JP2001052732A - Cylindrical alkaline secondary battery - Google Patents

Cylindrical alkaline secondary battery

Info

Publication number
JP2001052732A
JP2001052732A JP11223585A JP22358599A JP2001052732A JP 2001052732 A JP2001052732 A JP 2001052732A JP 11223585 A JP11223585 A JP 11223585A JP 22358599 A JP22358599 A JP 22358599A JP 2001052732 A JP2001052732 A JP 2001052732A
Authority
JP
Japan
Prior art keywords
current collecting
base material
secondary battery
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11223585A
Other languages
Japanese (ja)
Inventor
Katsuyuki Hata
勝幸 秦
Toshiki Sato
俊毅 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP11223585A priority Critical patent/JP2001052732A/en
Publication of JP2001052732A publication Critical patent/JP2001052732A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical alkaline secondary battery having high production efficiency. SOLUTION: A group of electrodes formed by winding a positive electrode and a negative electrode carrying an electrode mix respectively on a current collecting base with the intervention of a separator are sealed in a cylindrical battery can together with an alkali electrolyte. Either one of the current collecting bases 20 of the positive electrode and the negative electrode comprises a metallic porous body, an average hole diameter Rb on one surface of the metallic porous body is smaller than an average hole diameter Ra on the other surface, and the electrodes are wound with this one surface directed outward.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は円筒形アルカリ二次
電池に関し、更に詳しくは電極合剤を集電基板に担持し
て成る電極を備えた円筒形アルカリ二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical alkaline secondary battery, and more particularly, to a cylindrical alkaline secondary battery provided with an electrode having an electrode mixture supported on a current collecting substrate.

【0002】[0002]

【従来の技術】従来から、充放電可能でかつ携帯も可能
なアルカリ二次電池として、ニッケル・カドミウム二次
電池が広く用いられている。さらに近年では、上記した
アルカリ二次電池は、各種の電子機器や携帯電話の電源
として、あるいは最近開発が進められている電気自動車
や電動補助付き自転車等の駆動電源としても用いられて
きており、そのためアルカリ二次電池の高容量化の要求
が高まっている。このようなことから、ニッケルカドミ
ウム二次電池に比べて、放電容量や容積エネルギ密度が
大きいニッケル・水素二次電池が注目されている。
2. Description of the Related Art Conventionally, nickel-cadmium secondary batteries have been widely used as chargeable / dischargeable and portable alkaline secondary batteries. Furthermore, in recent years, the above-mentioned alkaline secondary battery has been used as a power source for various electronic devices and mobile phones, or as a drive power source for electric vehicles and bicycles with electric assist, which are being developed recently. For this reason, there is an increasing demand for higher capacity alkaline secondary batteries. For these reasons, attention has been paid to nickel-hydrogen secondary batteries having a larger discharge capacity and a larger volume energy density than nickel-cadmium secondary batteries.

【0003】ところで、ニッケル・カドミウム二次電池
やニッケル・水素二次電池の正極(Ni極)としては、
焼結式のものとペースト式のものが知られている。この
うち焼結式のNi極は、芯材となるグリッドの表面にN
i粉末を焼結させた集電基板に活物質を含浸させて製造
されるが、基板の多孔度があまり高くないので(約80
%)、基板への活物質の担持量を増大させて電池容量を
高めることが難しい。
[0003] By the way, as a positive electrode (Ni electrode) of a nickel-cadmium secondary battery or a nickel-hydrogen secondary battery,
A sintered type and a paste type are known. Of these, the sintered Ni electrode has an N electrode on the surface of the grid serving as the core material.
It is manufactured by impregnating an active material into a current collector substrate obtained by sintering i-powder. However, since the porosity of the substrate is not so high (about 80
%), It is difficult to increase the amount of the active material carried on the substrate to increase the battery capacity.

【0004】一方、ペースト式のNi極は、Ni繊維の
焼結体やスポンジ状Ni等の網目状で多孔度の高い(約
95%)集電基板に、活物質を含むペースト(電極合
剤)を塗布・充填して製造され、基板における骨格(N
i)の割合が少なく空隙の割合が多いため、活物質の充
填率を高めて高容量の電池とすることができる。なお、
スポンジ状Ni基板は、発泡樹脂シートに無電解Niめ
っきを施した後、Ni電気めっきを施して網目状のNi
骨格を形成し、次いでNiめっき層の内部の樹脂を焼失
させることにより製造される。
On the other hand, a paste-type Ni electrode is a paste (electrode mixture) containing an active material on a mesh-like and highly porous (about 95%) current collecting substrate such as a sintered body of Ni fiber or sponge-like Ni. ) Is applied and filled, and the skeleton (N
Since the proportion of i) is small and the proportion of voids is large, the filling rate of the active material can be increased to provide a high capacity battery. In addition,
The sponge-like Ni substrate is formed by applying an electroless Ni plating to a foamed resin sheet and then applying an Ni electroplating to form a mesh Ni.
It is manufactured by forming a skeleton and then burning off the resin inside the Ni plating layer.

【0005】そして、例えば円筒形ニッケル・水素二次
電池は、上述のスポンジ状Niから成る集電基板に、正
極活物質である水酸化Niと結着剤を含むペースト(正
極合剤)を塗布して乾燥・圧延することにより正極を作
製し、パンチングメタルから成る集電基板に水素吸蔵合
金粉末と結着剤を含むペースト(負極合剤)を塗布して
同様に負極を作製し、この正極と負極をセパレータを介
して巻回して成る電極群をアルカリ電解液と共に電池缶
に封入して製造されている。
[0005] For example, in a cylindrical nickel-hydrogen secondary battery, a paste (positive electrode mixture) containing Ni hydroxide, which is a positive electrode active material, and a binder is applied to the above-mentioned current-collecting substrate made of sponge-like Ni. A positive electrode is prepared by drying and rolling, and a paste (a negative electrode mixture) containing a hydrogen storage alloy powder and a binder is applied to a current collecting substrate made of punched metal to similarly prepare a negative electrode. An electrode group formed by winding a negative electrode and a negative electrode through a separator is sealed in a battery can together with an alkaline electrolyte.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
たペースト式のNi極を巻回して円筒形の電池とした場
合、その集電基板の一部が破断して突出し、セパレータ
を貫通して負極と接触することがある。そして、このよ
うな電池を使用すると絶縁不良や短絡を招くため、当該
電池は不良品として検査段階で排除されることになる
が、それに伴って生産歩留り(生産効率)の低下を招く
ことになる。特に、年々需要が増大しているニッケル・
水素二次電池を安価、かつ高い信頼性をもって供給する
ためには、電池の生産効率を高めることが重要である。
However, in the case where a cylindrical battery is formed by winding the above-mentioned paste-type Ni electrode, a part of the current collector substrate is broken and protrudes, and penetrates through the separator to form a negative electrode. May come in contact. When such a battery is used, insulation failure or short circuit is caused. Therefore, the battery is rejected as a defective product at an inspection stage, but the production yield (production efficiency) is reduced accordingly. . In particular, the demand for nickel
In order to supply a hydrogen secondary battery at low cost and with high reliability, it is important to increase the production efficiency of the battery.

【0007】ところで、このような集電基板の破断は、
多孔体の骨格が細くなっている部分から生じるものであ
るが、基板の骨格を太くするとその多孔度が低くなって
活物質の充填率が低下するので好ましくない。又、基板
の骨格を太くしすぎると、巻回時により高い応力で破断
が生じるため、骨格が細い場合に比べて破断の度合が大
きくなり、そのため破断部が突出してセパレータを貫通
する可能性が高くなる。
[0007] By the way, such breakage of the current collecting substrate is as follows.
It is generated from a portion where the skeleton of the porous body is thin. However, if the skeleton of the substrate is thick, it is not preferable because the porosity decreases and the filling rate of the active material decreases. On the other hand, if the skeleton of the substrate is too thick, rupture will occur due to higher stress during winding, and the degree of rupture will be greater than in the case where the skeleton is thin, so there is a possibility that the rupture portion will protrude and penetrate the separator. Get higher.

【0008】本発明は、円筒形アルカリ二次電池の製造
時における集電基板の破断を制御して電池の絶縁不良や
短絡を防止し、生産効率を向上せしめた円筒形アルカリ
二次電池の提供を目的とする。
[0008] The present invention provides a cylindrical alkaline secondary battery in which the current collector substrate is broken during production of the cylindrical alkaline secondary battery to prevent defective insulation and short-circuit of the battery, thereby improving the production efficiency. With the goal.

【0009】[0009]

【課題を解決するための手段】本発明は、多孔体から成
る集電基板を巻回する際、その骨格の細い部分から破断
が生じることに着目し、表裏で骨格の太さを変えた集電
基板を用いることを技術思想とする。そして、本発明で
は、集電基板のうち骨格の細い側の面を外側に向けて巻
回することにより、この部分での集電基板の破断を促進
させて集電基板にかかる応力を解放させ、その結果とし
て集電基板の内側に破断が及ぶことを防止する。
SUMMARY OF THE INVENTION The present invention focuses on the fact that when a current collecting substrate made of a porous body is wound, a breakage occurs from a thin portion of the skeleton, and the thickness of the skeleton is changed on the front and back sides. The technical idea is to use an electric board. In the present invention, by winding the thin side of the skeleton of the current collecting substrate outward, the breaking of the current collecting substrate at this portion is promoted to release the stress applied to the current collecting substrate. As a result, breakage of the inside of the current collecting substrate is prevented.

【0010】この場合、活物質の担持量を集電基板の厚
み方向で一定とするため、集電基板の多孔度(空隙率)
についても厚み方向で一定になっていることが必要であ
る。従って、本発明においては、基板の骨格を細くする
場合はその部分に平均孔径の小さい孔を多数分布せし
め、骨格を太くする場合はその部分に平均孔径の大きい
孔を、前記小径孔の分布に比べて相対的に少なく分布せ
しめるような調整がなされている。
In this case, the porosity (porosity) of the current collecting substrate is set to keep the amount of the active material carried in the thickness direction of the current collecting substrate constant.
Needs to be constant in the thickness direction. Therefore, in the present invention, when the skeleton of the substrate is made thin, a large number of small holes having an average pore diameter are distributed in that portion. Adjustments have been made so that they are relatively less distributed.

【0011】そして、上記した目的を達成するために、
請求項1に記載の本発明に係る円筒形アルカリ二次電池
は、それぞれ電極合剤を集電基板に担持して成る正極と
負極とをセパレータを介して巻回して成る電極群が、ア
ルカリ電解液と一緒に電池缶に封入され、正極及び前記
負極の集電基板のうち少なくとも一方は金属多孔体から
成り、かつ、該金属多孔体の一方の面における平均孔径
は他方の面における平均孔径より小さくなっていて、前
記一方の面を外側に向けた状態で前記電極群が巻回され
ていることを特徴とする。
Then, in order to achieve the above-mentioned object,
In the cylindrical alkaline secondary battery according to the present invention, an electrode group formed by winding a positive electrode and a negative electrode each having an electrode mixture supported on a current collecting substrate through a separator is formed by alkaline electrolysis. Enclosed in a battery can together with the liquid, at least one of the current collector substrate of the positive electrode and the negative electrode is made of a porous metal, and the average pore size on one surface of the porous metal material is larger than the average pore size on the other surface. The electrode group is wound with the one surface facing outward.

【0012】前記金属多孔体の平均孔径は300〜60
0μmであることが好ましい(請求項2)。さらに、前
記正極及び前記負極の集電基板のうち少なくとも一方
は、それぞれ金属多孔体から成る第1の基材と第2の基
材との積層体から成り、かつ、前記第2の基材の平均孔
径は前記第1の基材の平均孔径より小さくなっていて、
前記第2の基材を外側に向けた状態で前記電極群が巻回
されていることを特徴とする円筒形アルカリ二次電池が
提供される(請求項3)。
The average pore diameter of the porous metal body is 300 to 60.
It is preferably 0 μm (claim 2). Furthermore, at least one of the positive electrode and the negative electrode current collecting substrates is formed of a laminate of a first base material and a second base material, each of which is formed of a porous metal, and The average pore size is smaller than the average pore size of the first substrate,
A cylindrical alkaline secondary battery is provided, wherein the electrode group is wound with the second substrate facing outward (claim 3).

【0013】[0013]

【発明の実施の形態】以下、本発明に係る円筒形アルカ
リ二次電池を、ニッケル・水素二次電池を例に説明す
る。図1において、円筒形ニッケル水素二次電池は、正
極2、負極4、及び正極2と負極4の間に介装されたセ
パレータ3とから成る電極群5をスパイラル状に巻回
し、図示しないアルカリ電解液と共に有底円筒状の容器
1(AAサイズ)内に収容することにより製造されてい
る。ここで負極4は電極群5の最外周に配置されてい
て、容器1と電気的に接触している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a cylindrical alkaline secondary battery according to the present invention will be described by taking a nickel-hydrogen secondary battery as an example. In FIG. 1, a cylindrical nickel-metal hydride secondary battery has an electrode group 5 composed of a positive electrode 2, a negative electrode 4, and a separator 3 interposed between the positive electrode 2 and the negative electrode 4, which is spirally wound. It is manufactured by being housed in a bottomed cylindrical container 1 (AA size) together with an electrolytic solution. Here, the negative electrode 4 is arranged at the outermost periphery of the electrode group 5 and is in electrical contact with the container 1.

【0014】容器1の上部開口部には、中央に穴6を有
する円形封口板7が配置され、さらに封口板7の周縁と
容器1の上端1aの内面の間に、リング状の絶縁性ガス
ケット8が介装され、上端1aを内側に縮径するカシメ
加工により、封口板7がガスケット8を介して容器1に
気密に固定されている。又、正極リード9は一端が正極
2と、他端が封口板7の下面と接続している。
A circular sealing plate 7 having a hole 6 in the center is disposed in the upper opening of the container 1, and a ring-shaped insulating gasket is provided between the periphery of the sealing plate 7 and the inner surface of the upper end 1 a of the container 1. The sealing plate 7 is airtightly fixed to the container 1 via the gasket 8 by caulking processing for reducing the diameter of the upper end 1a inward. The positive electrode lead 9 has one end connected to the positive electrode 2 and the other end connected to the lower surface of the sealing plate 7.

【0015】帽子形状をなす正極端子10は、穴6を覆
うようにして封口板7上に取付けられ、さらに正極端子
10と封口板7で囲まれた空間にゴム製の安全弁11が
充填され、通常は穴6を閉塞するようになっている。中
央に穴を有する絶縁材料から成る円形押え板12は、そ
の穴から正極端子10の突起部が突出するようにして正
極端子10の上に配置され、外装チューブ13が押え板
12の周縁、並びに容器1の側面及び底部周縁を被覆し
ている。
The hat-shaped positive electrode terminal 10 is mounted on a sealing plate 7 so as to cover the hole 6, and a space surrounded by the positive electrode terminal 10 and the sealing plate 7 is filled with a rubber safety valve 11. Usually, the hole 6 is closed. The circular holding plate 12 made of an insulating material having a hole in the center is disposed on the positive terminal 10 so that the projection of the positive terminal 10 protrudes from the hole, and the outer tube 13 is provided on the periphery of the holding plate 12, and The side surface and the bottom peripheral edge of the container 1 are covered.

【0016】正極2は、後述する集電基板20に正極合
剤(ペースト)を塗布して製造され、負極4は、所定の集
電体シートに負極合剤を塗布して製造されている。集電
基板20は、図2に示すように、それぞれスポンジ状N
iから成る第1の基材20aと第2の基材20bとの積
層体から成り、集電基板20の上面側となる第2の基材
20bの平均孔径Rbは、この基板の下面側となる第1
の基材20aの平均孔径Raより小さくなっている。こ
の場合、各基材20a、20bへの活物質の担持量を一
定とするため、各基材の多孔度(空隙率)を等しくする
ことが必要である。つまり、各基材20a、20bの単
位面積当りの孔の面積を等しくし、 (Ra/2)2×π×4=(Rb/2)2×π×9 (1) となるようにする。
The positive electrode 2 is manufactured by applying a positive electrode mixture (paste) to a current collecting substrate 20 described later, and the negative electrode 4 is manufactured by applying a negative electrode mixture to a predetermined current collector sheet. As shown in FIG. 2, each of the current collecting substrates 20 has a sponge-like N
i, the average pore diameter Rb of the second base material 20b on the upper surface side of the current collecting substrate 20 is equal to that of the lower surface side of the first base material 20a and the second base material 20b. The first
Is smaller than the average pore diameter Ra of the base material 20a. In this case, it is necessary to make the porosity (porosity) of each base material equal in order to keep the amount of the active material carried on each base material 20a, 20b constant. That is, the areas of the holes per unit area of the base materials 20a and 20b are made equal, and (Ra / 2) 2 × π × 4 = (Rb / 2) 2 × π × 9 (1).

【0017】又、各基材20a、20bの孔間隔(骨格
の太さ)をそれぞれSa、Sbとすると、図における各
基材の一辺の長さは等しいので、 3Sa+2Ra=4Sb+3Rb (2) となる。従って、式(1)、(2)より、 Sa=1.5Sb (3) の関係が得られる。すなわち、平均孔径の小さい第2の
基材20bは、第1の基材20aに比べてその骨格が細
くなっている。
If the hole intervals (the thickness of the skeleton) of the base materials 20a and 20b are Sa and Sb, respectively, the length of one side of each base material in the figure is equal, so that 3Sa + 2Ra = 4Sb + 3Rb (2) . Therefore, from the equations (1) and (2), the relationship of Sa = 1.5Sb (3) is obtained. That is, the skeleton of the second base material 20b having a small average pore diameter is smaller than that of the first base material 20a.

【0018】このようにして得られた集電基板20は、
その両面に正極合剤が塗布された後、上述の如くセパレ
ータを介して負極と積層されて電極群を構成し、図3に
示すように、第2の基材20bを外側に向けた状態で巻
回される。このとき、集電基板20の外側の方が内側に
比べて変形量が多く、しかも第2の基材20bの方が第
1の基材20aに比べてその骨格の太さが細いため、第
2の基材20b側から破断が進行する。
The current collecting substrate 20 thus obtained is
After the positive electrode mixture is applied to both surfaces, the negative electrode is laminated via the separator as described above to form an electrode group, and as shown in FIG. 3, the second base material 20b faces outward. It is wound. At this time, the amount of deformation is larger on the outside of the current collecting substrate 20 than on the inside, and the thickness of the skeleton of the second base material 20b is smaller than that of the first base material 20a. The fracture proceeds from the side of the second base material 20b.

【0019】この場合、第2の基材20bは比較的少な
い応力で破断し、多数の亀裂Cや突出部Fを形成する。
そして、その過程で集電基板20にかかる応力が解放さ
れるので、骨格が太くて強度の高い第1の基材20a
(集電基板20の内側)に破断が及ぶことはなく、集電
基板20全体が破断することが防止される。さらに、第
2の基材20bが少ない応力で破断することから、亀裂
Cや突出部Fの破断形態は細かいクラック状となり、破
断部の突出量が大きくなってセパレータを貫通する事態
が起き難い。
In this case, the second base material 20b breaks with a relatively small stress, and forms a large number of cracks C and protrusions F.
Since the stress applied to the current collecting substrate 20 is released in the process, the first base material 20a having a thick skeleton and high strength is used.
(The inside of the current collecting substrate 20) is not broken, and the entire current collecting substrate 20 is prevented from being broken. Furthermore, since the second base material 20b breaks with a small stress, the crack C or the protrusion F has a fine crack shape, and the amount of protrusion of the break is large, so that it is unlikely that the breaker penetrates the separator.

【0020】集電基板20の表面と裏面(各基材20
a、20b)の平均孔径は、いずれも300〜600μ
mの範囲にあることが好ましい。平均孔径が300μm
未満である場合は、その部分での骨格が細くなって集電
基板全体の強度が低下する虞があるからである。一方、
600μmを超えた場合には、集電基板がより高い応力
で破断するため、骨格が細い場合に比べて破断の度合が
大きくなり、破断部が突出してセパレータを貫通する可
能性が高くなるからである。
The front and back surfaces of the current collecting substrate 20 (each base material 20)
a, 20b) have an average pore diameter of 300 to 600 μm.
m is preferably in the range. Average pore size is 300μm
If it is less than the above, there is a possibility that the skeleton at that portion becomes thin and the strength of the entire current collecting substrate is reduced. on the other hand,
When the thickness exceeds 600 μm, the current collecting substrate breaks with higher stress, so that the degree of breakage increases as compared with the case where the skeleton is thin, and the possibility that the broken portion protrudes and penetrates the separator increases. is there.

【0021】集電基板20を製造する方法としては、例
えばそれぞれ発泡樹脂の大きさや分布が異なる発泡樹脂
シートを貼り合せ、この樹脂に導電剤を塗布した後Ni
めっきを施し、第1の基材と第2の基材とを一体に形成
することができる。又、それぞれ繊維径の異なるNi繊
維の焼結シートから成る第1の基材と第2の基材を積層
した後、全体を焼結してもよい。
As a method of manufacturing the current collecting substrate 20, for example, foamed resin sheets having different sizes and distributions of foamed resin are attached to each other, a conductive agent is applied to the resin,
By plating, the first base material and the second base material can be integrally formed. Further, after laminating a first base material and a second base material each formed of a sintered sheet of Ni fibers having different fiber diameters, the whole may be sintered.

【0022】なお、集電基板20はその表裏で平均孔径
が異なっていればよく、上述の2層構造から成る基板に
限定されることはなく、例えば、図4に示すように、3
層以上の基材を積層して集電基板を製造してもよい。図
4において、この集電基板30は、下面側から、それぞ
れNi繊維の焼結シートから成る第1の基材30a、第
2の基材30b、及び第3の基材30cを積層して成
る。繊維径は第1の基材30aが最も太く、以下、第2
の基材30b、第3の基材30cの順に繊維径が細くな
っている。そのため平均孔径は、第1の基材30aが最
も大きく、以下、第2の基材30b、第3の基材30c
の順に小さくなっている。そして、この集電基板30
は、巻回時に上面側から破断が生じるようになってい
る。
The current collecting substrate 20 only needs to have different average hole diameters on the front and back sides. The current collecting substrate 20 is not limited to the above-described substrate having a two-layer structure. For example, as shown in FIG.
A current collecting substrate may be manufactured by laminating more than two layers of the base material. In FIG. 4, the current collecting substrate 30 is formed by laminating a first base material 30a, a second base material 30b, and a third base material 30c each formed of a sintered sheet of Ni fiber from the lower surface side. . The fiber diameter of the first base material 30a is the thickest, and
The base 30b and the third base 30c have smaller fiber diameters in this order. Therefore, the average pore diameter of the first base material 30a is the largest, and hereinafter, the second base material 30b and the third base material 30c
In order. Then, the current collecting substrate 30
Is designed to break from the upper surface side during winding.

【0023】以上に加えて、その一方の面から他方の面
に向って平均孔径が連続的に変化した集電基板を用いて
もよい。このような集電基板は、例えばNi繊維の径を
厚み方向に連続的に変化させて積層した後、全体を焼結
することにより、製造することができる。正極2及び負
極4は、以下のようにして作製すればよい。
In addition to the above, a current collecting substrate having an average pore diameter continuously changed from one surface to the other surface may be used. Such a current collecting board can be manufactured by, for example, continuously changing the diameter of the Ni fiber in the thickness direction and laminating, and then sintering the whole. The positive electrode 2 and the negative electrode 4 may be manufactured as follows.

【0024】まず、正極2は、正極活物質である水酸化
ニッケルを、導電剤、結着剤、及び水と混練してペース
トとし、これを上述の集電基板20に塗布して乾燥・圧
延した後、成形して作製することができる。導電剤とし
ては、例えば、金属コバルト、コバルト酸化物、コバル
ト水酸化物などが使用できる。これらの導電剤は、水酸
化ニッケルの表面にコーティングすればよく、又、水酸
化ニッケルに添加してもよい。さらに、導電剤を水酸化
ニッケルの表面にコーティングするとともに、さらにこ
の水酸化ニッケルに導電剤を添加してもよい。
First, the positive electrode 2 is prepared by kneading nickel hydroxide, which is a positive electrode active material, with a conductive agent, a binder, and water to form a paste. Then, it can be formed by molding. As the conductive agent, for example, metal cobalt, cobalt oxide, cobalt hydroxide and the like can be used. These conductive agents may be coated on the surface of the nickel hydroxide, or may be added to the nickel hydroxide. Further, the conductive agent may be coated on the surface of the nickel hydroxide, and the conductive agent may be further added to the nickel hydroxide.

【0025】結着剤としては、例えば、カルボキシメチ
ルセルロース(CMC)、メチルセルロース、ヒドロキ
シプロピルメチルセルロース、PVA、SBR、ポリア
クリル酸ナトリウム、ポリテトラフルオロエチレン(P
TFE)などが使用できる。なお、上記した水酸化ニッ
ケルとして、これにZn、Co、Cd、及び希土類元素
から選ばれる1種以上を固溶させたものを用いると、充
電効率やサイクル特性が向上するので好ましい。又、水
酸化ニッケルをX線粉末回折(Cu−Kα線)で測定した
とき、(001)面のピーク半値幅rが0.5〜0.9°/2
θで、かつ、ピーク強度をpとしたときに、p/rが1
000〜2000になっているとより好ましい。ここ
で、半値幅rが0.5°/2θ未満である場合は充分な
放電容量が得られないからであり、0.9°/2θを超
えると結晶性が崩れて高いレートでの充電効率が低下す
る虞があるからである。
Examples of the binder include carboxymethylcellulose (CMC), methylcellulose, hydroxypropylmethylcellulose, PVA, SBR, sodium polyacrylate, polytetrafluoroethylene (P
TFE) can be used. Note that it is preferable to use, as the above-described nickel hydroxide, a solid solution of at least one selected from Zn, Co, Cd, and a rare earth element, since charging efficiency and cycle characteristics are improved. When nickel hydroxide was measured by X-ray powder diffraction (Cu-Kα ray), the peak half width r of the (001) plane was 0.5 to 0.9 ° / 2.
When θ and the peak intensity are p, p / r is 1
More preferably, it is 2,000 to 2,000. Here, if the half width r is less than 0.5 ° / 2θ, a sufficient discharge capacity cannot be obtained, and if it exceeds 0.9 ° / 2θ, the crystallinity is lost and the charging efficiency at a high rate is obtained. Is likely to decrease.

【0026】また、負極4は、水素吸蔵合金粉末を導電
剤、結着剤、及び水と混練してペーストとし、後述の集
電体シートに塗布して乾燥後、成形して任意の形状に加
工して作製することができる。水素吸蔵合金は、電解液
中で水素の吸蔵と放出が行えるものであれば特に制限は
なく、例えば、AB5系、TiNi系、TiFe系やM
2Ni系の合金を使用することができる。ここで、A
はLa、Mm(ミッシュメタル)、またはLm(La富
化したミッシュメタル)である。そしてBはNi、また
は、NiとAl、Mn、Co、Ti、Cu、Zn、Z
r、Cr及びBの群から選ばれる元素との合金である。
The negative electrode 4 is prepared by kneading a hydrogen storage alloy powder with a conductive agent, a binder, and water to form a paste, applying it to a current collector sheet described later, drying it, and then molding it into an arbitrary shape. It can be manufactured by processing. The hydrogen storage alloy is not particularly limited as long as it can store and release hydrogen in the electrolytic solution. For example, AB 5 -based, TiNi-based, TiFe-based, and M
A g 2 Ni-based alloy can be used. Where A
Is La, Mm (Misch metal), or Lm (La-enriched misch metal). And B is Ni, or Ni and Al, Mn, Co, Ti, Cu, Zn, Z
An alloy with an element selected from the group consisting of r, Cr and B.

【0027】特に、一般式:LmNivCowMnxAly
Zrzで表される化合物を使用することが好ましい。こ
こで、5.1≦v+w+x+y+z(原子比)≦5.4で
ある。原子比が5.1未満である場合はサイクル寿命が
低下し、5.4を超えた場合は負極における水素吸蔵量
が低下する虞があるからである。なお、Lmに用いる希
土類元素としては,例えばLaの他、Ce、Pr、Nd
を挙げることができる。又、これらの合金粉末の平均粒
径をD50値で20〜70μmとすることが好ましい。こ
こで、D50値で規定される平均粒径とは、粒子分布をと
ったときに全粒子個数に対する累積粒子個数が50%と
なるときの粒径をいう。平均粒径が20μm未満である
場合はサイクル寿命が低下し、70μmを超えた場合は
低温時の電池反応が抑制されて電池容量が低下する虞が
あるからである。
[0027] In particular, the general formula: LmNi v Co w Mn x Al y
It is preferable to use a compound represented by Zr z . Here, 5.1 ≦ v + w + x + y + z (atomic ratio) ≦ 5.4. When the atomic ratio is less than 5.1, the cycle life is reduced, and when the atomic ratio is more than 5.4, the hydrogen storage amount in the negative electrode may be reduced. The rare earth element used for Lm is, for example, Ce, Pr, Nd, in addition to La.
Can be mentioned. Further, it is preferable that the average particle size of these alloy powders is 20 to 70 μm in D50 value. Here, the average particle size defined by the D50 value refers to the particle size when the cumulative number of particles is 50% of the total number of particles when the particle distribution is taken. When the average particle size is less than 20 μm, the cycle life is reduced, and when the average particle size is more than 70 μm, the battery reaction at a low temperature is suppressed and the battery capacity may be reduced.

【0028】導電剤としては、例えば、カーボンブラッ
ク、黒鉛などが使用できる。結着剤は、例えば、正極の
製造に用いたのと同じものとすればよい。負極の作製に
用いる集電体シートとしては、例えばニッケル、ステン
レスやニッケルメッキ鋼板から成る、パンチドメタル、
エキスパンデッドメタル、メッキした穿孔鋼板、ニッケ
ルネットなどの2次元構造を有する基材や、フェルト状
金属多孔体やスポンジ状金属基材などの3次元構造を有
する基材を使用することができる。又,上述した本発明
の集電基板20を用いても差し支えない。
As the conductive agent, for example, carbon black, graphite and the like can be used. The binder may be the same as that used in the production of the positive electrode, for example. The current collector sheet used for producing the negative electrode includes, for example, nickel, stainless steel and nickel-plated steel sheet, punched metal,
Substrates having a two-dimensional structure, such as expanded metal, plated perforated steel sheet, nickel net, and the like, and substrates having a three-dimensional structure, such as a felt-like metal porous body and a sponge-like metal base, can be used. Further, the above-described current collecting board 20 of the present invention may be used.

【0029】セパレータとしては、例えばポリアミド繊
維の不織布、あるいはポリエチレンやポリプロピレン等
のオレフィン系繊維の不織布に親水化処理を施したもの
を用いることができる。ニッケル・水素二次電池に用い
るアルカリ電解液としては、例えば、NaOHとLiO
Hの混合溶液、KOHとLiOHの混合溶液の他、KO
H、LiOH、及びNaOHから成る混合溶液を使用す
ることができる。
As the separator, for example, a nonwoven fabric of polyamide fiber or a nonwoven fabric of olefin fiber such as polyethylene or polypropylene which has been subjected to a hydrophilic treatment can be used. Examples of the alkaline electrolyte used for the nickel-hydrogen secondary battery include NaOH and LiO
H, a mixed solution of KOH and LiOH,
A mixed solution consisting of H, LiOH, and NaOH can be used.

【0030】なお、上記した実施形態においては、ニッ
ケル・水素二次電池について説明したが、ニッケルカド
ミウム二次電池等の他の円筒形アルカリ二次電池にも本
発明を適用することは可能である。又、上述の実施形態
においては、本発明の集電基板を正極に適用した場合に
ついて説明したが、本発明の集電基板を負極に適用して
もよく、又、正極と負極の双方に適用してもよい。
Although the nickel-hydrogen secondary battery has been described in the above embodiment, the present invention can be applied to other cylindrical alkaline secondary batteries such as a nickel cadmium secondary battery. . Further, in the above embodiment, the case where the current collecting substrate of the present invention is applied to the positive electrode has been described. However, the current collecting substrate of the present invention may be applied to the negative electrode, or may be applied to both the positive electrode and the negative electrode. May be.

【0031】[0031]

【実施例】実施例1〜3,比較例1〜5 1.正極の製造 スポンジ状Niから成り、図2に示す厚み1.5mm、目
付量400g/m2の集電基板を用意した。この集電基板
は、表1に示す内面側の平均孔径に等しい第1の発泡樹
脂シートと、この内面に対応する外面側の平均孔径に等
しい第2の発泡樹脂シートとを貼り合せ、Ni無電解め
っきとNi電気めっきを順次施した後、Niめっき層の
内部の樹脂を焼失させて製造されている。
EXAMPLES Examples 1 to 3 and Comparative Examples 1 to 5 Production of Positive Electrode A current collecting substrate made of sponge-like Ni and having a thickness of 1.5 mm and a basis weight of 400 g / m 2 shown in FIG. 2 was prepared. This current collecting substrate is obtained by laminating a first foamed resin sheet having an average pore diameter on the inner surface side shown in Table 1 and a second foamed resin sheet having an average pore diameter on the outer surface side corresponding to the inner surface. It is manufactured by sequentially applying electrolytic plating and Ni electroplating, and then burning off the resin inside the Ni plating layer.

【0032】正極合剤は、以下のようにして作製した。
まず、X線粉末回折(Cu−Kα線)で(001)面のピーク
半値幅rが0.65°/2θであり、ピーク強度が17
00(A.U.)である水酸化ニッケル粉末を用意し
た。この水酸化ニッケル90重量部に対し、導電剤(酸化
コバルト)10重量部、結着剤(PTFE:5重量部とC
MC:3重量部)、及び純水45重量部を添加して混練
し、正極合剤とした。
The positive electrode mixture was prepared as follows.
First, in X-ray powder diffraction (Cu-Kα ray), the peak half width r of the (001) plane was 0.65 ° / 2θ, and the peak intensity was 17
A nickel hydroxide powder of 00 (AU) was prepared. For 90 parts by weight of this nickel hydroxide, 10 parts by weight of a conductive agent (cobalt oxide) and 5 parts by weight of a binder (PTFE:
MC: 3 parts by weight) and 45 parts by weight of pure water were added and kneaded to obtain a positive electrode mixture.

【0033】そして、この正極合剤を集電基板に塗布・
充填して乾燥させた後、圧延して正極2とした。 2.負極の製造 Lm(La,Ce、Nd、Prを主成分とする)、N
i、Co、Mn、Al、Zrを混合してAr雰囲気中で
溶解した後、Ar雰囲気中で1000℃×10時間の熱
処理を施し、これを機械粉砕してメッシュを通すことに
より、平均粒径(D50値)50μmの水素吸蔵合金粉末を
得た。この水素吸蔵合金粉末100重量部に対し、導電剤
(カーボンブラック)1重量部、結着剤(PTFE:1.5
重量部、ポリアクリル酸ナトリウム:0.5重量部、CM
C:0.12重量部)、及び純水45重量部を添加して混練
し、負極合剤とした。
Then, this positive electrode mixture is applied to a current collecting substrate.
After filling and drying, it was rolled to obtain a positive electrode 2. 2. Production of negative electrode Lm (mainly composed of La, Ce, Nd and Pr), N
i, Co, Mn, Al, and Zr are mixed and dissolved in an Ar atmosphere, and then subjected to a heat treatment at 1000 ° C. for 10 hours in an Ar atmosphere, and mechanically pulverized and passed through a mesh to obtain an average particle size. (D50 value) A hydrogen storage alloy powder of 50 μm was obtained. For 100 parts by weight of the hydrogen storage alloy powder, 1 part by weight of a conductive agent (carbon black) and a binder (PTFE: 1.5
Parts by weight, sodium polyacrylate: 0.5 parts by weight, CM
C: 0.12 parts by weight) and 45 parts by weight of pure water were added and kneaded to obtain a negative electrode mixture.

【0034】この負極合剤をNi製のパンチングメタル
に塗布・充填して乾燥させた後、圧延して負極4とし
た。 3.電池の組立て 上記した正極2と負極4を親水化処理したポリオレフィ
ン不織布製セパレータ3を介して重ねあわせ、負極4が
外側になるように巻回して電極群5とし、電池缶1に収
容して電解液を注液した後封口し、図1に示す円筒形ニ
ッケル・水素二次電池を組み立てた。 4.絶縁性の評価 上記した電池の正極と負極の間に500Vの直流電圧を印
加し、その時の正極−負極間の絶縁抵抗を測定した。電
池1000個についてそれぞれ絶縁抵抗を測定し、抵抗値が
所定の値以下のものを絶縁不良が生じたとみなしてその
個数を数え、絶縁不良率を評価した。以上の結果を表1
に示す。
The negative electrode mixture was applied to a punched metal made of Ni, filled and dried, and then rolled to obtain a negative electrode 4. 3. Assembly of Battery The positive electrode 2 and the negative electrode 4 described above are overlapped with each other via a separator 3 made of non-woven polyolefin non-woven fabric, and wound so that the negative electrode 4 is on the outside to form an electrode group 5. The solution was injected and sealed, and a cylindrical nickel-hydrogen secondary battery shown in FIG. 1 was assembled. 4. Evaluation of Insulation Property A DC voltage of 500 V was applied between the positive electrode and the negative electrode of the above-described battery, and the insulation resistance between the positive electrode and the negative electrode at that time was measured. The insulation resistance of each of the 1000 batteries was measured, and those having a resistance value equal to or lower than a predetermined value were regarded as having insulation failure, the number thereof was counted, and the insulation failure rate was evaluated. Table 1 shows the above results.
Shown in

【0035】[0035]

【表1】 [Table 1]

【0036】(1)表1から明らかなように、本発明のニ
ッケル・水素二次電池は、いずれも絶縁不良率が1%未
満となっている。 (2)正極の集電基板における外面と内面の平均孔径が同
一である比較例1の場合は、実施例に比べて絶縁不良率
が高いものとなっている。 (3) 正極の集電基板の外面の平均孔径が内面の平均孔径
に比べて大きい比較例2〜4の場合は、実施例に比べて
絶縁不良率がさらに高いものとなっている。特に、外面
と内面の平均孔径の差が最も大きい比較例4では、絶縁
不良率が最も高くなっている。このことから、集電基板
における外面の平均孔径を内面の平均孔径に比べて小さ
くした本発明の優位性が明らかである。 (4) 集電基板の外側の平均孔径が250μmである比較例
5の場合は、基板強度それ自体が低く、基板が内側に至
るまで破断したために絶縁不良率が高くなっている。
(1) As is clear from Table 1, the nickel-hydrogen secondary batteries of the present invention all have an insulation failure rate of less than 1%. (2) In the case of Comparative Example 1 in which the outer surface and the inner surface of the current collecting substrate of the positive electrode have the same average pore diameter, the insulation failure rate is higher than that of the example. (3) In Comparative Examples 2 to 4 in which the average pore diameter on the outer surface of the current collecting substrate of the positive electrode is larger than the average pore diameter on the inner surface, the insulation failure rate is higher than in the examples. In particular, in Comparative Example 4 in which the difference between the average pore diameters of the outer surface and the inner surface is the largest, the insulation failure rate is the highest. This clearly shows the superiority of the present invention in which the average pore size on the outer surface of the current collecting substrate is smaller than the average pore size on the inner surface. (4) In the case of Comparative Example 5 in which the average hole diameter on the outside of the current collecting substrate is 250 μm, the substrate strength itself is low, and the insulating failure rate is high because the substrate is broken down to the inside.

【0037】[0037]

【発明の効果】以上の説明で明らかなように、本発明に
係る円筒形アルカリ二次電池は、正極と負極の集電基板
のうち少なくとも一方が、その表面と裏面とで平均孔径
が異なる金属多孔体から成っている。そして、この金属
多孔体のうち平均孔径が小さい方の面を外側に向けた状
態で電極群を巻回しているため、集電基板の外側は骨格
が細く、少ない応力で容易に破断が進行するが、骨格の
太い集電基板の内側に破断が及ぶことはなく、集電基板
全体の破断が防止される。又、集電基板の外側が少ない
応力で細かいクラック状に破断するため、破断の度合が
大きくなって破断部がセパレータを貫通することも少な
い。
As is apparent from the above description, in the cylindrical alkaline secondary battery according to the present invention, at least one of the positive and negative electrode current collecting substrates has a different average pore diameter between the front surface and the back surface. It is made of porous material. Since the electrode group is wound with the surface having the smaller average pore diameter of the porous metal body facing outward, the skeleton is thin on the outside of the current collecting substrate, and the fracture easily proceeds with a small stress. However, the inside of the current collecting substrate having a large skeleton is not broken, and the entire current collecting substrate is prevented from being broken. In addition, since the outside of the current collecting substrate is broken into small cracks with a small stress, the degree of breakage increases, and the broken portion rarely penetrates through the separator.

【0038】その結果、電池の生産時における絶縁不良
率は著しく低下し、生産効率の向上を図ることができ
る。
As a result, the insulation failure rate during the production of the battery is significantly reduced, and the production efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るニッケル・水素二次電池の構造を
示す部分断面斜視図である。
FIG. 1 is a partial cross-sectional perspective view showing the structure of a nickel-hydrogen secondary battery according to the present invention.

【図2】集電基板を示す分解斜視図である。FIG. 2 is an exploded perspective view showing a current collecting substrate.

【図3】集電基板を巻回したときの状態を示す模式図で
ある。
FIG. 3 is a schematic diagram showing a state when a current collecting substrate is wound.

【図4】3層構造から成る集電基板を示す断面図であ
る。
FIG. 4 is a sectional view showing a current collecting substrate having a three-layer structure.

【符号の説明】[Explanation of symbols]

1 電池缶 2 正極 3 セパレータ 4 負極 5 電極群 20、30 集電基板 Ra、Rb (集電基板の)平均孔径 DESCRIPTION OF SYMBOLS 1 Battery can 2 Positive electrode 3 Separator 4 Negative electrode 5 Electrode group 20, 30 Current collecting board Ra, Rb Average pore diameter (of current collecting board)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ電極合剤を集電基板に担持して
成る正極と負極とをセパレータを介して巻回して成る電
極群が、アルカリ電解液と一緒に電池缶に封入されてい
る円筒形アルカリ二次電池において、 前記正極及び前記負極の集電基板のうち少なくとも一方
は金属多孔体から成り、かつ、該金属多孔体の一方の面
における平均孔径は他方の面における平均孔径より小さ
くなっていて、 前記一方の面を外側に向けた状態で前記電極群が巻回さ
れていることを特徴とする円筒形アルカリ二次電池。
An electrode group formed by winding a positive electrode and a negative electrode, each having an electrode mixture supported on a current collecting substrate, through a separator, is enclosed in a battery can together with an alkaline electrolyte. In the alkaline secondary battery, at least one of the current collecting substrates of the positive electrode and the negative electrode is made of a porous metal, and the average pore size on one surface of the porous metal material is smaller than the average pore size on the other surface. Wherein the electrode group is wound with the one surface facing outward.
【請求項2】 前記金属多孔体の平均孔径は300〜6
00μmであることを特徴とする請求項1に記載の円筒
形アルカリ二次電池。
2. The metal porous body has an average pore diameter of 300 to 6.
The cylindrical alkaline secondary battery according to claim 1, wherein the thickness of the cylindrical alkaline secondary battery is 00 µm.
【請求項3】 前記正極及び前記負極の集電基板のうち
少なくとも一方は、それぞれ金属多孔体から成る第1の
基材と第2の基材との積層体から成り、かつ、前記第2
の基材の平均孔径は前記第1の基材の平均孔径より小さ
くなっていて、 前記第2の基材を外側に向けた状態で前記電極群が巻回
されていることを特徴とする請求項1又は2に記載の円
筒形アルカリ二次電池。
3. At least one of the positive electrode and the negative electrode current collecting substrates comprises a laminate of a first base material and a second base material each made of a porous metal, and
The average pore size of the base material is smaller than the average pore size of the first base material, and the electrode group is wound with the second base material facing outward. Item 3. A cylindrical alkaline secondary battery according to Item 1 or 2.
JP11223585A 1999-08-06 1999-08-06 Cylindrical alkaline secondary battery Pending JP2001052732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11223585A JP2001052732A (en) 1999-08-06 1999-08-06 Cylindrical alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11223585A JP2001052732A (en) 1999-08-06 1999-08-06 Cylindrical alkaline secondary battery

Publications (1)

Publication Number Publication Date
JP2001052732A true JP2001052732A (en) 2001-02-23

Family

ID=16800481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11223585A Pending JP2001052732A (en) 1999-08-06 1999-08-06 Cylindrical alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP2001052732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131337A (en) * 2011-12-20 2013-07-04 Toyota Industries Corp Electrode body, secondary battery, and vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131337A (en) * 2011-12-20 2013-07-04 Toyota Industries Corp Electrode body, secondary battery, and vehicle

Similar Documents

Publication Publication Date Title
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
WO2020054307A1 (en) Positive electrode for alkali secondary batteries, and alkali secondary battery including said positive electrode
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
JPH11185767A (en) Manufacture of nickel-hydrogen secondary battery and electrode
JP2002025604A (en) Alkaline secondary battery
JP3209071B2 (en) Alkaline storage battery
WO2020012891A1 (en) Nickel-metal hydride battery
JP2001052732A (en) Cylindrical alkaline secondary battery
JP4413294B2 (en) Alkaline secondary battery
JP2001006688A (en) Nickel-hydrogen secondary battery
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JP2002100396A (en) Cylindrical alkaline secondary cell
JP2001202969A (en) Alkaline secondary battery
JP5258375B2 (en) Cylindrical alkaline secondary battery
JP3462563B2 (en) Hydrogen storage alloy electrode
JPH103928A (en) Nickel-hydrogen secondary battery
JP2001167768A (en) Cylindrical alkaline secondary battery
JP2002117892A (en) Alkali secondary battery
JP5355038B2 (en) Non-sintered nickel electrode and alkaline storage battery
JP2001307764A (en) Alkaline secondary battery and its production
JP2000260416A (en) Manufacture of battery
JP2000357510A (en) Manufacture of nickel-hydrogen secondary battery
JP2008181774A (en) Cylindrical non-sintering type alkaline storage battery
JP2001068145A (en) Rectangular alkaline secondary battery
JP2000277122A (en) Cylindrical battery