JPH1126013A - Sealed metal oxide-zinc storage battery and its manufacture - Google Patents

Sealed metal oxide-zinc storage battery and its manufacture

Info

Publication number
JPH1126013A
JPH1126013A JP9179370A JP17937097A JPH1126013A JP H1126013 A JPH1126013 A JP H1126013A JP 9179370 A JP9179370 A JP 9179370A JP 17937097 A JP17937097 A JP 17937097A JP H1126013 A JPH1126013 A JP H1126013A
Authority
JP
Japan
Prior art keywords
zinc
electrode
metal oxide
metal
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9179370A
Other languages
Japanese (ja)
Other versions
JP3972417B2 (en
Inventor
Hiroshi Kawano
博志 川野
Akira Miura
晃 三浦
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17937097A priority Critical patent/JP3972417B2/en
Publication of JPH1126013A publication Critical patent/JPH1126013A/en
Application granted granted Critical
Publication of JP3972417B2 publication Critical patent/JP3972417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a storage battery with improved negative electrode reaction characteristic, suppressed dendrite, and superior in preservation characteristic by forming the electrode base of a negative electrode with a three-dimensional mesh metal porous body made of one from among silver, copper, tin, brass and bronze, forming the inner face of a battery case with the same material as the electrode base, and arranging the negative electrode in direct contact with the battery case. SOLUTION: An electrode base constituting a zinc electrode is manufactured as follows. A paste mixed with conductive carbon powder and water is filled into a foam urethane resin so as to impart conductivity to the surface of the resin. A metal plated layer is formed on the surface with a plating liquid of silver, copper, tin or the like. It is heated in air to burn foam urethane and carbon, and a metal porous body is formed. Since a part of the metal is oxidized in this process, a strong metal porous body is obtained after being sintered in the reducing atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は酸化ニッケル−亜鉛
蓄電池、酸化銀−亜鉛蓄電池などの負極とそれを収容す
る電池ケースに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode such as a nickel oxide-zinc storage battery and a silver oxide-zinc storage battery and a battery case for housing the negative electrode.

【0002】[0002]

【従来の技術】アルカリ蓄電池用の負極活物質として用
いられる亜鉛は単位重量当たりのエネルギー密度が大き
く、安価で、かつ無公害であるという特徴を有すること
から研究開発が行われてきているが、未だ広く実用化に
至っていない。これは亜鉛が可溶性電極であることに起
因している。すなわち、放電時に亜鉛がアルカリ電解液
中に亜鉛酸イオンとして溶解し、つぎの充電時にこの亜
鉛酸イオンが亜鉛表面上に電析するものであって、放電
時に溶解した亜鉛が充電時に異なる部分に金属亜鉛とし
て電着する。充放電の繰り返しにより電着する亜鉛の形
状変形が起こり、充放電反応の不均一化が生じ、亜鉛の
放電容量低下を招くことになる。さらに、樹脂状亜鉛結
晶(デンドライト)と称される針状亜鉛の成長が起こ
り、セパレータを貫通し正極と電気的に接触し、内部短
絡を招き充放電が不可能となる。これらの課題解決に種
々の提案がなされてきたが、根本的に解決できる方法は
現状では見出されていない。前述した充放電反応の不均
一化により、亜鉛極の放電容量の低下を抑制するために
負極活物質中に放電可能な物質として金属亜鉛を含有さ
せておくことが効果的であることが言われている。これ
は活物質中に添加した金属亜鉛は酸化亜鉛から充電によ
り得られた金属亜鉛と共に放電に寄与できるためであ
る。
2. Description of the Related Art Zinc used as a negative electrode active material for alkaline storage batteries has been researched and developed because of its high energy density per unit weight, low cost, and non-polluting characteristics. It has not yet been widely used. This is because zinc is a soluble electrode. That is, at the time of discharging, zinc dissolves in the alkaline electrolyte as zincate ions, and at the time of the next charge, the zincate ions are deposited on the zinc surface. Electrodeposited as metallic zinc. The repetition of charge / discharge causes deformation of the shape of the electrodeposited zinc, resulting in non-uniform charge / discharge reaction, leading to a reduction in zinc discharge capacity. Further, the growth of acicular zinc called resinous zinc crystal (dendrites) occurs, penetrates through the separator and makes electrical contact with the positive electrode, causing an internal short circuit and making charging and discharging impossible. Various proposals have been made to solve these problems, but no method that can fundamentally solve them has been found at present. It is said that it is effective to include metallic zinc as a dischargeable substance in the negative electrode active material in order to suppress a decrease in the discharge capacity of the zinc electrode due to the non-uniform charge / discharge reaction described above. ing. This is because the metallic zinc added to the active material can contribute to the discharge together with the metallic zinc obtained by charging from the zinc oxide.

【0003】しかし、出発物質である金属亜鉛は酸化亜
鉛に比べて粒径の小さい粉体が得られにくいため、充電
時に樹脂状結晶生長の核になりやすく、急速充電あるい
は高温下での充電で行う場合内部短絡を起こしやすいこ
とが開示されている(特開平2-30062号公報)。したが
って、出発物質として微細な亜鉛粉末だけを用いること
が可能になれば、内部短絡を抑制できることになる。
However, since zinc, which is a starting material, is difficult to obtain a powder having a small particle size as compared with zinc oxide, it tends to become a nucleus for the growth of resinous crystals during charging, and is subject to rapid charging or charging at a high temperature. It is disclosed that an internal short circuit is likely to occur when performing the method (Japanese Patent Laid-Open No. 2-30062). Therefore, if only a fine zinc powder can be used as a starting material, an internal short circuit can be suppressed.

【0004】しかしながら、通常の酸化亜鉛粉末は導電
性に乏しく特に初充電の充電効率の低下を招き、水素ガ
スの発生が起こり密閉形電池では内圧上昇が起こる。さ
らに大電流の放電により放電容量、放電電圧の低下が大
きくなる欠点があった。
[0004] However, ordinary zinc oxide powder has poor conductivity and causes a decrease in the charging efficiency particularly at the time of initial charging, generating hydrogen gas and increasing the internal pressure in a sealed battery. Further, there is a disadvantage that the discharge of a large current greatly reduces the discharge capacity and discharge voltage.

【0005】一方、充電により形成された金属亜鉛はア
ルカリ電解液が存在のもとで異種金属と接触することに
より、局部電池を形成し、酸化を受けて水素ガス発生が
起こる。
On the other hand, metal zinc formed by charging contacts a dissimilar metal in the presence of an alkaline electrolyte to form a local battery, which undergoes oxidation to generate hydrogen gas.

【0006】[0006]

【発明が解決しようとする課題】既存のニッケル・カド
ミウム蓄電池(以下Ni/Cd蓄電池と略記)、ニッケル・
水素蓄電池(以下Ni/MH蓄電池と略記)と同様に、保守
が容易で、広い用途展開を可能にするためには密閉形電
池構造にする必要がある。このためには、充電中あるい
は保存中にガス発生を極力少なくして電池内圧の上昇を
抑制する必要がある。
Problems to be Solved by the Invention Existing nickel-cadmium storage batteries (hereinafter abbreviated as Ni / Cd storage batteries), nickel-cadmium storage batteries,
Like a hydrogen storage battery (hereinafter abbreviated as Ni / MH storage battery), it is necessary to adopt a sealed battery structure in order to be easy to maintain and enable a wide range of applications. For this purpose, it is necessary to minimize the generation of gas during charging or storage to suppress an increase in battery internal pressure.

【0007】ポータブル電子機器の小型・軽量化が強く
要望され、現在広く用いられているNi/Cd蓄電池、Ni/MH
蓄電池においても同様に小型・軽量化が求められてい
る。したがって、単位重量あるいは単位体積当たりのエ
ネルギー量が多い電池の高エネルギー密度化が活発に検
討されてきた。亜鉛極を用いた二次電池においても、密
閉化が可能で高エネルギー密度の電池の実現が同様な理
由から期待されている。
There is a strong demand for smaller and lighter portable electronic devices, and Ni / Cd storage batteries and Ni / MH batteries are now widely used.
Similarly, storage batteries are required to be smaller and lighter. Therefore, high energy density of a battery having a large amount of energy per unit weight or unit volume has been actively studied. It is expected that a secondary battery using a zinc electrode can be sealed and have a high energy density for the same reason.

【0008】このような観点から前述したNi/Cd蓄電
池、Ni/MH蓄電池と同様な電池構造にすることが電池の
高容量化には有効な手段と考えられる。これらの電池と
同様にニッケル・亜鉛蓄電池を構成した場合、金属ケー
スに亜鉛極が接触することになる。通常、この種の電池
ケースは圧力上昇に対して耐えうる構造、アルカリ電解
液に対しても耐食性を有する材料、低コスト化が可能な
材料が必要であることから鉄製のケースにニッケルメッ
キを施した有底金属容器が広く用いられている。このた
めアルカリ電解液を介在させてニッケルメッキを施した
金属ケースと亜鉛極が接触することになる。
From such a viewpoint, it is considered that a battery structure similar to the above-described Ni / Cd storage battery or Ni / MH storage battery is an effective means for increasing the capacity of the battery. When a nickel-zinc storage battery is constructed similarly to these batteries, the zinc electrode comes into contact with the metal case. Normally, this type of battery case requires a structure that can withstand a pressure rise, a material that is resistant to corrosion even with an alkaline electrolyte, and a material that can be reduced in cost. Bottomed metal containers are widely used. Therefore, the zinc electrode comes into contact with the metal case plated with nickel with an alkaline electrolyte interposed.

【0009】このような構成においては、亜鉛の溶解に
よる自己放電が起こり、水素ガスの発生を伴い、放電容
量の低下、内圧上昇の悪影響につながる。亜鉛の溶解は
電気化学的な電極電位がニッケルに比べ卑な電位を示す
ためで、一種の局部電池を形成し亜鉛は酸化、ニッケル
は還元を受けるためである。
In such a configuration, self-discharge occurs due to dissolution of zinc, and hydrogen gas is generated, which leads to a decrease in discharge capacity and an adverse effect of an increase in internal pressure. The dissolution of zinc is because the electrochemical electrode potential shows a lower potential than nickel, which forms a kind of local battery, and zinc is oxidized and nickel is reduced.

【0010】したがって、亜鉛と接触してもこのような
現象が起こりにくい金属ケースを使用しなければならな
い。一方、亜鉛極は放電により金属亜鉛が酸化亜鉛、水
酸化亜鉛に変化するが電解液の主成分である水酸化カリ
ウム水溶液中に放電生成物である酸化亜鉛は溶解し、充
電により金属亜鉛として析出する。この過程において、
必ずしも基の金属亜鉛の場所へ析出するとは限らないこ
とから形状変化を起こす。
Therefore, it is necessary to use a metal case in which such a phenomenon hardly occurs even when it comes into contact with zinc. On the other hand, the zinc electrode changes into zinc oxide and zinc hydroxide by discharging, but zinc oxide, which is a discharge product, dissolves in an aqueous solution of potassium hydroxide, which is the main component of the electrolytic solution, and precipitates as zinc metal when charged I do. In this process,
Since the metal zinc is not always deposited at the location of the base metal zinc, a shape change occurs.

【0011】したがって、このような現象が生じないよ
うに工夫することが電池のサイクル寿命を伸長させる有
効な方法であるが現状では大きな技術課題とされてい
る。
Therefore, it is an effective method to extend the cycle life of the battery to devise such a phenomenon so as not to occur, but it is a major technical problem at present.

【0012】本発明は上記の問題を解決するもので、負
極反応特性を向上し、デンドライトを抑制し、保存特性
に優れた密閉形金属酸化物−亜鉛蓄電池を提供すること
を目的とする。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a sealed metal oxide-zinc battery having improved negative electrode reaction characteristics, suppressed dendrite, and excellent storage characteristics.

【0013】[0013]

【課題を解決するための手段】高エネルギー密度で、サ
イクル寿命の長い金属酸化物−亜鉛蓄電池を構成するた
め本発明においては以下に示すような構成を採用した。
In order to constitute a metal oxide-zinc storage battery having a high energy density and a long cycle life, the present invention employs the following construction.

【0014】亜鉛極を構成する電極支持体材料として、
金属亜鉛と接触しても局部電池が形成されにくい銀、
銅、錫あるいはこれらの合金を用いて、電池ケースの内
面も電極支持体と同じ材料を用いることで亜鉛の自己放
電を防止し、耐圧性に優れ、コストアップの少ない電池
ケースを採用した。
As the electrode support material constituting the zinc electrode,
Silver, on which a local battery is difficult to form even when in contact with metallic zinc,
By using copper, tin or an alloy thereof, the inner surface of the battery case was also made of the same material as the electrode support to prevent self-discharge of zinc, and a battery case having excellent pressure resistance and low cost was adopted.

【0015】一方、充放電による亜鉛極の形状変化に対
しては従来技術である電解液に放電生成物を予め溶解さ
せておく方法、電解液量を必要最少限に設定する方法に
加えて亜鉛の電極支持体に三次元の網状金属多孔体を用
いて、導電性の向上を図り、形状変化が起こりにくい微
細な酸化亜鉛粉末の適用を可能にしたものであり、好ま
しくは電極支持体に用いた同じ材料の粉末を亜鉛極に混
合したものである。
On the other hand, with respect to the change in the shape of the zinc electrode due to charge and discharge, in addition to the prior art method of dissolving the discharge product in the electrolytic solution and the method of setting the amount of the electrolytic solution to the minimum necessary, The use of a three-dimensional reticulated metal porous body for the electrode support to improve conductivity and enable the application of fine zinc oxide powder that does not easily change in shape, and is preferably used for the electrode support. The powder of the same material was mixed in a zinc electrode.

【0016】[0016]

【発明の実施の形態】本願発明は金属酸化物を主体とす
る活物質を有する正極、酸化亜鉛を主体とする活物質を
有する負極、正・負極間に介在するセパレータ、アルカ
リ電解液および有底金属容器を電池ケースに用いる金属
酸化物−亜鉛蓄電池において、前記負極の電極支持体は
銀,銅,錫,黄銅,青銅から選ばれた一種の金属あるい
は合金から成る三次元網状金属多孔体であって、前記電
池ケースの内面が前記電極支持体と同一材料からなり、
さらに前記負極が電池ケースに直接接するように配した
ことを特徴とする密閉形金属酸化物−亜鉛蓄電池であ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positive electrode having an active material mainly composed of a metal oxide, a negative electrode having an active material mainly composed of zinc oxide, a separator interposed between the positive and negative electrodes, an alkaline electrolyte and a bottomed material. In a metal oxide-zinc storage battery using a metal container as a battery case, the electrode support of the negative electrode is a three-dimensional mesh-like metal porous body made of a metal or an alloy selected from silver, copper, tin, brass, and bronze. The inner surface of the battery case is made of the same material as the electrode support,
Further, the sealed metal oxide-zinc storage battery is characterized in that the negative electrode is disposed so as to be in direct contact with the battery case.

【0017】前記亜鉛極を構成する電極支持体は以下の
ような工程により作製した。導電性を有する炭素粉末と
水を混合し、ペースト状にして発泡状ウレタン樹脂に充
填することにより発泡状ウレタン樹脂表面に導電性を付
与させる。ついで、銀、銅、錫などのメッキ液を用いて
表面に前記金属のメッキ層をを形成させ、銀および銅メ
ッキを行ったものは空気中で加熱することにより発泡ウ
レタン、炭素を燃焼させ金属の多孔体を形成させる。こ
の過程により金属の一部が酸化を受けるため、還元雰囲
気中で焼結することにより強固な金属多孔体を形成させ
る。
The electrode support constituting the zinc electrode was manufactured by the following steps. Conductive carbon powder and water are mixed together, made into a paste, and filled into a foamed urethane resin to impart conductivity to the foamed urethane resin surface. Then, a plating layer of the metal is formed on the surface using a plating solution of silver, copper, tin, or the like, and the plated silver and copper are heated in the air to burn foamed urethane and carbon, thereby burning the metal. Is formed. Since a part of the metal is oxidized by this process, a strong metal porous body is formed by sintering in a reducing atmosphere.

【0018】錫メッキした場合は、錫の融点が低いた
め、還元あるいは不活性雰囲気で加熱後、有機溶媒によ
りポリウレタンを溶解させて作製する。
In the case of tin plating, since the melting point of tin is low, it is prepared by heating in a reducing or inert atmosphere and then dissolving polyurethane with an organic solvent.

【0019】また、メッキが不可能な合金を電極支持体
に使用する場合は、合金の粉末を直接、発泡状ウレタン
樹脂中へ充填し空気中で焙焼、還元雰囲気中で焼結を行
うことにより合金の多孔体を形成した。この方法は合金
に限らず金属粉末(銅、銀など)を出発物質として使用
することも可能である。
When an alloy that cannot be plated is used for the electrode support, the powder of the alloy is directly charged into a foamed urethane resin, and roasted in air and sintered in a reducing atmosphere. Thus, a porous body of the alloy was formed. In this method, not only the alloy but also a metal powder (copper, silver, or the like) can be used as a starting material.

【0020】以上の方法により得られた金属あるいは合
金の三次元網状の金属多孔体に亜鉛華(酸化亜鉛の粉
末)と結着剤の水溶液でペースト状にして充填を行い乾
燥後加圧プレスにより亜鉛極を作製する。
The metal or alloy three-dimensional mesh-like metal porous body obtained by the above-mentioned method is filled in a paste form with an aqueous solution of zinc white (zinc oxide powder) and a binder. Make a zinc electrode.

【0021】一方、発電要素を収納する電池ケースは、
鋼板あるいはニッケルメッキ鋼板を絞り加工により有底
筒形容器に形成し、ニッケルメッキしてない鋼板の場合
は加工後、防食を目的にニッケルメッキを施す。このよ
うな有底筒形容器の内面に前記亜鉛の電極支持体に用い
た同じ金属材料(銀、銅、錫)のメッキ層を形成させ
る。メッキが不可能な合金材料は、ニッケルメッキ鋼板
と合金板をクラッド加工した材料を有底筒形容器に加工
する方法により作製した。
On the other hand, the battery case housing the power generating element
A steel plate or a nickel-plated steel plate is formed into a bottomed cylindrical container by drawing. If the steel plate is not nickel-plated, nickel plating is applied after the processing to prevent corrosion. A plating layer of the same metal material (silver, copper, tin) used for the zinc electrode support is formed on the inner surface of such a bottomed cylindrical container. The alloy material that cannot be plated was prepared by a method of processing a material obtained by cladding a nickel-plated steel plate and an alloy plate into a bottomed cylindrical container.

【0022】[0022]

【実施例】以下に本発明の実施例について図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】亜鉛極と有底筒形容器のほかに、公知の金
属酸化物正極としてニッケル極、セパレータ、電解液を
使用し、図1に示す円筒密閉形電池を構成し、本発明の
効果を詳細に調べた。
In addition to the zinc electrode and the bottomed cylindrical container, a nickel metal electrode, a separator, and an electrolytic solution are used as a known metal oxide positive electrode to form a cylindrical sealed battery shown in FIG. Investigated in detail.

【0024】負極端子を兼ねるニッケルメッキ鋼板を機
械的な引き絞り加工により有底金属容器を作製し、必要
な脱脂を行ったのちに、図2に示すような装置により、
有底金属容器内にメッキ液を循環させて内面だけに銅メ
ッキを施しメッキ厚が6〜9μmになるまで行ったケース
aを作製した。同様にして銀および錫のメッキを施した
ケースb、ケースcを作製した。
A nickel-plated steel plate also serving as a negative electrode terminal is mechanically drawn and drawn to form a bottomed metal container, necessary degreasing is performed, and then the apparatus shown in FIG.
A plating solution was circulated in the bottomed metal container, copper plating was performed only on the inner surface, and a case a was performed until the plating thickness became 6 to 9 μm. Similarly, case b and case c plated with silver and tin were prepared.

【0025】一方、有底金属容器内に合金層を形成させ
るためにはニッケルメッキ鋼板と黄銅板あるいはニッケ
ルメッキ鋼板と青銅板をクラッド加工により一体化させ
た金属板を用いて絞り加工により有底金属容器ケース
d、ケースeを作製した。比較例としてはNi/Cd蓄電
池、Ni/MH蓄電池で使用されている単3サイズの有底金
属容器ケースfを使用した(ニッケルメッキ鋼板を引き
絞り加工により有底円筒金属容器としたもの)。
On the other hand, in order to form an alloy layer in a bottomed metal container, a bottom plate is formed by drawing using a metal plate obtained by integrating a nickel-plated steel plate and a brass plate or a nickel-plated steel plate and a bronze plate by cladding. Metal container cases d and e were produced. As a comparative example, an AA size bottomed metal container case f used for Ni / Cd storage batteries and Ni / MH storage batteries was used (a nickel-plated steel plate was drawn and formed into a bottomed cylindrical metal container).

【0026】亜鉛極の電極支持体の作製方法とそれを用
いた亜鉛極の作製方法について詳述する。銅、銀、錫の
三次元網状多孔体は、以下のようにして作製した。
A method for producing a zinc electrode electrode support and a method for producing a zinc electrode using the same will be described in detail. The three-dimensional network porous body of copper, silver, and tin was produced as follows.

【0027】シート状に加工された発泡状のポリウレタ
ンを黒鉛粉末とカルボキシルメチルセルロースの水溶液
により泥状にしたペースト内へ浸漬し、真空含浸の工程
を経て発泡体の孔内へ黒鉛粉末を充填し、その後乾燥さ
せる。この結果、発泡状ウレタンの表面に黒鉛とカルボ
キシルメチルセルロース混合層が形成され、絶縁材料で
あったポリウレタンが導電性を有するようになる。
The foamed polyurethane processed into a sheet is immersed in a paste made into a mud with an aqueous solution of graphite powder and carboxymethyl cellulose, and the graphite powder is filled into pores of the foam through a vacuum impregnation step. Then dry. As a result, a mixed layer of graphite and carboxymethyl cellulose is formed on the surface of the foamed urethane, and the polyurethane, which is an insulating material, becomes conductive.

【0028】つぎに銅、銀、錫の各電気メッキ液を用い
て、黒鉛で被覆されたポリウレタン表面にそれぞれの金
属のメッキを施した。この時のメッキ後のポリウレタン
の重量が銅の場合で68〜74mg/cm2、銀の場合で83〜89mg
/cm2、錫の場合で48〜54mg/cm2になるようにメッキ量を
調整した。メッキ後の銅と銀の発泡体を空気中で加熱
し、ポリウレタン、黒鉛、バインダー等を焙焼により取
り除き、一部酸化された金属部分の還元と金属層を強固
に結合させる目的で還元雰囲気中で焼結を行い銅及び銀
の三次元網状金属多孔体Cu-1、Ag-1を作製した。
Next, using a copper, silver, and tin electroplating solution, the surface of the graphite-coated polyurethane was plated with each metal. 68~74mg / cm 2 in the case where the weight of the polyurethane after plating at this time of copper, 83~89mg in the case of silver
/ cm 2, it was adjusted plating amount such that the 48~54mg / cm 2 in the case of tin. The copper and silver foams after plating are heated in the air, and the polyurethane, graphite, binders, etc. are removed by roasting, and reduced in a reducing atmosphere for the purpose of reducing partially oxidized metal parts and firmly bonding the metal layers. To produce copper and silver three-dimensional mesh metal porous bodies Cu-1 and Ag-1.

【0029】錫の場合は融点が低いため前述したような
方法では作製できないため、還元性あるいは不活性雰囲
気中で加熱し錫の一部を溶融させ、強固な層を形成させ
たあとで有機溶媒によりポリウレタンを溶解および分離
し、三次元網状金属多孔体Sn-2を作製した。
Since tin has a low melting point and cannot be produced by the above-described method, it is heated in a reducing or inert atmosphere to melt a part of tin and form a strong layer. The polyurethane was dissolved and separated by the method described above to produce a three-dimensional reticulated metal porous body Sn-2.

【0030】三次元網状金属多孔体は単一の元素で構成
される場合においてはメッキ法により、作製が可能であ
るが合金の場合は均一組成の合金層を得ることが困難で
あるため、つぎに示すような方法により作製した。
When the three-dimensional mesh-like porous metal body is composed of a single element, it can be produced by plating, but in the case of an alloy, it is difficult to obtain an alloy layer having a uniform composition. Was prepared by the method shown in FIG.

【0031】黄銅(銅90%、亜鉛10%)、青銅(銅90%、
錫10%)の合金粉末をカルボキシルメチルセルロースの
水溶液と混合し、流動性を有するペースト状にして、前
述したシート状に加工された発泡状ポリウレタン樹脂内
へ真空含浸させ、多孔体内へ合金粉末を充填する。充填
量は乾燥後のポリウレタン重量が68〜74mg/cm2になるよ
うに設定した。それ以降の工程はメッキ法により得られ
た銅、銀の三次元発泡状金属多孔体と同様で焙焼、焼結
を行いCu-Zn-1、 Cu-Sn-1を作製した。
Brass (90% copper, 10% zinc), bronze (90% copper,
An alloy powder of tin (10%) is mixed with an aqueous solution of carboxymethyl cellulose to form a paste having fluidity, vacuum impregnated into the foamed polyurethane resin processed into the sheet shape described above, and the alloy powder is filled into the porous body. I do. The filling amount was set so that the polyurethane weight after drying was 68 to 74 mg / cm 2 . In the subsequent steps, Cu-Zn-1 and Cu-Sn-1 were prepared by performing roasting and sintering in the same manner as the copper and silver three-dimensional foamed metal porous bodies obtained by the plating method.

【0032】以上のようにして作製した三次元網状金属
多孔体の種類と物性を表1にまとめて記載し、比較例と
してニッケルを使用した三次元網状多孔体Ni-1と銅板を
機械加工により作製した穴径1.7mm、開口率42%のパンチ
ングメタルも同表に示す。
The types and physical properties of the three-dimensional network porous metal body produced as described above are summarized in Table 1, and as a comparative example, the three-dimensional network porous body Ni-1 using nickel and a copper plate were machined. The prepared punched metal having a hole diameter of 1.7 mm and an aperture ratio of 42% is also shown in the same table.

【0033】[0033]

【表1】 これらの多孔体を用いて亜鉛極を作製した方法をつぎに
示す。
[Table 1] A method for producing a zinc electrode using these porous bodies will be described below.

【0034】表1に示した三次元網状金属多孔体を100
×80mmに切断し、予めローラプレスにより0.8mmの厚さ
に加工した。これらの多孔体を用いて酸化亜鉛粉末(平
均粒子径:0.4μm)とカルボキシルメチルセルロースの
水溶液でペースト状にしたものを多孔体内へ充填し、乾
燥後0.5mmまで加圧プレスを行った。
The three-dimensional reticulated metal porous body shown in Table 1 was
It was cut into a size of 80 mm and processed in advance to a thickness of 0.8 mm by a roller press. A paste made of an aqueous solution of zinc oxide powder (average particle diameter: 0.4 μm) and carboxymethyl cellulose was filled into the porous body using these porous bodies, and after being dried, pressed to 0.5 mm.

【0035】また、銅製の多孔体については酸化亜鉛だ
けでなく従来例である金属亜鉛粉末(蒸溜法により作製
した平均粒子径5μm、純度99.9以上)を酸化亜鉛に対し
て10wt%、20wt%添加した電極も作製した。さらに、本発
明である三次元網状金属多孔体と同じ材料の粉末を導電
性を向上させる目的で、酸化亜鉛粉末に対して10wt%添
加した電極も作製し、比較例の一つとして銅製のパンチ
ングメタルを中央に配して酸化亜鉛粉末をカルボキシメ
チルセルロース水溶液でペースト状にしたものを塗着す
ることにより電極を作製した。
In addition to the zinc oxide, 10 wt% and 20 wt% of zinc oxide as well as the conventional metal zinc powder (average particle diameter 5 μm, purity 99.9 or more prepared by the distillation method) are added to the zinc oxide. The prepared electrode was also prepared. Further, in order to improve the conductivity of a powder of the same material as the three-dimensional mesh-like porous metal body of the present invention, an electrode was also prepared by adding 10 wt% to zinc oxide powder, and as one of comparative examples, copper punching was performed. An electrode was fabricated by disposing a metal in the center and applying a paste of zinc oxide powder in an aqueous solution of carboxymethyl cellulose.

【0036】これらの電極を単3型電池を構成するため
に39×80mmに切断し、得られた電極A〜Pの諸元を表2に
示す。表中の充填密度は金属亜鉛、酸化亜鉛の添加量か
ら電気化学的な理論容量(亜鉛:820mAh/g、酸化亜鉛:
659mAh/g)より算出した計算値である。
These electrodes were cut into a size of 39 × 80 mm to form an AA battery, and the specifications of the obtained electrodes AP are shown in Table 2. The packing density in the table is based on the theoretical electrochemical capacity (zinc: 820 mAh / g, zinc oxide:
659 mAh / g).

【0037】[0037]

【表2】 これらの亜鉛極を用いて円筒密閉電池である単3形電池
を試作し、電池特性を評価し本発明の効果について説明
する。正極としては公知の非焼結式ニッケル電極である
発泡状ニッケル多孔体に水酸化ニッケル粉末と金属コバ
ルト粉末、コバルト化合物粉末を添加した電極を用い83
5〜895mAhの電気化学的理論容量を有する電極を用い
た。
[Table 2] Using these zinc electrodes, prototypes of AA batteries, which are cylindrical sealed batteries, are manufactured, battery characteristics are evaluated, and the effects of the present invention will be described. As the positive electrode, an electrode obtained by adding a nickel hydroxide powder, a metal cobalt powder, and a cobalt compound powder to a foamed nickel porous body, which is a known non-sintered nickel electrode, is used.
Electrodes with electrochemical theoretical capacity of 5-895 mAh were used.

【0038】セパレータにはポリアミド製の不織布とポ
リエチレンに親水性モノマーをグラフト共重合した膜を
併用した。ニッケル電極と亜鉛電極の間に2枚のセパレ
ータを配して渦巻き状に巻き、亜鉛電極に使用した電極
支持体と同じ材料が有底金属容器ケースの内面に形成さ
れた電池ケースと組み合わせ図1に示すような電池を構
成した。電解液には7Nの水酸化カリウム水溶液に水酸化
リチウム一水和物(LiOH・H2O)を10g/l、酸化亜鉛粉末を
飽和溶解させたものを使用し1セル当たり2.0ml注液し
た。
As the separator, a nonwoven fabric made of polyamide and a film obtained by graft copolymerizing a hydrophilic monomer with polyethylene were used in combination. Two separators are arranged between a nickel electrode and a zinc electrode and spirally wound, and the same material as the electrode support used for the zinc electrode is combined with a battery case formed on the inner surface of a bottomed metal container case. A battery as shown in FIG. As the electrolytic solution, 10 g / l of lithium hydroxide monohydrate (LiOH.H 2 O) and a saturated solution of zinc oxide powder in a 7N aqueous potassium hydroxide solution were used, and 2.0 ml of the solution was injected per cell. .

【0039】このようにして作製した亜鉛電極A〜Pを使
用した電池をそれぞれA-1〜P-1とし、比較例の一部とし
てA〜Dの亜鉛電極を使用し、実用化されているNi/Cd蓄
電池やNi/MH蓄電池に使用されている電池ケース(ニッ
ケルメッキ鋼板を機械加工により作製し、内面はニッケ
ルメッキ層が形成された電池ケース)を用いたA-2〜D-2
もそれぞれ同様に構成した。これらの電池を用いて20℃
の雰囲気で充電電流を0.1C(80mA)に設定し、12時間に行
い1時間休止を設け、その後0.2C(160mA)の電流で放電
を行い電池電圧が1.2Vになるまで続けた。このような過
程を1サイクルとして、5回繰り返した。
Batteries using the zinc electrodes A to P thus prepared were designated as A-1 to P-1, respectively, and zinc electrodes A to D were used as a part of a comparative example, and the batteries were put into practical use. A-2 to D-2 using battery cases used for Ni / Cd storage batteries and Ni / MH storage batteries (battery cases in which nickel-plated steel sheets are machined and nickel-plated layers are formed on the inner surface)
Were similarly configured. 20 ° C using these batteries
The charging current was set to 0.1 C (80 mA) in the atmosphere described above, the operation was performed for 12 hours, a 1-hour pause was provided, and then the battery was discharged at a current of 0.2 C (160 mA) until the battery voltage reached 1.2 V. This process was repeated five times as one cycle.

【0040】この結果、得られた電池の種類と放電容量
の関係を表3に示す。また、6サイクル目の放電電流を
1C(800mA)に、7サイクル目の放電電流を3C(2400mA)に
増大させて放電容量を測定した結果と5サイクル目の放
電容量に対する比率を同表に示す。
Table 3 shows the relationship between the obtained battery type and the discharge capacity. Also, the discharge current at the sixth cycle is
The same table shows the results obtained by measuring the discharge capacity by increasing the discharge current at the seventh cycle to 3 C (2400 mA) at 1 C (800 mA) and the ratio to the discharge capacity at the fifth cycle.

【0041】[0041]

【表3】 これらの試験結果より亜鉛電極の電極支持体として銅、
電池ケースの内面に銅を形成した電池A-1〜D-1と同様な
電極支持体の内面にニッケルを形成させた電池A-2〜D-2
を比較した場合、1〜5サイクル目の放電容量に大きな差
が認められる。この原因は、充放電中に図1に示した安
全弁から電解液の放出が認められたことからニッケルと
亜鉛の接触により亜鉛が溶解して水素ガスの発生を伴い
電池内圧が上昇したものと考えられ、この現象により電
解液が不足し充放電の繰り返しにより放電容量の低下が
増大したと考えられる。
[Table 3] From these test results, copper as the electrode support for the zinc electrode,
Batteries A-2 to D-2 in which nickel was formed on the inner surface of the electrode support similar to batteries A-1 to D-1 in which copper was formed on the inner surface of the battery case
, A large difference is observed in the discharge capacity in the first to fifth cycles. It is considered that the cause of this was that the electrolyte was released from the safety valve shown in FIG. 1 during charging and discharging, and the contact between nickel and zinc dissolved zinc, resulting in the generation of hydrogen gas and an increase in battery internal pressure. It is considered that the electrolyte solution became insufficient due to this phenomenon, and the decrease in the discharge capacity increased due to repeated charge and discharge.

【0042】したがって、電池ケースの内面にはニッケ
ル層が形成され、群構成された最外周へ亜鉛極を設けた
電池系ではガス発生が大きく放電容量が得られにくくな
り本発明のようにアルカリ電解液の在存下でも銅のよう
に金属亜鉛との接触においても水素発生が起こりにくい
電池構成法を選択することはニッケル−亜鉛蓄電池とく
に密閉形電池では重要な要素となる。また、比較例であ
るM-1の電池においても同様な現象が認められ充放電の
繰り返しにより放電容量の低下が大きくなったことか
ら、電極支持体にニッケル多孔体を用いたため前述した
ガス発生が起こったことが大きな原因と考えられる。本
発明であるE-1〜L-1の電池は1〜5サイクル目までの放電
容量には大きな変化は認められないことから前述したガ
ス発生の悪影響は認められず良好な結果が得られた。こ
のことから電池ケース内面材料と電極支持体を同じ材料
にする本発明が有効であることが実証できた。
Therefore, a nickel layer is formed on the inner surface of the battery case, and in a battery system in which a zinc electrode is provided on the outermost periphery of the group, gas generation is large and it is difficult to obtain a discharge capacity. It is an important factor for a nickel-zinc storage battery, especially a sealed battery, to select a battery construction method in which hydrogen generation is unlikely to occur even in the presence of a liquid or in contact with metallic zinc like copper. In addition, the same phenomenon was observed in the battery of M-1 as a comparative example, and the discharge capacity was greatly reduced due to repetition of charge / discharge. What happened is considered to be a major cause. The batteries of E-1 to L-1 of the present invention did not show a significant change in the discharge capacity up to the first to fifth cycles, so that the above-mentioned adverse effects of gas generation were not observed, and good results were obtained. . This proved that the present invention in which the battery case inner surface material and the electrode support were made of the same material was effective.

【0043】さらに、E-1とF-1、G-1とH-1、I-1とJ-1、
K-1とL-1の比較において、亜鉛電極中に電極支持体と同
じ材料の粉末を添加することは1から5サイクル目まで
の充電容量には大きな差は認められないが6サイクル
目、7サイクル目の放電容量が大きくなる結果が得られ
た。この原因は、電極内の電子伝導性が粉末添加により
向上し、放電電圧が上昇したこと、活物質(金属亜鉛)
の周囲に導電材の存在割合が多くなったことによる活物
質利用率の向上したものと考えられ高率放電特性を改善
できる金属あるいは合金粉末の添加は有効な手段である
ことが言える。
Further, E-1 and F-1, G-1 and H-1, I-1 and J-1,
In the comparison between K-1 and L-1, adding a powder of the same material as the electrode support to the zinc electrode does not show a large difference in the charge capacity from the first to the fifth cycle, but the sixth cycle, The result that the discharge capacity at the seventh cycle was increased was obtained. This is due to the fact that the electron conductivity in the electrode was improved by adding powder, the discharge voltage was increased, and the active material (metal zinc)
It is considered that the active material utilization rate is improved due to an increase in the proportion of the conductive material around the metal, and it can be said that the addition of a metal or alloy powder capable of improving the high rate discharge characteristics is an effective means.

【0044】亜鉛電極の電極支持体として、比較例であ
る平面的な金属多孔体である銅製のパンチングメタルを
使用した電極で電池を構成したN-1の電池では、0.2Cの
放電電流では本発明であるA-1に比べて大きな差は認め
られないが大電流の放電により放電容量の低下がおおき
くなる傾向を示した。同様なパンチングメタルを用い銅
の粉末添加したO-1、P-1の電池では若干の特性の向上は
認められるが三次元網状金属多孔体に比べ放電容量が小
さくなった。これらの原因は前述した電子伝導性が低下
したもので、とくに電極の厚み方向の導電性が平面上の
多孔体であるがため悪くなったものと考えられる。
As a comparative example, an N-1 battery comprising electrodes using a copper punching metal, which is a flat metal porous body, as an electrode support for a zinc electrode. Although there was no significant difference as compared with A-1 of the invention, the discharge capacity tended to decrease significantly due to the large current discharge. In the O-1 and P-1 batteries to which copper powder was added using the same punching metal, the characteristics were slightly improved, but the discharge capacity was smaller than that of the three-dimensional mesh metal porous body. It is considered that these causes are due to the decrease in the electron conductivity described above, and in particular, the conductivity in the thickness direction of the electrode is deteriorated due to the porous body on the plane.

【0045】つぎにこれらの電池を、0.2C(160mA)の電
流で6時間充電し1時間の休止後に0.5C(400mA)の電流
で放電電圧が1.2Vまで放電する条件で充放電を繰り返し
た時の放電容量の変化を測定したサイクル寿命特性を表
4に示す。尚、初期特性の結果が好ましくなかったA-2
〜D-2、M-1の寿命特性の評価は行わなかった。
Next, these batteries were charged at a current of 0.2 C (160 mA) for 6 hours, and after a pause of 1 hour, charge / discharge was repeated under the conditions of discharging at a current of 0.5 C (400 mA) to a discharge voltage of 1.2 V. Table 4 shows the cycle life characteristics obtained by measuring the change in the discharge capacity at the time. In addition, the result of the initial characteristics was not preferable A-2
The life characteristics of D-2 and M-1 were not evaluated.

【0046】[0046]

【表4】 表4の結果より、亜鉛電極中に金属亜鉛を添加した電極
の影響がわかる本発明A-1と比較例B-1、C-1の比較にお
いて、A-1の電池のサイクル寿命が長くなり、B-1、C-1
は放電容量が得られなくなった。B-1、C-1の電池は亜鉛
極が充放電により変形とテ゛ント゛ライトの成長が起こり、セパ
レータを貫通し短絡現象が認められ、放電が不可能にな
ったものである。短絡現象の主原因は金属亜鉛の添加に
よるもので粒子径の大きい金属亜鉛がデントライトを形
成する核となりやすく放電により溶解したテトラハイド
ロオキシジンケートイオン(Zn(OH)4 2-)が充電により金
属亜鉛粒子の表面に選択的に析出したと考えられる。
[Table 4] From the results in Table 4, the effect of the electrode obtained by adding metallic zinc to the zinc electrode is understood. In the comparison between the present invention A-1 and the comparative examples B-1 and C-1, the cycle life of the battery of A-1 is longer. , B-1, C-1
No discharge capacity was obtained. In the batteries of B-1 and C-1, the zinc electrode was deformed by charge and discharge and the growth of tendrites occurred, penetrating the separator, and a short circuit phenomenon was observed, so that the discharge became impossible. The main cause of the short-circuit phenomenon is the addition of zinc metal.Metal zinc having a large particle diameter tends to become a nucleus for forming dendrites, and tetrahydrozinc zincate ion (Zn (OH) 4 2- ) dissolved by discharge causes metal It is considered that they were selectively deposited on the surface of the zinc particles.

【0047】以上のように金属亜鉛は導電性があり、亜
鉛電極の活物質として作用するが製法上酸化亜鉛に比べ
て微細粒子が得られにくいため二次電池用の亜鉛電極に
使用した場合、悪影響を与える。
As described above, zinc metal is conductive and acts as an active material for a zinc electrode. However, it is difficult to obtain fine particles as compared with zinc oxide in the production method. Has a negative effect.

【0048】また、本発明である亜鉛電極の原材料とし
て酸化亜鉛、三次元網状金属多孔体を電極支持体とした
電極で構成した電池A-1、E-1、G-1、I-1、K-1のサイク
ル寿命試験は250回の充放電においても初期の放電容量
と比較して70%以上の放電容量を維持している。したが
って、三次元状の電極支持体で電極活物質が保持され電
極内で充放電反応が均一に進行し、変形・デンドライト
などが起こらなかったため電池寿命が伸長できたと考え
られる。
Also, batteries A-1, E-1, G-1, I-1, and B-1 each comprising an electrode using zinc oxide as a raw material of the zinc electrode of the present invention and a three-dimensional mesh porous metal as an electrode support. In the cycle life test of K-1, the discharge capacity was maintained at 70% or more compared to the initial discharge capacity even after 250 charge / discharge cycles. Therefore, it is considered that the battery active life was extended because the electrode active material was held by the three-dimensional electrode support, the charge / discharge reaction proceeded uniformly in the electrode, and no deformation or dendrite occurred.

【0049】さらに、本発明である三次元網状金属多孔
体と同材料の粉末を添加した電池D-1、F-1、H-1、J-1、
L-1においても電池寿命への悪影響は認められず前述し
た高率放電特性の改良が図れることから高性能な電池構
成手段であることが言える。添加量は実施例においては
10wt%に限定して示したがそれより少なくても効果は認
められ、逆に多くした場合は高率放電特性には効果的で
あることが予測できるが、電極活物質である酸化亜鉛の
充填量が減少することから、高容量の電池設計が不可能
になりおのずと上限値は限定される。
Furthermore, batteries D-1, F-1, H-1, J-1, and B-1 to which a powder of the same material as the three-dimensional porous metal body of the present invention was added.
L-1 has no adverse effect on the battery life and can improve the high-rate discharge characteristics described above, indicating that it is a high-performance battery construction means. In the examples, the amount added is
Although shown as being limited to 10 wt%, the effect is recognized even if it is less than that, and conversely, if it is more, it can be predicted that it is effective for high rate discharge characteristics, but the filling of zinc oxide which is an electrode active material Since the amount is reduced, a high-capacity battery cannot be designed, and the upper limit is naturally limited.

【0050】一方、比較例である亜鉛電極の電極支持体
とに平面上金属多孔体の一部である銅製のパンチングメ
タルを使用し、作製した電極から構成した電池N-1、O-
1、P-1のサイクル寿命特性試験結果から明らかなよう
に、銅粉末を添加した電極においてもA-1、D-1の電池に
比べ充放電と共に放電容量の低下が大きくなっている。
この違いは電極支持体が平面状か三次元状によるもの
で、前者は後者に比べ集電性が低下し、充放電反応の不
均一化が生じやすいことに起因すると考えられる。ま
た、電極活物質層が電極支持体からの剥離現象も認めら
れ集電効果が劣化し、放電容量低下が助長されたと考え
られる。
On the other hand, batteries N-1 and O- made of electrodes prepared by using a copper punching metal which is a part of a planar porous metal body as an electrode support for a zinc electrode as a comparative example.
1. As is clear from the results of the cycle life characteristic test of P-1, the decrease in the discharge capacity as well as the charging and discharging of the electrode to which the copper powder was added was larger than that of the batteries of A-1 and D-1.
It is considered that this difference is due to the planar or three-dimensional shape of the electrode support, and the former has a lower current collecting property than the latter and tends to cause non-uniform charge / discharge reactions. Further, it is considered that the electrode active material layer also showed a peeling phenomenon from the electrode support, the current collecting effect was deteriorated, and the discharge capacity was reduced.

【0051】実施例においては、金属酸化物として水酸
化ニッケルを主体とするニッケル正極について説明した
が同じ金属酸化物の一つである酸化銀を用いた正極でも
同じような効果が認められ、本発明は有効であることが
言える。また、錫のような低融点の金属材料は実施例に
おいては発泡状ポリウレタンに電気メッキ法により錫の
層を形成させ発泡状ポリウレタンを有機溶媒で溶解・除
去する方法について示したが、銅の三次元網状多孔体を
使用し溶融した錫の中へ浸漬し表面層だけに錫を形成
(一般的には半田メッキと称されている)させた三次元
網状金属多孔体においても同様な効果が認められた。
In the embodiment, the nickel positive electrode mainly composed of nickel hydroxide as the metal oxide has been described. However, a similar effect is recognized even with a positive electrode using silver oxide which is one of the same metal oxides. It can be said that the invention is effective. In addition, in the embodiment, a method of forming a tin layer on a foamed polyurethane by electroplating and dissolving and removing the foamed polyurethane with an organic solvent for a low melting point metal material such as tin has been described. The same effect is also observed in a three-dimensional mesh metal porous body that is immersed in molten tin using the original mesh porous body and formed tin only on the surface layer (generally called solder plating). Was done.

【0052】[0052]

【発明の効果】以上のように本発明によれば亜鉛電極の
電極支持体として三次元網状金属多孔体に微細な酸化亜
鉛粉末を充填して得られる電極を負極に用い、公知の金
属酸化物を主体とする正極と組み合わせ、有底金属容器
の内面に、前記三次元網状金属多孔体と同じ材料の金属
層を形成させた電池ケースと渦巻き状に巻かれた発電要
素の最外周に、負極が露出し電池ケースと直接接触する
電池構造にすることにより、導電性の乏しい酸化亜鉛粉
末の電極反応を向上させることが可能になりデンドライ
トによる悪影響も抑制できる。
As described above, according to the present invention, as a negative electrode, an electrode obtained by filling a fine three-dimensional reticulated metal porous body with fine zinc oxide powder is used as an electrode support for a zinc electrode. Combined with a positive electrode having a main body, a battery case in which a metal layer of the same material as the three-dimensional mesh-like metal porous body is formed on the inner surface of the bottomed metal container, and a negative electrode on the outermost periphery of a spirally wound power generating element. Is exposed and a battery structure is brought into direct contact with the battery case, whereby it is possible to improve the electrode reaction of the zinc oxide powder having poor conductivity, and it is possible to suppress the adverse effects of dendrites.

【0053】加えて、局部電池の形成による水素ガス発
生を少なくすることが可能になり、保存特性の改良が図
られ電池ケース内の体積を有効に利用できることから高
容量電池の構成ができる本発明は工業的価値が極めて大
きい。
In addition, the present invention can reduce the generation of hydrogen gas due to the formation of a local battery, improve storage characteristics, and effectively use the volume in the battery case, thereby enabling the construction of a high capacity battery. Has a very high industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に用いた単3形ニッケル−亜鉛蓄電池の
断面図
FIG. 1 is a cross-sectional view of an AA nickel-zinc storage battery used in an embodiment.

【図2】有底金属容器の内面にメッキを施す装置を示す
FIG. 2 is a diagram showing an apparatus for plating the inner surface of a bottomed metal container.

【符号の説明】[Explanation of symbols]

1 ニッケル正極 2 亜鉛負極 3 セパレータ 4 負極端子を兼ねた電池ケース 5 封口板 6 電池ケースの内面に形成させた金属層 7 ガスケット(正・負極の絶縁とシール性の確保) 8 正極端子 9 正極集電体 10 安全弁のゴム弁体 11 有底金属容器 12 メッキ用対極(メッキ層を形成する材料) 13 メッキ用電源の陰極端子 14 メッキ用電源の陽極端子 15 メッキ液の循環用ポンプ 16 メッキ液収納容器 REFERENCE SIGNS LIST 1 nickel positive electrode 2 zinc negative electrode 3 separator 4 battery case also serving as negative electrode terminal 5 sealing plate 6 metal layer formed on inner surface of battery case 7 gasket (insulation of positive and negative electrodes and ensuring sealing property) 8 positive electrode terminal 9 positive electrode collection Electric body 10 Rubber valve body of safety valve 11 Metal container with bottom 12 Plating counter electrode (material forming plating layer) 13 Cathode terminal of plating power supply 14 Anode terminal of plating power supply 15 Pump for circulation of plating solution 16 Plating solution storage container

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物を主体とする活物質を有する
正極、酸化亜鉛を主体とする活物質を有する負極、正・
負極間に介在するセパレータ、アルカリ電解液および有
底金属容器である電池ケースを用いる金属酸化物−亜鉛
蓄電池において、前記負極の電極支持体は銀,銅,錫,
黄銅,青銅から選ばれた一種の金属あるいは合金から成
る三次元網状金属多孔体であって、前記電池ケースの内
面が前記電極支持体と同一材料からなり、さらに前記負
極が電池ケースに直接接するように配したことを特徴と
する密閉形金属酸化物−亜鉛蓄電池。
A positive electrode having an active material mainly composed of a metal oxide; a negative electrode having an active material mainly composed of zinc oxide;
In a metal oxide-zinc storage battery using a battery case that is a separator, an alkaline electrolyte and a bottomed metal container interposed between negative electrodes, the electrode support of the negative electrode is silver, copper, tin,
A three-dimensional mesh metal porous body made of a kind of metal or alloy selected from brass and bronze, wherein the inner surface of the battery case is made of the same material as the electrode support, and the negative electrode is in direct contact with the battery case. A sealed metal oxide-zinc storage battery, characterized in that the battery is arranged as described above.
【請求項2】 金属酸化物がニッケルの酸化物であるこ
とを特徴とする請求項1に記載された密閉形金属酸化物
−亜鉛蓄電池。
2. The sealed metal oxide-zinc storage battery according to claim 1, wherein the metal oxide is a nickel oxide.
【請求項3】 負極活物質中に電極支持体と同一材料の
粉末を含む請求項1または2記載の密閉形金属酸化物−
亜鉛蓄電池。
3. The sealed metal oxide according to claim 1, wherein a powder of the same material as the electrode support is contained in the negative electrode active material.
Zinc battery.
【請求項4】 特許請求項1記載の密閉形金属酸化物−
亜鉛蓄電池に用いられる銀または銅の三次元網状金属多
孔体は、発泡状ポリウレタン樹脂表面に導電性を付与す
る工程、電気メッキにより、銀、銅のいずれかの金属層
を形成させる工程、発泡状ポリウレタン樹脂を焙焼さ
せ、その後還元性雰囲気で銀および銅を焼結させる工程
により製造したことを特徴とする密閉形金属酸化物−亜
鉛蓄電池の製造法。
4. The sealed metal oxide according to claim 1,
The silver or copper three-dimensional reticulated metal porous body used for the zinc storage battery is a process of imparting conductivity to the surface of the foamed polyurethane resin, a process of forming a metal layer of silver or copper by electroplating, A method for producing a sealed metal oxide-zinc storage battery, characterized by being produced by a process of roasting a polyurethane resin and thereafter sintering silver and copper in a reducing atmosphere.
【請求項5】 特許請求項1記載の密閉形金属酸化物−
亜鉛蓄電池に用いられる、銀,銅,黄銅および青銅の何
れかからなる三次元網状金属多孔体は発泡状ポリウレタ
ン樹脂の内部に、銀、銅、黄銅および青銅から選ばれた
一種類の粉末を充填する工程、発泡状ポリウレタン樹脂
を焙焼させる工程、ついで還元性雰囲気で銀、銅、黄
銅、青銅を焼結させる工程により製造したことを特徴と
する密閉形金属酸化物−亜鉛蓄電池の製造法。
5. The sealed metal oxide according to claim 1,
A three-dimensional mesh metal porous body made of any of silver, copper, brass and bronze used for zinc storage batteries is filled with one type of powder selected from silver, copper, brass and bronze inside the foamed polyurethane resin A method for producing a sealed metal oxide-zinc storage battery, characterized in that it is produced by a step of performing, a step of roasting a foamed polyurethane resin, and a step of sintering silver, copper, brass, and bronze in a reducing atmosphere.
【請求項6】 錫からなる特許請求項1記載の密閉形金
属酸化物−亜鉛蓄電池に用いられる三次元網状金属多孔
体は発泡状ポリウレタン樹脂の表面に導電性を付与する
工程、電気メッキにより、錫の層を形成させる工程、還
元性あるいは不活性雰囲気で熱処理する工程、発泡状ポ
リウレタン樹脂を有機溶媒により除去する工程により製
造したことを特徴とするの密閉形金属酸化物−亜鉛蓄電
池の製造法。
6. The three-dimensional mesh metal porous body used for a sealed metal oxide-zinc storage battery according to claim 1, which is made of tin, wherein a step of imparting conductivity to the surface of the foamed polyurethane resin is performed by electroplating. A method for producing a sealed metal oxide-zinc storage battery, comprising: a step of forming a layer of tin; a step of heat-treating in a reducing or inert atmosphere; and a step of removing a foamed polyurethane resin with an organic solvent. .
JP17937097A 1997-07-04 1997-07-04 Sealed metal oxide-zinc storage battery and manufacturing method thereof Expired - Fee Related JP3972417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17937097A JP3972417B2 (en) 1997-07-04 1997-07-04 Sealed metal oxide-zinc storage battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17937097A JP3972417B2 (en) 1997-07-04 1997-07-04 Sealed metal oxide-zinc storage battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1126013A true JPH1126013A (en) 1999-01-29
JP3972417B2 JP3972417B2 (en) 2007-09-05

Family

ID=16064673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17937097A Expired - Fee Related JP3972417B2 (en) 1997-07-04 1997-07-04 Sealed metal oxide-zinc storage battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3972417B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526287A (en) * 2001-03-15 2004-08-26 マッシイ ユニヴァーシティー Zinc electrode
JP2004538599A (en) * 1999-11-24 2004-12-24 エヴァレディー バッテリー カンパニー インコーポレイテッド Structure of electrochemical cell and method of manufacturing the same
JP2011519121A (en) * 2008-04-02 2011-06-30 パワージェニックス システムズ, インコーポレーテッド Cylindrical nickel-zinc cell with negative can
JP2013166137A (en) * 2012-02-17 2013-08-29 Eiko Yamada Metal porous body having porous surface
JP2014154260A (en) * 2013-02-05 2014-08-25 Nippon Shokubai Co Ltd Zinc negative electrode mixture, zinc negative electrode and battery
JP2017188212A (en) * 2016-04-01 2017-10-12 日立化成株式会社 Zinc electrode for nickel zinc storage battery, and method for manufacturing the same
CN108321336A (en) * 2018-04-16 2018-07-24 佛山市朝跃新能源科技有限公司 A kind of storage battery safety protective shell and its manufacture craft
JP2020161256A (en) * 2019-03-26 2020-10-01 トヨタ自動車株式会社 Method for manufacturing nickel zinc battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076758A (en) * 1993-06-16 1995-01-10 Yuasa Corp Zinc electrode plate
JPH0850917A (en) * 1994-05-30 1996-02-20 Canon Inc Secondary cell
JPH08124579A (en) * 1994-08-30 1996-05-17 Sumitomo Electric Ind Ltd Manufacture of metallic porous material and electrode for storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076758A (en) * 1993-06-16 1995-01-10 Yuasa Corp Zinc electrode plate
JPH0850917A (en) * 1994-05-30 1996-02-20 Canon Inc Secondary cell
JPH08124579A (en) * 1994-08-30 1996-05-17 Sumitomo Electric Ind Ltd Manufacture of metallic porous material and electrode for storage battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538599A (en) * 1999-11-24 2004-12-24 エヴァレディー バッテリー カンパニー インコーポレイテッド Structure of electrochemical cell and method of manufacturing the same
JP2004526287A (en) * 2001-03-15 2004-08-26 マッシイ ユニヴァーシティー Zinc electrode
US7811704B2 (en) 2001-03-15 2010-10-12 Massey University Method of making zinc electrode including a fatty acid
US8361655B2 (en) 2001-03-15 2013-01-29 Anzode, Inc. Battery zinc electrode composition
JP2011519121A (en) * 2008-04-02 2011-06-30 パワージェニックス システムズ, インコーポレーテッド Cylindrical nickel-zinc cell with negative can
JP2013166137A (en) * 2012-02-17 2013-08-29 Eiko Yamada Metal porous body having porous surface
JP2014154260A (en) * 2013-02-05 2014-08-25 Nippon Shokubai Co Ltd Zinc negative electrode mixture, zinc negative electrode and battery
JP2017188212A (en) * 2016-04-01 2017-10-12 日立化成株式会社 Zinc electrode for nickel zinc storage battery, and method for manufacturing the same
CN108321336A (en) * 2018-04-16 2018-07-24 佛山市朝跃新能源科技有限公司 A kind of storage battery safety protective shell and its manufacture craft
JP2020161256A (en) * 2019-03-26 2020-10-01 トヨタ自動車株式会社 Method for manufacturing nickel zinc battery
CN111755757A (en) * 2019-03-26 2020-10-09 丰田自动车株式会社 Method for manufacturing nickel-zinc battery
CN111755757B (en) * 2019-03-26 2023-12-15 丰田自动车株式会社 Method for manufacturing nickel-zinc battery

Also Published As

Publication number Publication date
JP3972417B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
US20230101375A1 (en) Iron electrode employing a polyvinyl alcohol binder
US20230121023A1 (en) Continuous manufacture ofa nickel-iron battery
US20230129997A1 (en) Continuous coated iron electrode
US9368788B2 (en) Layered iron electrode
US20140220434A1 (en) Nickel iron battery employing a coated iron electrode
JP3972417B2 (en) Sealed metal oxide-zinc storage battery and manufacturing method thereof
EP2951335B1 (en) Coated iron electrode and method of making same
JPH09283133A (en) Nickel electrodefor alkaline storage battery and manufacture thereof
JP3019094B2 (en) Method for producing electrode for alkaline storage battery
US6245459B1 (en) Substrate for alkaline storage battery, process for producing the same and alkaline storage battery
JP3533032B2 (en) Alkaline storage battery and its manufacturing method
WO2015026977A1 (en) Manganese and iron electrode cell
JP2007066836A (en) Manufacturing method of cylindrical alkaline storage battery
EP2951871B1 (en) Iron electrode employing a polyvinyl alcohol binder
US3398025A (en) Nickel-cadmium battery electrodes
JP2005116381A (en) Alkaline storage battery
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
US20150056504A1 (en) Manganese and iron electrode cell
JPH11288725A (en) Electrode for alkaline storage battery, its manufacture, and alkaline storage battery
JPH0448551A (en) Manufacture of hydrogen storage alloy electrode for battery
JPH04126357A (en) Manufacture of hydrogen absorbing alloy negative electrode for gastight accumulator
JP2001052732A (en) Cylindrical alkaline secondary battery
JP2001325956A (en) Alkaline storage cell, nickel electrode plate and its manufacturing method
JP2003217577A (en) Battery and its manufacturing method
JPH0521059A (en) Manufacture of hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees