JP3535955B2 - Hydrogen storage material and method for producing the same - Google Patents
Hydrogen storage material and method for producing the sameInfo
- Publication number
- JP3535955B2 JP3535955B2 JP20802697A JP20802697A JP3535955B2 JP 3535955 B2 JP3535955 B2 JP 3535955B2 JP 20802697 A JP20802697 A JP 20802697A JP 20802697 A JP20802697 A JP 20802697A JP 3535955 B2 JP3535955 B2 JP 3535955B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- resin
- hydrogen
- storage material
- thermoplastic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Powder Metallurgy (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水素吸蔵合金粒子
からなる水素吸蔵材およびその製造方法に関する。TECHNICAL FIELD The present invention relates to a hydrogen storage material composed of hydrogen storage alloy particles and a method for producing the same.
【0002】[0002]
【従来の技術】近年、水素を可逆的に吸蔵・放出する水
素吸蔵合金が各種分野で利用されるようになってきた。
たとえば、水素吸蔵合金材料を用いることにより、通常
の容器で安全に水素を貯蔵または運搬することができ
る。水素吸蔵合金は、水素を選択的に吸蔵・放出するの
で、水素の精製に利用することができる。また、水素吸
蔵合金が水素を吸蔵・放出する際の発熱・吸熱を利用し
て各種エネルギー変換体としても適用することができ
る。さらに、水素吸蔵合金は、ニッケル・カドミウム蓄
電池に替わる高エネルギー密度でクリーンなニッケル・
水素蓄電池などの電極材料としても利用されている。2. Description of the Related Art In recent years, hydrogen storage alloys that reversibly store and release hydrogen have been used in various fields.
For example, by using a hydrogen storage alloy material, hydrogen can be safely stored or transported in an ordinary container. Since the hydrogen storage alloy selectively stores and releases hydrogen, it can be used for refining hydrogen. Further, it can be applied as various energy converters by utilizing the heat generation / absorption when the hydrogen storage alloy stores / releases hydrogen. Furthermore, the hydrogen storage alloy is a high energy density and clean nickel alloy that replaces the nickel-cadmium battery.
It is also used as an electrode material for hydrogen storage batteries.
【0003】水素吸蔵合金は、水素の吸蔵・放出を繰り
返すと、崩壊して微粉化する性質を有する。このため水
素の貯蔵や運搬、精製に利用する際には、水素ガスとと
もに逸散し、水素の貯蔵容量が減少するとともにフィル
ターの目詰まりを起こすなどの問題がある。電極に利用
する際には、微粉化により容量が減少するから、寿命に
問題がある。また、水素吸蔵合金は、熱伝導が悪いの
で、エネルギー変換体に利用するには自ずと制約があ
る。これらの問題を解決するために、水素吸蔵合金粉末
に樹脂結着剤を混合して加圧成形する方法、あるいは水
素吸蔵合金粉末に金属めっき被膜を形成し、これを加圧
成形する方法などが提案されている。前者の方法では、
結着剤の量を多くすると結合力は強くなるが、単位重量
当たりの水素吸蔵量が少なくなる。また、後者の方法に
よると、めっき金属の種類にもよるが、ある程度の強度
は得られるが不十分である。A hydrogen storage alloy has the property of collapsing and pulverizing when hydrogen is repeatedly stored and released. Therefore, when hydrogen is used for storage, transportation, or refining, there is a problem in that it dissipates together with hydrogen gas, the hydrogen storage capacity decreases, and the filter becomes clogged. When it is used for an electrode, it has a problem in service life because its capacity is reduced by pulverization. In addition, since the hydrogen storage alloy has poor heat conduction, it is naturally limited in its use as an energy converter. In order to solve these problems, a method of mixing a hydrogen-absorbing alloy powder with a resin binder and press-molding, or a method of forming a metal plating film on the hydrogen-absorbing alloy powder and press-molding the same. Proposed. In the former method,
When the amount of the binder is increased, the binding strength is increased, but the hydrogen storage amount per unit weight is decreased. Further, according to the latter method, although some strength can be obtained, it is insufficient although it depends on the kind of the plated metal.
【0004】[0004]
【発明が解決しようとする課題】本発明は、以上に鑑
み、水素の吸蔵・放出を繰り返しても水素吸蔵合金粒子
の微粉化による崩壊がなく、繰り返し使用できる水素吸
蔵材を提供することを目的とする。本発明は、また水素
吸蔵量が大きく、かつ電気伝導性および熱伝導性に優れ
た水素吸蔵材を提供することを目的とする。SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a hydrogen storage material which can be repeatedly used without being decomposed by pulverization of hydrogen storage alloy particles even when hydrogen storage / release is repeated. And Another object of the present invention is to provide a hydrogen storage material having a large hydrogen storage capacity and excellent electric conductivity and thermal conductivity.
【0005】[0005]
【課題を解決するための手段】本発明は、表面に熱可塑
性樹脂の微粒子を包含した金属のめっき被膜を有する水
素吸蔵合金粒子を前記熱可塑性樹脂のガラス転移温度ま
たは融点以上で、かつ熱分解温度未満の温度下で加圧成
形することにより、多孔性の水素吸蔵材を得るものであ
る。本発明による水素吸蔵材は、水素吸蔵合金粒子の大
部分に直接または前記めっき皮膜を介して接触する三次
元的に連なる空隙部を有し、かつ前記空隙部が部分的に
前記熱可塑性樹脂に埋められて前記水素吸蔵合金粒子が
強固に結合された多孔体となっている。DISCLOSURE OF THE INVENTION The present invention provides a hydrogen-absorbing alloy particle having a metal plated coating containing fine particles of a thermoplastic resin on the surface thereof at a temperature not lower than the glass transition temperature or the melting point of the thermoplastic resin and pyrolyzed. A porous hydrogen storage material is obtained by pressure molding at a temperature lower than the temperature. The hydrogen-absorbing material according to the present invention has a three-dimensionally continuous void portion that is in direct contact with most of the hydrogen-absorbing alloy particles or through the plating film, and the void portion is partially in the thermoplastic resin. It is filled with the hydrogen storage alloy particles to form a strongly bonded porous body.
【0006】従って、本発明による水素吸蔵材は、単位
重量当たりの水素吸蔵量が大きく、しかも水素の吸蔵・
放出を繰り返しても吸蔵材自体が崩壊することはなく、
繰り返し使用することができる。また、水素吸蔵合金粒
子を被覆していた金属めっき皮膜により電気伝導性およ
び熱伝導性が付与される。本発明による水素吸蔵材が水
素の吸蔵・放出を繰り返しても崩壊しないのは、水素吸
蔵合金粒子を被覆しているめっき皮膜に包含された熱可
塑性樹脂が、そのガラス転移温度または融点以上の温度
での加圧成形により、水素吸蔵合金粒子相互の空隙部に
流れ込み、効果的に結着剤として働くことと、水素吸蔵
合金粒子を被覆しているめっき金属が高圧力下での成形
により、相互に入り組んで絡み合い、機械的にも強固に
結合することによるものと思われる。Therefore, the hydrogen storage material according to the present invention has a large hydrogen storage amount per unit weight, and moreover, can store and store hydrogen.
The occlusion material itself does not collapse even after repeated release,
Can be used repeatedly. Further, the metal plating film coated with the hydrogen storage alloy particles imparts electrical conductivity and thermal conductivity. The hydrogen storage material according to the present invention does not collapse even after repeated storage and release of hydrogen, because the thermoplastic resin included in the plating film coating the hydrogen storage alloy particles has a temperature not lower than its glass transition temperature or melting point. By pressure molding in, the hydrogen storage alloy particles flow into the voids of each other and effectively act as a binder, and the plated metal coating the hydrogen storage alloy particles is molded under high pressure, It seems to be due to intricate and intertwining and mechanically strong connection.
【0007】本発明の水素吸蔵材の製造方法は、表面に
熱可塑性樹脂の微粒子を包含した金属のめっき被膜を有
する水素吸蔵合金粒子を前記熱可塑性樹脂のガラス転移
温度または融点以上で、かつ熱分解温度未満の温度下で
加圧成形することにより、前記水素吸蔵合金粒子が前記
熱可塑性樹脂により結合された多孔体を得ることを特徴
とする。また、本発明の水素吸蔵材の製造方法は、表面
に熱可塑性樹脂の微粒子を包含した金属のめっき被膜を
有する水素吸蔵合金粒子を多孔性の金属支持体の片面ま
たは両面に配し、前記熱可塑性樹脂のガラス転移温度ま
たは融点以上で、かつ熱分解温度未満の温度下で加圧成
形することにより、前記水素吸蔵合金粒子が前記熱可塑
性樹脂により結合され、かつその片面または内部に前記
金属支持体を一体に結合した多孔体を得ることを特徴と
する。In the method for producing a hydrogen storage material of the present invention, the hydrogen storage alloy particles having a metal plating film containing fine particles of a thermoplastic resin on the surface are heated at a temperature not lower than the glass transition temperature or the melting point of the thermoplastic resin, It is characterized in that a porous body in which the hydrogen storage alloy particles are bonded by the thermoplastic resin is obtained by performing pressure molding at a temperature lower than the decomposition temperature. Further, the method for producing a hydrogen storage material of the present invention, the hydrogen storage alloy particles having a metal plating coating containing fine particles of a thermoplastic resin on the surface is arranged on one or both sides of a porous metal support, By pressure molding at a temperature not lower than the glass transition temperature or melting point of the plastic resin and lower than the thermal decomposition temperature, the hydrogen storage alloy particles are bonded by the thermoplastic resin, and the metal support is provided on one side or inside thereof. It is characterized in that a porous body obtained by integrally joining bodies is obtained.
【0008】[0008]
【発明の実施の形態】水素吸蔵合金粒子を被覆するめっ
き被膜の金属としては、Ni、Cu、Co、Ni−P、
Ni−B、Cu−P、およびCo−Bからなる群より選
んだものが好適に用いられる。めっき被膜は、水素の拡
散の妨げとならない程度の多孔質被膜であることが好ま
しい。めっき被膜の膜厚は、0.01〜50μm、好ま
しくは1〜10μmが適当である。水素吸蔵合金の表面
に熱可塑性樹脂の微粒子を包含した銅または銅系合金の
めっき被膜形成するための電解めっき浴としては、硫酸
銅浴、シアン銅浴、ピロリン酸銅浴がある。これらの中
でピロリン酸銅浴は、熱可塑性樹脂の微粒子の共析量が
多く、接触角が大きいめっき被膜が得られるので有利で
ある。また、ニッケルめっき被膜を得るためのめっき浴
としては、スルファミン酸浴の他、ワット浴、あるいは
電解または無電解Ni−Pめっき浴その他を用いること
ができる。さらに、上記金属または合金めっき被膜を得
るための周知のめっき浴を用いることができる。BEST MODE FOR CARRYING OUT THE INVENTION Metals of a plating film for coating hydrogen storage alloy particles include Ni, Cu, Co, Ni-P,
A material selected from the group consisting of Ni-B, Cu-P, and Co-B is preferably used. The plated coating is preferably a porous coating that does not hinder the diffusion of hydrogen. The thickness of the plating film is 0.01 to 50 μm, preferably 1 to 10 μm. As an electrolytic plating bath for forming a copper or copper-based alloy plating film containing fine particles of a thermoplastic resin on the surface of a hydrogen storage alloy, there are a copper sulfate bath, a cyanogen copper bath, and a copper pyrophosphate bath. Among these, the copper pyrophosphate bath is advantageous because it has a large amount of eutectoid particles of the thermoplastic resin and a plating film having a large contact angle can be obtained. As the plating bath for obtaining the nickel plating film, a Watt bath, an electrolytic or electroless Ni-P plating bath, or the like can be used in addition to the sulfamic acid bath. Further, a well-known plating bath for obtaining the above metal or alloy plating film can be used.
【0009】撥水性の強いフッ素系樹脂は、水素吸蔵合
金粒子の表面に樹脂粒子を包含する金属めっき被膜を形
成する際、めっき液とのなじみをよくするために多量の
界面活性剤をめっき液に添加する必要がある。そのため
めっき被膜に界面活性剤が付着し、これによって吸湿あ
るいは水素の汚染などの不都合を生じるおそれがある。
前記めっき皮膜に包含させる熱可塑性樹脂としては、フ
ッ素を含まないものが適している。本発明では、このよ
うな不都合を回避ないしは軽減する。The fluorine-based resin having strong water repellency contains a large amount of a surfactant in order to improve compatibility with the plating solution when forming a metal plating film containing the resin particles on the surface of the hydrogen storage alloy particles. Need to be added to. Therefore, a surfactant may adhere to the plating film, which may cause inconveniences such as moisture absorption or hydrogen contamination.
As the thermoplastic resin contained in the plating film, one containing no fluorine is suitable. The present invention avoids or reduces such inconvenience.
【0010】フッ素を含まない熱可塑性樹脂としては、
ABS樹脂、アセタール、メタクリル樹脂、酢酸セルロ
ース、塩素化ポリエーテル、エチレンー酢酸ビニル共重
合体、エチレンービニルアルコール共重合体、アイオノ
マー、ポリアクリロニトリル、ポリアミド、ポリアミド
イミド、ポリアリレート、ポリブチレン、ポリブチレン
テレフタレート、ポリカーボネート、ポリエーテルエー
テルケトン、ポリエーテルイミド、ポリエーテルケト
ン、ポリテーテルスルフォン、ポリエチレン、ポリエチ
レンテレフタレート、ポリイミド、ポリー4−メチルペ
ンテンー1、ポリフェニレンエーテル、ポリフェニレン
スルフィド、ポリプロピレン、ポリスチレン、ポリスル
フォン、酢酸ビニル樹脂、塩化ビニル樹脂、塩化ビニリ
デン樹脂、AS樹脂などが用いられる。なかでもABS
樹脂、ポリアミド、ポリスルフォン、AS樹脂、ポリス
チレン、塩化ビニリデン樹脂、ポリフェニレンエーテ
ル、メチルペンテン樹脂、およびメタクリル樹脂からな
る群より選ばれる熱可塑性樹脂が好ましく用いられる。As the thermoplastic resin containing no fluorine,
ABS resin, acetal, methacrylic resin, cellulose acetate, chlorinated polyether, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ionomer, polyacrylonitrile, polyamide, polyamideimide, polyarylate, polybutylene, polybutylene terephthalate, Polycarbonate, polyetheretherketone, polyetherimide, polyetherketone, polythetersulfone, polyethylene, polyethylene terephthalate, polyimide, poly-4-methylpentene-1, polyphenylene ether, polyphenylene sulfide, polypropylene, polystyrene, polysulfone, vinyl acetate resin , Vinyl chloride resin, vinylidene chloride resin, AS resin and the like are used. Above all, ABS
A thermoplastic resin selected from the group consisting of resin, polyamide, polysulfone, AS resin, polystyrene, vinylidene chloride resin, polyphenylene ether, methylpentene resin, and methacrylic resin is preferably used.
【0011】これら熱可塑性樹脂の粒子の粒径は、0.
01〜50μm、好ましくは1〜5μmが適当である。
表面に熱可塑性樹脂の微粒子を包含した金属のめっき被
膜を有する水素吸蔵合金粒子を加圧成形して成形体を得
る際の条件は、用いる樹脂によって異なるが、一般に温
度を高くするときは成形圧を低くしててよい。加熱温度
は、熱可塑性樹脂のガラス転移温度または融点以上で、
かつ熱分解温度未満の温度であり、通常50〜400℃
である。成形圧は10〜10000kg/cm2の範囲
が適当である。The particle size of these thermoplastic resin particles is 0.
01 to 50 μm, preferably 1 to 5 μm is suitable.
The conditions for obtaining a molded product by pressure-molding hydrogen-absorbing alloy particles having a metal plating film containing fine particles of a thermoplastic resin on the surface differ depending on the resin used, but generally when the temperature is increased, the molding pressure is increased. Can be lowered. The heating temperature is equal to or higher than the glass transition temperature or melting point of the thermoplastic resin,
And the temperature is less than the thermal decomposition temperature, usually 50 ~ 400 ℃
Is. The molding pressure is appropriately in the range of 10 to 10,000 kg / cm 2 .
【0012】本発明に用いる水素吸蔵合金としては、こ
の種水素吸蔵材に用いられているものを用いることがで
きる。LaNi5、MmNi5(Mm=ミッシュメタル)
で代表されるAB5型(希土類系)合金、TiNi、T
i2Niで代表されるAB/A2B型(チタン系)合金、
Ti2-xZrxV4-yNiy、ZrV0.4NI1.6で代表され
るAB2型(ラーベス相)合金などである。合金粒子
は、粒径0.01〜2mm程度がよく、好ましくは10
〜100μmのものがよい。As the hydrogen storage alloy used in the present invention, those used in this kind of hydrogen storage material can be used. LaNi 5 , MmNi 5 (Mm = misch metal)
AB 5 type (rare earth alloy), TiNi, T
AB / A 2 B type (titanium-based) alloy represented by i 2 Ni,
Examples include AB 2 type (Laves phase) alloys represented by Ti 2−x Zr x V 4−y Ni y and ZrV 0.4 NI 1.6 . The alloy particles preferably have a particle size of about 0.01 to 2 mm, preferably 10
It is preferably about 100 μm.
【0013】本発明の水素吸蔵材を製造するに際して
は、熱の伝導体あるいは電極における集電体などとして
働く支持体を一体に成形するのが有利である。支持体と
しては、穴あき金属板、金属メッシュ、そのほか金属繊
維のフェルト、金属発泡体なども用いられる。In producing the hydrogen storage material of the present invention, it is advantageous to integrally form a support that functions as a heat conductor or a current collector in the electrode. As the support, a perforated metal plate, a metal mesh, a metal fiber felt, a metal foam, or the like can be used.
【0014】以下に水素吸蔵合金粒子にめっきにより熱
可塑性樹脂粒子と金属の複合被膜を形成する方法を説明
する。まず、合金粒子を水洗、脱脂する。例えば、水に
よる超音波洗浄を約10分間行った後、奥野製薬株式会
社からOP−113の名で販売されている脱脂剤の水溶
液(60g/l)からなる浴に60℃で約10分間浸漬
する。次に、電解めっきの前処理としては、酸処理(1
0%酢酸を用い25℃で3分間処理する)をする。ま
た、無電解めっきの前処理としては、電解めっきの場合
と同様に、酸処理をする。めっき被膜のつきにくい合金
粒子に対しては、さらに、塩化第一スズを30g/1、
塩酸を15m1/1含むセンシタイザー液に、脱脂後の
合金粒子を25℃で3分間浸漬した後、水洗する。次
に、塩化パラジウムを0.2g/1、塩酸を4m1/1
含むアクチベイター液に、合金粒子を25℃で3分間浸
漬した後、水洗する。この活性化処理を2回行う。A method for forming a composite coating of thermoplastic resin particles and a metal on the hydrogen storage alloy particles by plating will be described below. First, the alloy particles are washed with water and degreased. For example, after ultrasonic cleaning with water for about 10 minutes, it is immersed in a bath composed of an aqueous solution (60 g / l) of a degreasing agent sold by Okuno Pharmaceutical Co., Ltd. under the name OP-113 at 60 ° C. for about 10 minutes. To do. Next, as a pretreatment for electrolytic plating, acid treatment (1
Treatment with 0% acetic acid at 25 ° C. for 3 minutes). As the pretreatment for electroless plating, acid treatment is performed as in the case of electrolytic plating. For alloy particles that are hard to form a plating film, stannous chloride is further added at 30 g / 1,
The degreased alloy particles are immersed in a sensitizer solution containing hydrochloric acid of 15 ml / 1 at 25 ° C. for 3 minutes and then washed with water. Next, palladium chloride 0.2g / 1, hydrochloric acid 4m1 / 1
The alloy particles are immersed in an activator solution containing the alloy particles at 25 ° C. for 3 minutes and then washed with water. This activation process is performed twice.
【0015】次に、電解めっきの方法を説明する。図1
は、実施例に用いたバレルめっき装置の概略構成を示
す。回転台1上にセルベース2を固定し、セルベース2
上に、パッキング3で挟まれたリング状の陰極板4を固
定し、さらにカバー5を取り付けて略円盤状のセルを構
成している。このセル内にはめっき液6が収容され、め
っき液中には陽極7が挿入されている。陰極4は回転台
1に電気的に接続され、回転台1はブラシ8により電源
に接続されている。上記のセル内にあらかじめ処理した
水素吸蔵合金粉末を入れ、セルを高速で回転(400r
pm)させると、合金粉末は遠心力により外周部のリン
グ状陰極板4に接触して給電され、めっきされる。めっ
き液は、めっき液供給ノズル9より供給され、過剰のめ
っき液はめっき液排出ノズル10より外部のタンクへ戻
される。めっき液排出量をめっき液供給量より若干多く
設定することにより、めっき液排出ノズル10の下端の
高さによって、セル内のめっき液量を一定に保つように
する。Next, an electrolytic plating method will be described. Figure 1
Shows a schematic configuration of the barrel plating apparatus used in the examples. Fix the cell base 2 on the turntable 1
A ring-shaped cathode plate 4 sandwiched between packings 3 is fixed on the top, and a cover 5 is attached to form a substantially disc-shaped cell. The plating solution 6 is contained in this cell, and the anode 7 is inserted in the plating solution. The cathode 4 is electrically connected to the turntable 1, and the turntable 1 is connected to a power source by a brush 8. Put pre-treated hydrogen storage alloy powder in the above cell and rotate the cell at high speed (400r
pm), the alloy powder comes into contact with the ring-shaped cathode plate 4 on the outer peripheral portion by the centrifugal force to be supplied with electric power and plated. The plating solution is supplied from the plating solution supply nozzle 9, and the excess plating solution is returned from the plating solution discharge nozzle 10 to the external tank. By setting the discharge amount of the plating solution to be slightly larger than the supply amount of the plating solution, the height of the lower end of the plating solution discharge nozzle 10 keeps the amount of the plating solution in the cell constant.
【0016】このめっき装置を用いてめっきするには、
上記のセルを図2に示すように、最初の3秒間静止の
後、セルを駆動するモータを起動させる。そして、40
0rpmで定常回転させた後モータを停止させセルの回
転を止める。モータを起動させて27秒経過した時点か
らセルが停止するまでの30秒間陽極7と陰極4間にめ
っき電流を流す。次に、3秒間静止の後、上記と同じ方
向または反対方向にセルを回転させ、セルの回転してい
る後半の30秒間陽極と陰極間にめっき電流を流す。こ
のようなサイクルを繰り返すことにより、めっき液およ
び合金粉末の攪拌が行われ、合金粉末にはほぼ一様なめ
っきが施される。なお、めっき液の排出は、セルの回転
による遠心力によって合金粉末のほとんどがすべてがリ
ング状陰極4に接触している間のみとし、セルの回転停
止時および加速時にめっき液中に漂っている合金粉末の
排出を防ぐ。To plate using this plating apparatus,
After allowing the above cell to rest for the first 3 seconds as shown in FIG. 2, the motor driving the cell is activated. And 40
After the steady rotation at 0 rpm, the motor is stopped and the cell rotation is stopped. A plating current is passed between the anode 7 and the cathode 4 for 30 seconds from the time 27 seconds after the motor is started until the cell is stopped. Next, after resting for 3 seconds, the cell is rotated in the same direction as the above or the opposite direction, and a plating current is passed between the anode and the cathode for 30 seconds in the latter half of the rotation of the cell. By repeating such a cycle, the plating solution and the alloy powder are stirred, and the alloy powder is plated almost uniformly. The plating solution is discharged only while most of the alloy powder is in contact with the ring-shaped cathode 4 due to the centrifugal force due to the rotation of the cell, and is drifted in the plating solution when the cell rotation is stopped and when the cell is accelerated. Prevents the discharge of alloy powder.
【0017】上記の装置を用いて平均粒径約50μmの
MmNi3.55Co0.75Mn0.4Al0 .3に電解めっきした
ときのめっき浴の組成、めっき条件および得られためっ
き被膜の厚みなどを以下に示す。めっき時間は、上記の
サイクルに要した時間であり、通電時間はめっき電流を
流した時間の合計である。The composition of the plating bath when electrolytic plating to MmNi 3.55 Co 0.75 Mn 0.4 Al 0 .3 the average particle size of about 50μm by using the above apparatus, and the thickness of the plating conditions and the resulting plating film below Show. The plating time is the time required for the above cycle, and the energization time is the total of the times when the plating current is applied.
【0018】 電解ニッケルめっき(スルファミン酸浴) Ni(NH2SO3)2・4H2O 350(g/l) NiCl2・6H2O 45(g/l) H3BO3 40(g/l) 界面活性剤 2(g/l) 樹脂粒子 100(g/l) pH 4.0 陰極電流密度 10A/dm2 温度 50℃ 陽極 Ni板 攪拌 循環 めっき時間 30分(通電時間15分) 膜厚 3μmThe electroless nickel plating (sulfamate bath) Ni (NH 2 SO 3) 2 · 4H 2 O 350 (g / l) NiCl 2 · 6H 2 O 45 (g / l) H 3 BO 3 40 (g / l ) Surfactant 2 (g / l) Resin particles 100 (g / l) pH 4.0 Cathode current density 10 A / dm 2 Temperature 50 ° C. Anode Ni plate Stirring Circulation plating time 30 minutes (current flowing time 15 minutes) Film thickness 3 μm
【0019】ここに用いた樹脂粒子は、メタクリル樹脂
の平均粒径5μmの粒子である。上記のメタクリル樹脂
粒子を含む電解ニッケルめっき被膜を有する水素吸蔵合
金粒子2.5gを加熱装置付き成形装置の金型内に充填
し、アルゴン雰囲気中において400kg/cm2の成
形圧で直径20mmのペレットに成形した。ただし、こ
の成形時における加熱シーケンスは、25℃から250
℃まで一定の昇温速度で2時間かけて昇温させ、同温度
で2時間保持した後、25℃まで6時間かけて温度を低
下させた。The resin particles used here are particles of methacrylic resin having an average particle size of 5 μm. 2.5 g of hydrogen-absorbing alloy particles having an electrolytic nickel plating film containing the above-mentioned methacrylic resin particles were filled in a mold of a molding apparatus with a heating device, and a pellet having a diameter of 20 mm at a molding pressure of 400 kg / cm 2 in an argon atmosphere. Molded into. However, the heating sequence during this molding is from 25 ° C to 250 ° C.
The temperature was raised to 0 ° C. at a constant heating rate over 2 hours, the temperature was maintained for 2 hours, and then the temperature was lowered to 25 ° C. over 6 hours.
【0020】こうして得た成形体は、多孔度約38%
で、非常に硬く成形されており、ダイヤモンドソーで切
断したり、スライス加工をしたりすることができた。 The molded product thus obtained has a porosity of about 38%.
It was very hard, and could be cut with a diamond saw or sliced .
【0021】[0021]
【発明の効果】以上のように本発明によれば、適度の多
孔度を有し、かつ非常に硬い成形体よりなる水素吸蔵材
を得ることができる。従って、本発明による水素吸蔵材
は、水素の吸蔵・放出を繰り返しても水素吸蔵合金粒子
の微粉化による崩壊がなく、繰り返し使用できる。ま
た、本発明による水素吸蔵材は、水素吸蔵合金粒子に被
着させた金属のめっき被膜、あるいはさらに金属支持体
の存在により電気伝導性および熱伝導性に優れている。As described above, according to the present invention, it is possible to obtain a hydrogen storage material having an appropriate porosity and a very hard molded body. Therefore, the hydrogen storage material according to the present invention can be repeatedly used without causing disintegration due to pulverization of the hydrogen storage alloy particles even when hydrogen storage / release is repeated. Further, the hydrogen storage material according to the present invention is excellent in electric conductivity and thermal conductivity due to the presence of the metal plating film deposited on the hydrogen storage alloy particles or the metal support.
【図1】本発明の実施例に用いためっき装置の構成を示
す縦断面図である。FIG. 1 is a vertical sectional view showing the configuration of a plating apparatus used in an example of the present invention.
【図2】同めっき装置の動作を示すタイムチャートであ
る。FIG. 2 is a time chart showing the operation of the plating apparatus.
1 回転台 2 セルベース 3 パッキン 4 陰極板 5 カバー 6 めっき液 7 陽極 8 ブラシ 9 めっき液供給ノズル 10 めっき液排出ノズル 1 turntable 2 cell base 3 packing 4 cathode plate 5 cover 6 plating solution 7 Anode 8 brushes 9 Plating solution supply nozzle 10 Plating solution discharge nozzle
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−183964(JP,A) 特開 平9−106817(JP,A) 特開 平4−74802(JP,A) 特開 平6−184602(JP,A) ─────────────────────────────────────────────────── ─── Continued front page (56) References JP-A-2-183964 (JP, A) JP-A-9-106817 (JP, A) JP-A-4-74802 (JP, A) JP-A-6-184602 (JP, A)
Claims (10)
を包含した金属のめっき被膜を表面に有する水素吸蔵合
金粒子の成形体からなり、前記水素吸蔵合金粒子の大部
分に直接または前記めっき被膜を介して接触する三次元
的に連なる空隙部を有し、かつ前記空隙部が部分的に前
記熱可塑性樹脂に埋められて前記水素吸蔵合金粒子が強
固に結合された多孔体からなることを特徴とする水素吸
蔵材。1. A fluorine becomes the thermoplastic resin fine particles of a metal plating film that includes free from the molded body of the hydrogen storage alloy particles having a surface, directly or the plating target film to a large portion of the hydrogen-absorbing alloy particles Characterized in that it has a three-dimensionally continuous voids that are in contact with each other, and that the voids are partially filled with the thermoplastic resin, and the hydrogen storage alloy particles are firmly bonded to each other and are made of a porous body. And hydrogen storage material.
Co、Ni−P、Ni−B、Co−P、およびCo−B
からなる群より選ばれる請求項1記載の水素吸蔵材。2. The metal of the plating film is Ni, Cu,
Co, Ni-P, Ni-B, Co-P, and Co-B
The hydrogen storage material according to claim 1, which is selected from the group consisting of:
アミド、ポリスルフォン、AS樹脂、ポリスチレン、塩
化ビニリデン樹脂、ポリフェニレンエーテル、メチルペ
ンテン樹脂、およびメタクリル樹脂からなる群より選ば
れる請求項1記載の水素吸蔵材。3. The hydrogen according to claim 1, wherein the thermoplastic resin is selected from the group consisting of ABS resin, polyamide, polysulfone, AS resin, polystyrene, vinylidene chloride resin, polyphenylene ether, methylpentene resin, and methacryl resin. Storage material.
る多孔質被膜である請求項1記載の水素吸蔵材。4. The hydrogen storage material according to claim 1, wherein the plated coating is a porous coating that allows diffusion of hydrogen.
を包含した金属のめっき被膜を表面に有する水素吸蔵合
金粒子を前記熱可塑性樹脂のガラス転移温度または融点
以上で、かつ熱分解温度未満の温度下で加圧成形するこ
とにより、前記水素吸蔵合金粒子が前記熱可塑性樹脂に
より結合された多孔体を得ることを特徴とする水素吸蔵
材の製造方法。5. A hydrogen storage alloy particle having a metal plating coating containing fine particles of a thermoplastic resin containing no fluorine on a surface of the thermoplastic resin at a temperature not lower than a glass transition temperature or a melting point and lower than a thermal decomposition temperature. A method for producing a hydrogen storage material, characterized in that a porous body in which the hydrogen storage alloy particles are bonded by the thermoplastic resin is obtained by pressure molding below.
を包含した金属のめっき被膜を表面に有する水素吸蔵合
金粒子を多孔性の金属支持体の片面または両面に配し、
前記熱可塑性樹脂のガラス転移温度または融点以上で、
かつ熱分解温度未満の温度下で加圧成形することによ
り、前記水素吸蔵合金粒子が前記熱可塑性樹脂により結
合され、かつその片面または内部に前記金属支持体を一
体に結合した多孔体を得ることを特徴とする水素吸蔵材
の製造方法。6. Hydrogen-occluding alloy particles having a metal plating film containing fine particles of a thermoplastic resin containing no fluorine on the surface thereof are arranged on one side or both sides of a porous metal support,
Above the glass transition temperature or melting point of the thermoplastic resin,
And by pressure molding at a temperature lower than the thermal decomposition temperature, the hydrogen storage alloy particles are bonded by the thermoplastic resin, and to obtain a porous body integrally bonded to one side or inside the metal support A method for producing a hydrogen storage material, comprising:
粒子を被覆している前記めっき被膜が相互に機械的に結
合している多孔体を得る請求項5または6記載の水素吸
蔵材の製造方法。The method according to claim 7, wherein said pressing, the plating target film covering the hydrogen absorbing alloy particles of the hydrogen storage material of mutually mechanically coupled to and obtain a porous body according to claim 5 or 6, wherein Production method.
Co、Ni−P、Ni−B、Co−P、およびCo−B
からなる群より選ばれる請求項5または6記載の水素吸
蔵材の製造方法。8. The metal of the plating film is Ni, Cu,
Co, Ni-P, Ni-B, Co-P, and Co-B
The method for producing a hydrogen storage material according to claim 5, which is selected from the group consisting of:
アミド、ポリスルフォン、AS樹脂、ポリスチレン、塩
化ビニリデン樹脂、ポリフェニレンエーテル、メチルペ
ンテン樹脂、およびメタクリル樹脂からなる群より選ば
れる請求項5または6記載の水素吸蔵材の製造方法。9. The thermoplastic resin according to claim 5, which is selected from the group consisting of ABS resin, polyamide, polysulfone, AS resin, polystyrene, vinylidene chloride resin, polyphenylene ether, methyl pentene resin, and methacrylic resin. Manufacturing method of hydrogen storage material.
する多孔質被膜である請求項5または6記載の水素吸蔵
材の製造方法。 10. The method for producing a hydrogen storage material according to claim 5, wherein the plated coating is a porous coating that allows diffusion of hydrogen .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20802697A JP3535955B2 (en) | 1997-08-01 | 1997-08-01 | Hydrogen storage material and method for producing the same |
US09/106,165 US6143052A (en) | 1997-07-03 | 1998-06-29 | Hydrogen storage material |
US09/688,038 US6306339B1 (en) | 1997-07-03 | 2000-10-10 | Method for manufacturing hydrogen storage material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20802697A JP3535955B2 (en) | 1997-08-01 | 1997-08-01 | Hydrogen storage material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1150169A JPH1150169A (en) | 1999-02-23 |
JP3535955B2 true JP3535955B2 (en) | 2004-06-07 |
Family
ID=16549453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20802697A Expired - Fee Related JP3535955B2 (en) | 1997-07-03 | 1997-08-01 | Hydrogen storage material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3535955B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1435673B1 (en) * | 2001-09-19 | 2011-07-27 | Kawasaki Jukogyo Kabushiki Kaisha | Threedimensional cell, its electrode structure, and method for manufacturing electrode material of threedimensional cell |
JP4767515B2 (en) * | 2004-09-08 | 2011-09-07 | 古河電池株式会社 | Pocket hydrogen storage alloy electrode and nickel / hydrogen storage battery |
US8372184B2 (en) | 2005-04-22 | 2013-02-12 | Societe Bic | Composite hydrogen storage material and methods related thereto |
KR20080004624A (en) * | 2005-04-22 | 2008-01-09 | 안그스트롬 파워 인코퍼레이티드 | Composite hydrogen storage material and methods related thereto |
US7563305B2 (en) | 2006-06-23 | 2009-07-21 | Angstrom Power Incorporated | Fluid enclosure and methods related thereto |
US8372561B2 (en) | 2007-03-21 | 2013-02-12 | Societe Bic | Composite fluid storage unit with internal fluid distribution feature |
-
1997
- 1997-08-01 JP JP20802697A patent/JP3535955B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1150169A (en) | 1999-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6306339B1 (en) | Method for manufacturing hydrogen storage material | |
CN1043668C (en) | Process for preparing metallic porous body, electrode substrate for battery and process for preparing the same | |
JP3535955B2 (en) | Hydrogen storage material and method for producing the same | |
JPS6110855A (en) | Electrode for cell and its manufacturing method | |
JP4378202B2 (en) | Composite sheet for hydrogen storage and method for producing the same | |
JP2655810B2 (en) | Manufacturing method of alkaline secondary battery and catalytic electrode body | |
JP3312861B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JP2005285599A (en) | Collector for fuel cell and electrolyte complex using the same | |
Hermann et al. | Metal hydride batteries research using nanostructured additives | |
JP3104230B2 (en) | Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same | |
JPH05205746A (en) | Collector for electrode, and manufacture thereof hydrogen occlusion electrode using this collector, and nickel-hydrogen storage battery | |
US5874168A (en) | Fluorocarbon compound-hydrogen storage alloy composite and method of manufacturing the same | |
JP3553816B2 (en) | Nickel electrode and method of manufacturing the same | |
JP2002028490A5 (en) | ||
JP3472489B2 (en) | Hydrogen storage electrode and method for producing the same | |
JP2001503911A (en) | Metal foam for secondary battery electrode | |
WO1986006107A1 (en) | Highly durable low-hydrogen overvoltage cathode and a method of producing the same | |
JPS61101957A (en) | Hydrogen occluding electrode and its manufacturing method | |
JPH04284354A (en) | Hydrogen storage electrode, its manufacture, and metal-oxide-hydrogen storage battery using the electrode | |
JPH09106817A (en) | Fluorine compound-hydrogen storage alloy composite manufacture thereof | |
JP3438538B2 (en) | Manufacturing method of alkaline storage battery and its electrode | |
JP4423442B2 (en) | Method for producing electrode substrate for alkaline secondary battery | |
US6824667B2 (en) | Metal hydride composite materials | |
JP2003229134A (en) | Fuel cell | |
JP3261410B2 (en) | Method for producing hydrogen storage electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040315 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160319 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |