉の粒子間を強固な絡み結着しているからと考えられる。 As is apparent from Table 1, the negative electrodes 1 to 4 which are pocket-type hydrogen storage alloy electrodes according to the present invention have a significantly larger capacity than the conventional sintered and pocket-type cadmium electrodes 5 and 6. Turned out to be. In particular, the negative electrodes 3 and 4 made of Laves alloy had a very large capacity. In addition, in the observation after the test was completed, a large capacity was obtained for the negative electrode 7 of the paste type AB 5 hydrogen storage alloy, but the test condition was a flooded state without compression, so that the hydrogen storage was performed in the third cycle. The alloy layer was peeled off from the porous substrate and was just before dropping off. From this state, it was found that the paste type cannot be used in a bent type battery. In the negative electrodes 1 and 3 not subjected to PTFE treatment, the mixed particles were slightly removed, but no pocket deformation was observed. In the negative electrodes 2 and 4 treated with PTFE, neither the active material was removed nor the pockets were deformed. This was because PTFE was fiberized by pressurization and the particles of the mixed powder were tightly entangled and bound. Conceivable.

次に、ポケット式水素吸蔵合金極の製造における平板プレスによる加圧力を0から1000MPaまで変えて、その加圧力の異なる負極を製造し、次のような試験を行い、夫々の加圧力による電位変化(mV)への影響を求めた。
即ち、圧力を異にしたポケット式水素吸蔵合金極の夫々につき、対極にニッケル板、参照極に水銀/酸化水銀電極、電解液は1.30/20℃水酸化カリウム水溶液を用いて、フラッディッド式の電気化学セルを構成した。0.05CA相当の電流で25時間の初充電を実施後、0.2CA相当の電流で参照極に対して−0.75Vまでの放電を行った。次に0.2CA相当の電流で6時間の充電と、0.2CA相当の電流で参照極に対して−0.75Vまでの放電を3サイクル実施し、3サイクル目の自然電位と、通電直後の電位変化から分極を求めた。その結果を図1に示した。
Next, the pressure applied by the flat plate press in the production of the pocket type hydrogen storage alloy electrode was changed from 0 to 1000 MPa, negative electrodes having different pressures were produced, the following tests were performed, and the potential change due to each pressure force The effect on (mV) was determined.
That is, each of the pocket type hydrogen storage alloy electrodes with different pressures was flooded using a nickel plate as a counter electrode, a mercury / mercury oxide electrode as a reference electrode, and a 1.30 / 20 ° C. potassium hydroxide aqueous solution as an electrolyte. A formula electrochemical cell was constructed. After performing the initial charge for 25 hours with a current corresponding to 0.05 CA, the reference electrode was discharged to −0.75 V with a current corresponding to 0.2 CA. Next, charging was performed for 6 hours with a current corresponding to 0.2 CA, and discharging was performed to −0.75 V with respect to the reference electrode with a current corresponding to 0.2 CA for 3 cycles. The polarization was obtained from the potential change of the. The results are shown in FIG.

図1から明らかなように、平板プレスによる圧力0から500MPa付近まではブリケットの混合粉の粒子間及びブリケットと多孔金属ポケット間の電気抵抗が大きく、電位変化が大きいが、500MPa以上の加圧力では電位変化は20mV以下の平衡に達した。この結果から、500MPa以上の加圧力でポケットをブリケットに圧着せしめれば、放電時の分極は著しく小さくなり、放電特性の向上したポケット式水素吸蔵合金極が得られ、これを具備した優れたニッケル/水素蓄電池が得られることが判明した。
因みに、上記の特許文献1の実施例に準じて製造したポケット式水素吸蔵合金極を用いて上記と同様に電位変化の測定を実施したが、電位変化は235mVであり、放電時の分極が非常に大きいことが判明した。これは、混合粉を多孔金属容器内に充填封入するのみであること、また充填封入前に絶縁性の結着剤が混合粉体の粒子間に介在することにより、集電性が充分に得られなかったからと推定される。
As is clear from FIG. 1, the electric pressure between the particles of the mixed powder of briquette and between the briquette and the porous metal pocket is large and the potential change is large from the pressure of 0 to 500 MPa by the flat plate press. The potential change reached an equilibrium of 20 mV or less. From this result, if the pocket is pressure-bonded to the briquette with a pressure of 500 MPa or more, the polarization at the time of discharge becomes extremely small, and a pocket-type hydrogen storage alloy electrode with improved discharge characteristics is obtained. / It has been found that a hydrogen storage battery can be obtained.
Incidentally, the potential change was measured in the same manner as described above using the pocket type hydrogen storage alloy electrode manufactured in accordance with the example of the above-mentioned Patent Document 1. However, the potential change was 235 mV, and the polarization at the time of discharge was very high. Turned out to be great. This is because the mixed powder is only filled and encapsulated in a porous metal container, and an insulating binder is interposed between the particles of the mixed powder before filling and encapsulating, so that sufficient current collection is obtained. It is estimated that it was not.

このように製造した負極1〜7は、所望の正極とセパレータを介してスタックし、極板群とし、これをニッケル/水素蓄電池内に組み込み、アルカリ電解液を注入し、例えば、ベント形蓄電池に製造する。セパレータとしては、ポリオレフィン系又は親水化ポリオレフィン系の職布又は不織布、PVC製の微孔セパレータなどが好ましく使用される。   The negative electrodes 1 to 7 thus manufactured are stacked via a desired positive electrode and a separator to form an electrode plate group, which is incorporated into a nickel / hydrogen storage battery, and an alkaline electrolyte is injected, for example, into a bent type storage battery. To manufacture. As the separator, a polyolefin or hydrophilic polyolefin-based cloth or nonwoven fabric, a microporous separator made of PVC, or the like is preferably used.

上記の負極1〜7と組み合わせられる正極には所望の種類のものがあるが、そのいくつかの正極について以下説明する。
製造例1
3%亜鉛と1%コバルトを固溶した水酸化ニッケル粉と一酸化コバルト粉を準備し、水酸化ニッケル粉95質量部と一酸化コバルト粉5質量部を計り取って、Vブレンダで混合し、混合粉を調製した。この混合粉をブリケット成形機に入れてプレスし、正極ブリケットを多数作製した。ついで、鉄−ニッケルメッキの厚み0.1mmの穿孔テープを成形機でコ字状に加工された長尺の多孔金属ポケットにブリケットを隙間なく装填した後、該長尺の多孔金属ポケットの上面開口面に長尺の穿孔テープを覆いかぶせ、その重合する側面縁部をかしめ結着して、該ブリケットを完全に被包した長尺のブリケット装填ポケットを形成した後、該ブリケット装填ポケットを製造するべき所定の極板の高さに相当する数だけその各長さ方向の側面縁部を互いに当接させた後、エンボスローラーによりその各当接部分を加圧結着し、或いは溶接により結着した後、この互いに一体に連結したブリケット装填ポケット配列体を製造する極板の幅に等しい間隔で切断し、該切断面をコ字状の金属鞘で封口し、かくして、所要面積を有するポケット式ニッケル極板を多数製造した。この電極を正極1と称する。
There are desired types of positive electrodes to be combined with the negative electrodes 1 to 7, and some of the positive electrodes will be described below.
Production Example 1
Prepare nickel hydroxide powder and cobalt monoxide powder in which 3% zinc and 1% cobalt are dissolved, measure 95 parts by mass of nickel hydroxide powder and 5 parts by mass of cobalt monoxide powder, and mix with a V blender. Mixed powder was prepared. This mixed powder was put into a briquette molding machine and pressed to produce a large number of positive electrode briquettes. Next, a briquette was loaded in a long porous metal pocket processed into a U-shape with an iron-nickel-plated 0.1 mm thick perforated tape with a molding machine without any gap, and then the upper surface opening of the long porous metal pocket was opened. Cover the surface with a long perforated tape and caulk and bind the overlapping side edges to form a long briquette loading pocket completely enclosing the briquette, and then manufacture the briquette loading pocket After the side edges in the length direction are brought into contact with each other by the number corresponding to the height of the predetermined electrode plate, the contact portions are pressure-bonded by an embossing roller, or bonded by welding. After that, the briquette loading pocket array integrally connected to each other is cut at intervals equal to the width of the electrode plate, and the cut surface is sealed with a U-shaped metal sheath, and thus the pocket having the required area is obtained. It was produced a large number of expression nickel electrode plate. This electrode is referred to as a positive electrode 1.

製造例2
混合粉をブリケット成形機でプレス前にPTFE5%処理液を該混合粉に含浸し、空気中で80℃で乾燥した後、これをブリケット成形機に入れてプレス加工した以外は、製造例1と同様にしてポケット式ニッケル極を多数製造した。この電極を正極2と称する。
Production Example 2
Prior to pressing the mixed powder with a briquette molding machine, the mixed powder was impregnated with PTFE 5% treatment liquid, dried in air at 80 ° C., and then put into a briquette molding machine and pressed. Many pocket type nickel electrodes were manufactured in the same manner. This electrode is referred to as a positive electrode 2.

製造例3
製造例1で導電剤として使用した一酸化コバルトの代わりに、黒鉛を用いた以外は、製造例1と同様にしてポケット式ニッケル極を多数製造した。この電極を正極3と称する。
Production Example 3
A large number of pocket type nickel electrodes were produced in the same manner as in Production Example 1 except that graphite was used instead of cobalt monoxide used as the conductive agent in Production Example 1. This electrode is referred to as a positive electrode 3.

製造例4
INCO社製ニッケル粉#255とメチルセルロース水溶液からスラリーを調製し、鉄−ニッケルのパンチングシートに塗布、乾燥し、分解ガス中で焼成することによって、焼結基板を作製した。硝酸ニッケル、硝酸コバルト、硝酸亜鉛の混合水溶液に硝酸を加えてpH調整して含浸液を作製し焼結基板に含浸と、水酸化ナトリウム水溶液によるソークとを繰り返して、該焼結基板に水酸化ニッケルを充填した。最後に硝酸コバルト水溶液を含浸してソーク、水洗乾燥して焼結式ニッケル極を製造した。充填した水酸化ニッケル中のコバルトは1%、亜鉛は5%であった。この電極を正極4と称する。
Production Example 4
A slurry was prepared from INCO nickel powder # 255 and an aqueous methylcellulose solution, applied to an iron-nickel punching sheet, dried, and fired in a cracked gas to prepare a sintered substrate. Nitric acid is added to a mixed aqueous solution of nickel nitrate, cobalt nitrate, and zinc nitrate to adjust the pH to prepare an impregnating solution. The impregnated solution is repeatedly impregnated into the sintered substrate and soaked with an aqueous sodium hydroxide solution, and the sintered substrate is hydroxylated. Filled with nickel. Finally, an aqueous cobalt nitrate solution was impregnated, soaked, washed with water and dried to produce a sintered nickel electrode. Cobalt in the filled nickel hydroxide was 1% and zinc was 5%. This electrode is referred to as a positive electrode 4.

製造例5
製造例4に用いた硝酸亜鉛を使用せず、硝酸コバルトのみを用いた以外は、製造例4と同様にして焼結式ニッケル極を製造した。この電極を正極5と称する。
Production Example 5
A sintered nickel electrode was produced in the same manner as in Production Example 4 except that only the zinc nitrate used in Production Example 4 was used without using zinc nitrate. This electrode is referred to as a positive electrode 5.

次に、上記正極1〜5につき、その単極容量を確認するべく、夫々の単極(10mm×30mm×厚みは任意)に、ニッケルタブをスポット溶接して電極を作製した。対極にニッケル板、参照極に水銀/酸化水銀電極、電解液は1.30/20℃水酸化カリウム水溶液を用いて、フラッディッド式の電気化学セルを構成した。0.1CA相当の電流で2時間の予備充電を実施後、電流を0.2CAにして7.5時間の初充電を行った。次に0.2CA相当の電流で参照極に対して0Vまでの放電と0.2CA相当の電流で6時間の充電を3サイクル実施し、3サイクル目の放電持続時間と充填量から、各正極中の水酸化ニッケルの利用率を算出した。その結果を表2に示した。   Next, in order to confirm the single electrode capacity of each of the positive electrodes 1 to 5, nickel tabs were spot welded to the respective single electrodes (10 mm × 30 mm × thickness is arbitrary) to prepare electrodes. A flooded electrochemical cell was constructed using a nickel plate as the counter electrode, a mercury / mercury oxide electrode as the reference electrode, and a 1.30 / 20 ° C. potassium hydroxide aqueous solution as the electrolyte. After carrying out preliminary charging for 2 hours at a current corresponding to 0.1 CA, the initial charging was performed for 7.5 hours at a current of 0.2 CA. Next, 3 cycles of discharge up to 0 V with respect to the reference electrode with a current equivalent to 0.2 CA and 6 hours of charging with a current equivalent to 0.2 CA were carried out. The utilization rate of nickel hydroxide was calculated. The results are shown in Table 2.

Figure 0004767515
Figure 0004767515

表2から明らかなように、ポケット式の正極1及び2は、焼結式の正極4,5と略同様の高い利用率を示した。導電材として黒鉛を使用した場合は、正極3のように利用率が低下した。導電材として黒鉛以外の使用が好ましい。   As is apparent from Table 2, the pocket-type positive electrodes 1 and 2 showed high utilization rates similar to those of the sintered positive electrodes 4 and 5. When graphite was used as the conductive material, the utilization factor decreased as in the positive electrode 3. Use of a material other than graphite as the conductive material is preferred.

次に、ブリケット成形の有無と分極との関係を次のように調べた。
ポケット式水素吸蔵合金極として、前記の負極1と該負極1に用いた混合粉をブリケット成形せずにポケットに充填封口したものに、500MPaの加圧を施して成る負極8とを準備し、更に、ポケット式カドミウム極として負極6(500MPa加圧を施してない)を500MPa加圧した負極9と該負極9に用いた混合粉をポケットに充填封口したものに500MPaの加圧を施して成る負極10を準備し、更に、ポケット式鉄極として、鉄粉をブリケット成形したものをポケットに装填封口したものに500MPaの加圧を施して成る負極11と鉄粉をブリケット成形せずポケットに充填封口したものに500MPaの加圧を施して成る負極12を準備し、これらの負極1、8、9、10、11、12を夫々電極として設置し、対極にニッケル板、参照極に水銀/酸化水銀電極、電解液は1.30/20℃水酸化カリウム水溶液を用いて、フラッディッド式の電気化学セルを構成した。0.05CA相当の電流で25時間の初充電を実施後、0.2CA相当の電流で参照極に対して−0.75Vまでの放電を行った。次に0.2CA相当の電流で6時間の充電と、0.2CA相当の電流で参照極に対して−0.75Vまでの放電を3サイクル実施し、3サイクル目の自然電位と、通電直後の電位変化から分極を求めた。その結果を下記表3に示した。
Next, the relationship between the presence or absence of briquette molding and the polarization was examined as follows.
As a pocket-type hydrogen storage alloy electrode, a negative electrode 8 formed by applying 500 MPa of pressure to the negative electrode 1 and the mixed powder used for the negative electrode 1 filled in a pocket without briquetting and sealed, Furthermore, a negative electrode 9 as a pocket-type cadmium electrode (not pressurized at 500 MPa) and a mixed powder used for the negative electrode 9 filled in a pocket and sealed with a pocket are subjected to a pressure of 500 MPa. A negative electrode 10 is prepared. Further, as a pocket-type iron electrode, an iron powder briquette-molded one is loaded into a pocket and sealed, and the negative electrode 11 is pressed with 500 MPa and filled with iron powder without briquetting. A negative electrode 12 is prepared by applying a pressure of 500 MPa to the sealed one, and these negative electrodes 1, 8, 9, 10, 11, and 12 are installed as electrodes, respectively. Nickel plate, mercury reference electrode / mercury oxide electrode, electrolyte with 1.30 / 20 ° C. of potassium hydroxide solution and the electro-chemical cell of flat Secluded expression. After performing the initial charge for 25 hours with a current corresponding to 0.05 CA, the reference electrode was discharged to −0.75 V with a current corresponding to 0.2 CA. Next, charging was performed for 6 hours with a current corresponding to 0.2 CA, and discharging was performed to −0.75 V with respect to the reference electrode with a current corresponding to 0.2 CA for 3 cycles. The polarization was obtained from the potential change of the. The results are shown in Table 3 below.

Figure 0004767515
Figure 0004767515

表3から明らかなように、ポケット式カドミウム極とポケット式鉄極では、ブリケット成形の有無については、分極にそれほど大きな差は現れなかったが、ポケット式水素吸蔵合金極の場合は非常に大きな差が認められた。これはカドミウム極と鉄極の場合は、充放電反応が溶解析出反応であるために放電時に溶解した金属イオンが充電時に金属として析出するので、粒子間導電性が向上することに起因するに対し、水素吸蔵合金極の場合は充放電反応が溶解析出反応ではなく、固相反応であること、及び表面が水溶系では還元不可能な酸化膜で覆われていることから、充電での粒子間導電性を改善できないためであると推定される。従って、ポケット式水素吸蔵合金極では粉体をブリケット成形して粒子間導電性を高めておくことが分極の改善のため特に好ましい。   As is clear from Table 3, there was no significant difference in polarization between the pocket type cadmium electrode and the pocket type iron electrode, with or without briquetting, but the pocket type hydrogen storage alloy electrode had a very large difference. Was recognized. This is because, in the case of a cadmium electrode and an iron electrode, since the charge / discharge reaction is a dissolution / deposition reaction, the metal ions dissolved during discharge are deposited as metal during the charge, whereas the interparticle conductivity is improved. In the case of a hydrogen storage alloy electrode, the charge / discharge reaction is not a dissolution / precipitation reaction, but a solid-phase reaction, and the surface is covered with an oxide film that cannot be reduced in an aqueous system. This is presumably because the conductivity cannot be improved. Therefore, in the pocket type hydrogen storage alloy electrode, it is particularly preferable to briquette the powder to enhance interparticle conductivity in order to improve polarization.

次に、上記負極1〜7及び各正極1〜5の単極試験の結果から、電極を選択して定格容量50Ahのベント形セルを常法により作製した。この場合、書く電極の容量密度が異なるために、負極/正極容量比は1.3に固定して、電極の面積及び構成枚数は変えないで電極厚みによる調整を行い、夫々のベント形セルを作製した。夫々のセルの構成を下記表4に示した。   Next, from the results of the unipolar tests of the negative electrodes 1 to 7 and the positive electrodes 1 to 5, an electrode was selected and a bent cell having a rated capacity of 50 Ah was produced by a conventional method. In this case, since the capacity density of the electrodes to be written is different, the negative electrode / positive electrode capacity ratio is fixed to 1.3, and the adjustment is made according to the electrode thickness without changing the area and the number of the electrodes. Produced. The configuration of each cell is shown in Table 4 below.

Figure 0004767515
Figure 0004767515

これらの各試験セルにつき、電解液を注液後、0.1CAでリコンディショニングを2サイクル実施後、各セルのエネルギー密度を算出した。その結果を表5に示した。   For each of these test cells, after injecting the electrolyte solution, reconditioning was performed for 2 cycles at 0.1 CA, and the energy density of each cell was calculated. The results are shown in Table 5.

Figure 0004767515
Figure 0004767515

表5から明らかなように、ラーベス系水素吸蔵合金極である負極4と正極2を組み合わせた試験セル2は非常に高いエネルギー密度を示した。   As is apparent from Table 5, the test cell 2 in which the negative electrode 4 and the positive electrode 2 that are Laves-based hydrogen storage alloy electrodes were combined showed a very high energy density.

次に、各種のセルについて、ベント形電池としての実用性を評価するために、サイクル寿命試験及び高温トリクル寿命試験を実施した。
サイクル寿命試験は、周囲温度25±5℃の条件で、0.25CAで2.5時間の放電、0.25CAで3.5時間の充電を50サイクル繰り返した後に、容量確認として0.2CAで終止電圧1.0Vまでの放電容量を測定した後、0.2CAで8時間充電を行い、このサイクルを繰り返した。
高温トリクル寿命試験は、周囲温度45℃の条件で0.02CA×28日間の連続低電流充電語に7日間の充電放置をして、1.0CAで終止電圧1.0Vまでの放電により容量を確認するサイクルを繰り返した。
上記のサイクル寿命試験の結果を図2に、上記の高温トリクル寿命試験の結果を図3に示した。
Next, a cycle life test and a high-temperature trickle life test were performed on various cells in order to evaluate the practicality as a bent battery.
The cycle life test was conducted at 0.2 CA for capacity confirmation after 50 cycles of discharging at 0.25 CA for 2.5 hours and charging at 0.25 CA for 3.5 hours at an ambient temperature of 25 ± 5 ° C. After measuring the discharge capacity up to a final voltage of 1.0 V, charging was performed at 0.2 CA for 8 hours, and this cycle was repeated.
In the high temperature trickle life test, the capacity is measured by discharging to a final low voltage of 1.0 V at 1.0 CA by leaving it charged for 7 days in a continuous low current charge word of 0.02 CA x 28 days at an ambient temperature of 45 ° C. The check cycle was repeated.
The results of the cycle life test are shown in FIG. 2, and the results of the high temperature trickle life test are shown in FIG.

上記のサイクル寿命試験の結果は、図2に明らかなように、本発明に係る電池1〜4及び電池7のポケット式水素吸蔵合金極を使用した電池が良好な結果を示した。また、ニッケル/カドミウム電池5,6と比較しても遜色ない結果が得られた。   As is apparent from FIG. 2, the results of the cycle life test showed that the batteries using the pocket type hydrogen storage alloy electrodes of the batteries 1 to 4 and the battery 7 according to the present invention showed good results. In addition, even when compared with the nickel / cadmium batteries 5 and 6, the same results were obtained.

上記の高温トリクル寿命試験の結果は、図3に明らかなように、20サイクルで急激な容量低下を示す電池はなく、本発明に係る負極2,3,4を用いたベント形ニッケル/水素蓄電池は全て、負極5を用いたベント形ニッケル/カドミウム電池5,6同等に実用に適することが判った。
尚、一酸化コバルトを添加したポケット式正極2,3,4を用いたセル1〜4は、黒鉛粉を添加したポケット式正極3を用いたセル3及びセル5と比較すると、1CA放電容量が大きいためにサイクル初期の対定格容量比率は高めに推移した。
更にセパレータとして親水性不織ポリオレフィン不織布の一部に微孔性ポリオレフィン系フイルムを設けたセル7は一層良好な容量維持率を示した。これは充電中に正極から発生する酸素ガス拡散を、より強く抑制したために水素吸蔵合金の酸化を抑えることができたことによると推定される。
As is apparent from FIG. 3, the result of the above-mentioned high-temperature trickle life test is that there is no battery that shows a rapid capacity decrease in 20 cycles, and a bent nickel / hydrogen storage battery using the negative electrodes 2, 3, and 4 according to the present invention Were found to be suitable for practical use equivalent to bent-type nickel / cadmium batteries 5 and 6 using the negative electrode 5.
The cells 1 to 4 using the pocket type positive electrodes 2, 3 and 4 to which cobalt monoxide is added have a 1CA discharge capacity as compared with the cells 3 and 5 using the pocket type positive electrode 3 to which graphite powder is added. Because of its large size, the ratio of capacity to rated capacity at the beginning of the cycle remained high.
Furthermore, the cell 7 in which a microporous polyolefin film was provided on a part of a hydrophilic nonwoven polyolefin nonwoven fabric as a separator showed a better capacity retention rate. It is presumed that this is because the oxidation of the hydrogen storage alloy could be suppressed because the oxygen gas diffusion generated from the positive electrode during charging was more strongly suppressed.

上記のように本発明により、比較的安価で且つ、高性能のベント形電池を提供できると共に、従来の有害物質であるカドミウムを含むベント形ニッケル/カドミウム電池に代わる電池として提供できるなど、工業的価値は非常に大である。 As described above, according to the present invention, it is possible to provide a relatively inexpensive and high-performance bent battery, and to provide a battery that replaces a bent nickel / cadmium battery containing cadmium which is a conventional harmful substance. The value is very great.

プレス圧と通電時電圧変化の関係を示すグラフ。The graph which shows the relationship between a press pressure and the voltage change at the time of electricity supply. 各種蓄電池のサイクル寿命試験結果を示すグラフ。The graph which shows the cycle life test result of various storage batteries. 各種蓄電池の高温トリクル寿命試験結果を示すグラフ。The graph which shows the high temperature trickle life test result of various storage batteries.

Claims (2)

水素吸蔵合金粉とニッケル粉の混合粉を圧縮成形して成るブリケットを、一枚の穿孔テープをコ字状に折り曲げた多孔金属製ポケット内に装填し、互いに重合する側縁部をかしめ結着して成るブリケット装填ポケットを、その外側から平板プレスにより500MPa以上の圧力で加圧し、該ポケットをブリケットに圧着せしめたことを特徴とするポケット式水素吸蔵合金極。 A briquette made by compression-molding a mixed powder of hydrogen storage alloy powder and nickel powder is loaded into a perforated metal pocket with a perforated tape folded in a U-shape, and the side edges that overlap each other are caulked and bonded. A pocket-type hydrogen storage alloy electrode, characterized in that the briquette loading pocket formed by pressurizing the pocket from the outside with a flat plate press at a pressure of 500 MPa or more and crimping the pocket to the briquette. 負極として、請求項1に記載のポケット式水素吸蔵合金極を具備したことを特徴とするニッケル/水素蓄電池。   A nickel / hydrogen storage battery comprising the pocket-type hydrogen storage alloy electrode according to claim 1 as a negative electrode.
JP2004260625A 2004-09-08 2004-09-08 Pocket hydrogen storage alloy electrode and nickel / hydrogen storage battery Active JP4767515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260625A JP4767515B2 (en) 2004-09-08 2004-09-08 Pocket hydrogen storage alloy electrode and nickel / hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260625A JP4767515B2 (en) 2004-09-08 2004-09-08 Pocket hydrogen storage alloy electrode and nickel / hydrogen storage battery

Publications (2)

Publication Number Publication Date
JP2006079875A JP2006079875A (en) 2006-03-23
JP4767515B2 true JP4767515B2 (en) 2011-09-07

Family

ID=36159162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260625A Active JP4767515B2 (en) 2004-09-08 2004-09-08 Pocket hydrogen storage alloy electrode and nickel / hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP4767515B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101957A (en) * 1984-10-24 1986-05-20 Agency Of Ind Science & Technol Hydrogen occluding electrode and its manufacturing method
JP3104230B2 (en) * 1989-12-01 2000-10-30 松下電器産業株式会社 Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same
JPH04280066A (en) * 1991-03-08 1992-10-06 Matsushita Electric Ind Co Ltd Hydrogen storage electrode and manufacture thereof
JPH06325761A (en) * 1993-05-13 1994-11-25 Yuasa Corp Manufacture of hydrogen storage electrode
DE4417732A1 (en) * 1994-05-20 1995-11-23 Varta Batterie Gas-tight nickel / hydride accumulator of the round cell type
JP3535955B2 (en) * 1997-08-01 2004-06-07 清川メッキ工業株式会社 Hydrogen storage material and method for producing the same
KR100359896B1 (en) * 2000-12-15 2002-11-04 박동필 Negative electrode for Nickel/Metal Hydryde secondary battery and Fabrication method thereof
JP2002216750A (en) * 2001-01-22 2002-08-02 Shin Etsu Chem Co Ltd Hydrogen storage alloy compact, hydrogen storage alloy compact porous negative electrode and nickel-hydrogen storage battery

Also Published As

Publication number Publication date
JP2006079875A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
US5698342A (en) Electrode containing coated particles
EP1195832B1 (en) A high-temperature nickel-hydrogen battery and producing method thereof
US7238446B2 (en) Active electrode composition with conductive polymeric binder
US6503659B1 (en) Layered metal hydride electrode providing reduced cell pressure
WO1999035701A1 (en) Zinc based electrochemical cell
JP4767515B2 (en) Pocket hydrogen storage alloy electrode and nickel / hydrogen storage battery
JP4183292B2 (en) Secondary battery
KR100816817B1 (en) Negative plate for nickel/metal hydride secondary battery and fabrication method thereof
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3764912B2 (en) Non-sintered electrode for alkaline storage battery, and alkaline storage battery using this electrode
JP3748122B2 (en) Method for producing alkaline storage battery
JP2003109554A (en) Enclosed battery
CA2173330C (en) Bipolar electrochemical battery of stacked wafer cells
JP2000030736A (en) Nickel hydrogen secondary battery
JP4964468B2 (en) Manufacturing method of pocket type hydrogen storage alloy electrode
JPH0325863A (en) Internally stacked battery
JP2000268825A (en) Alkaline secondary battery
JP2000353542A (en) Alkaline storage battery
JP2001006727A (en) Alkali secondary battery
JPH08138662A (en) Manufacture of alkaline secondary battery
JPH10154525A (en) Manufacture of alkaline storage battery
JPH03102769A (en) Electrode of hydrogen absorption alloy
JPH11135098A (en) Manufacture of alkali secondary battery
JP2001110412A (en) Manufacturing method for alkaline secondary battery
JP2000012009A (en) Manufacture of alkaline secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091009

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R150 Certificate of patent or registration of utility model

Ref document number: 4767515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3