JPH02104954A - Device for recovering exhaust heat of engine - Google Patents

Device for recovering exhaust heat of engine

Info

Publication number
JPH02104954A
JPH02104954A JP63258161A JP25816188A JPH02104954A JP H02104954 A JPH02104954 A JP H02104954A JP 63258161 A JP63258161 A JP 63258161A JP 25816188 A JP25816188 A JP 25816188A JP H02104954 A JPH02104954 A JP H02104954A
Authority
JP
Japan
Prior art keywords
heat
engine
temperature
cooling water
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63258161A
Other languages
Japanese (ja)
Inventor
Kazuhiko Ogura
小倉 和彦
Isamu Kubomoto
久保元 勇
Tomoaki Imamura
友昭 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63258161A priority Critical patent/JPH02104954A/en
Priority to US07/335,404 priority patent/US4951871A/en
Priority to DE3912256A priority patent/DE3912256C2/en
Publication of JPH02104954A publication Critical patent/JPH02104954A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To reduce the temperature change of a heat recovering liquid by operating a variable flow-dividing valve more to a heat radiation increasing side by means of a flow-dividing rate control device as a cooling water temperature gets higher and increasing the flow-dividing rate on the heat radiating side of the cooling water. CONSTITUTION:When the heat radiating quantity of an engine exhaust heat from a heat exchanger 6 is reduced due to a reduced heat recovering quantity or when an engine exhaust heat itself is increased due to increase in the load of an engine E, the temperature of cooling water in an engine cooling water passage 11 is increased. This is detected by a temperature sensor 13 and a flow-dividing rate control device 14 controls a variable flow-dividing valve 12 to be on a heat radiating rate increasing side to make the cooling water dividingly flow in a larger quantity on a heat radiating passage 10 side whereas in a smaller quantity on a heat-recovering discharge-side water passage 7 side, thereby increasing the heat radiating rate of the exhaust heat of the engine E. Hence, the changing width of cooling water temperature passing through the heat-recovering discharge-side water passage 7 of the heat exchanger 6 can be reduced while reducing the temperature change of a heat recovering liquid which recovers heat therefrom and which is discharged out of a heat-recovering heat absorbing side liquid passage of the heat exchanger 6.

Description

【発明の詳細な説明】 本発明は、エンジン本体熱や排気熱などのエンジンから
の排出熱を回収する装置に関し、エンジン負荷や熱回収
負荷が変動しても、エンジンに循環する冷却水を一定の
温度範囲内に保持して、エンジンの過熱を防止できるも
のを提供する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for recovering exhaust heat from an engine, such as engine body heat and exhaust heat. To provide something that can prevent the engine from overheating by keeping it within the temperature range.

〈従来技術〉 本発明の対象とするエンジンの排出熱回収装置の基本構
造は、第1図又は第4図に示すように、エンジンEのウ
ォータジャケット2に、排気熱吸収用熱交換器3の排気
熱吸収路4・温水路5・エンジン排出熱回収用熱交換器
6の熱回収用吸熱側水路7・及び冷水路8を順に直列循
環状に連通連結して構成した形式のものである。
<Prior art> As shown in FIG. 1 or 4, the basic structure of the engine exhaust heat recovery device to which the present invention is applied is that a heat exchanger 3 for absorbing exhaust heat is installed in the water jacket 2 of the engine E. This system is constructed by connecting an exhaust heat absorption path 4, a hot water path 5, an endothermic side water path 7 for heat recovery of a heat exchanger 6 for recovering engine exhaust heat, and a cold water path 8 in series in a circulating manner.

この形式の従来技術としては、米国特許第422621
4号公報(第4図参照)に示すように、エンジンEと発
電機Gとを連動連結し、発電機Gで発電を行うとともに
、ウォータジャケット2で吸熱したエンジン本体熱と、
排気熱吸収路4で吸熱した排気熱とを、エンジン排出熱
回収用熱交換器6内で放熱して、同熱交換器6の熱回収
用吸熱側水路15からエンジンEの排出熱を回収するよ
うに構成したものがある。
As a prior art of this type, US Pat. No. 4,226,21
As shown in Publication No. 4 (see Figure 4), an engine E and a generator G are interlocked, and the generator G generates electricity, and the engine body heat absorbed by the water jacket 2,
The exhaust heat absorbed in the exhaust heat absorption path 4 is radiated in the engine exhaust heat recovery heat exchanger 6, and the exhaust heat of the engine E is recovered from the heat recovery side water channel 15 of the heat exchanger 6. There is something configured like this.

尚、符号50は、エンジンEの始動時に、冷却水路を温
水路5から直接的に冷水路8に短絡させて、早期にエン
ジンEを暖機できるようにするための切り換え用三方弁
である。
Reference numeral 50 designates a three-way switching valve that short-circuits the cooling waterway directly from the hot waterway 5 to the cold waterway 8 when the engine E is started, so that the engine E can be warmed up quickly.

〈発明が解決しようとする課題〉 しかしながら、上記従来技術では、季節的要因や人数的
要因などの外部要因によってエンジン排出熱回収用熱交
換器6からの熱回収量が減少した場合、エンジンEの排
出熱が当該熱交換器6で熱回収液側に放熱する割合は低
下するので、冷却水温が急激に上昇してエンジンEが過
熱するうえ、排気熱吸収用熱交換器3に急激な熱応力が
かかり、熱交換器3が熱破損する虞れがある。
<Problems to be Solved by the Invention> However, in the above conventional technology, when the amount of heat recovered from the engine exhaust heat recovery heat exchanger 6 decreases due to external factors such as seasonal factors and number of people, the engine E Since the rate at which the exhaust heat is radiated to the heat recovery liquid side in the heat exchanger 6 decreases, the cooling water temperature rapidly rises, causing the engine E to overheat, and causing sudden thermal stress to the exhaust heat absorption heat exchanger 3. There is a risk that the heat exchanger 3 will be damaged by heat.

また、熱回収量が一定でも、エンジン発電機の負荷が増
大した場合には、エンジンEの排出熱が増えるにも拘わ
らず、放熱割合はそれに見合っては増えないので、やは
りエンジンEが過熱するなどの虞れがある。
In addition, even if the amount of heat recovery is constant, if the load on the engine generator increases, even though the exhaust heat of engine E increases, the heat radiation rate does not increase commensurately, so engine E still overheats. There is a possibility that

しかも、上述のように、熱交換器6からの熱回収量が減
少したり、エンジンEの負荷が増大すると、熱交換器6
の熱回収用放出側水路7を流れる冷却水温が急激に高ま
って、これと熱交換する熱回収用吸熱側水路15側の出
湯温度も急速に高まり、 逆に、熱交換器6からの熱回収量が増大したり、エンジ
ンEの負荷が減少すると、熱交換器6の熱回収用吸熱側
水路15からの出湯温度が急速に低くなって、 熱交換器6の熱回収負荷及びエンジンEの負荷の変化に
よって出湯温度が急速に変動して一定しないという問題
点がある。
Moreover, as described above, if the amount of heat recovered from the heat exchanger 6 decreases or the load on the engine E increases, the heat exchanger 6
The temperature of the cooling water flowing through the heat recovery discharge side waterway 7 rises rapidly, and the outlet temperature of the hot water on the side of the heat recovery endothermic side waterway 15 that exchanges heat with it also rises rapidly. When the amount of water increases or the load on the engine E decreases, the temperature of hot water coming out from the heat recovery side water channel 15 of the heat exchanger 6 decreases rapidly, and the heat recovery load on the heat exchanger 6 and the load on the engine E decrease. There is a problem in that the temperature of the hot water fluctuates rapidly and is not constant due to changes in the temperature.

本発明は、熱交換器の熱回収負荷やエンジンの負荷が変
動した場合でも、エンジンが過熱したり、排気熱吸収用
熱交換器が熱破損したりすることがないとともに、エン
ジン排出熱回収用熱交換器の熱回収用吸熱側水路から出
る熱回収液の温度変化を小さくすることを技術的課題と
する。
The present invention prevents the engine from overheating or the exhaust heat absorption heat exchanger from being thermally damaged even when the heat recovery load of the heat exchanger or the engine load changes, and the heat exchanger for exhaust heat absorption The technical problem is to reduce the temperature change of the heat recovery liquid exiting from the heat recovery waterway on the heat absorption side of the heat exchanger.

〈課題を解決するための手段〉 上記課題を解消する手段を、実施例に対応する図面を用
いて以下に説明する。
<Means for Solving the Problems> Means for solving the above problems will be described below using drawings corresponding to embodiments.

即ち、本発明は、前記基本構造のエンジンの排出熱回収
装置において、 エンジン排出熱回収用熱交換器6の熱回収用放出側水路
7に放熱器1の放熱路10を並列状に接続し、 冷水路8・ウォータジャケット2・排気熱吸収路4・及
び温水路5から成るエンジン冷却水路11に対して、熱
回収用放出側水路7と放熱路10とを、可変分流弁12
で可変分流可能に接続し、エンジン冷却水路llに温度
センサ13を設け、温度センサ13に分流率制御装置1
4を介して可変分流弁12を分流率制御可能に連携し、
温度センサ13は、エンジン冷却水路11を通過するエ
ンジン冷却水の水温を検出するものであって、 その冷却水温の検出温度T、が、放熱開始用設定温度T
1(L)とこれよりも高温の全部放熱用設定温度T1(
H)との間の放熱制御用温度領域A内にある場合におい
て、 その冷却水温の検出温度が高くなるほど、分流率制御装
置14が可変分流弁12を放熱増量側に作動させて、エ
ンジン冷却水路11から放熱路IOへの冷却水の放熱側
分流率を増加させるとともに、熱回収用放出側水路7へ
の冷却水の熱回収側分流率を減少させ、 その冷却水温の検出温度が低くなるほど、分流率制御装
置14が可変分流弁12を放熱減量側に作動させて、前
記放熱側分流率を減少させるとともに、熱回収側分流率
を増加させるように構成したことを特徴とするものであ
る。
That is, the present invention provides an engine exhaust heat recovery device having the above-mentioned basic structure, in which the heat radiation path 10 of the radiator 1 is connected in parallel to the heat recovery discharge side water channel 7 of the engine exhaust heat recovery heat exchanger 6, An engine cooling waterway 11 consisting of a cold waterway 8, a water jacket 2, an exhaust heat absorption path 4, and a hot waterway 5 is connected to a heat recovery discharge side waterway 7 and a heat radiation path 10 using a variable flow divider valve 12.
A temperature sensor 13 is provided in the engine cooling water channel 11, and a flow rate control device 1 is connected to the temperature sensor 13.
4, the variable flow dividing valve 12 is linked to control the flow dividing ratio,
The temperature sensor 13 detects the temperature of the engine cooling water passing through the engine cooling water channel 11, and the detected temperature T of the cooling water temperature is the set temperature T for starting heat radiation.
1 (L) and higher temperature T1 (
H), the higher the detected temperature of the cooling water, the more the division ratio control device 14 operates the variable division valve 12 to increase the amount of heat radiation, and the engine cooling water 11 to the heat radiation path IO, and decrease the heat recovery side distribution rate of the cooling water to the heat recovery discharge side waterway 7, and the lower the detected temperature of the cooling water, the lower the detected temperature of the cooling water. It is characterized in that the division ratio control device 14 operates the variable division valve 12 to the heat radiation loss side to decrease the heat radiation side division ratio and increase the heat recovery side division ratio.

く作用〉 エンジン冷却水路11の冷却水温T1が、上記放熱制御
用温度領域A内にある場合、 (1)外部要因により熱回収器からの熱回収量が低減し
て、熱交換器6からのエンジン排出熱の放熱量が減った
り、或いは、エンジンEの負荷が増大して、エンジン排
出熱自体が増大すると、エンジン冷却水路11の冷却水
aTlが上昇しようとするが、 温度センサ13の検出で、この冷却水温T、の上昇の情
報を得た分流率制御装置14が、可変分流弁12を放熱
割合増加側に制御して、冷却水を放熱路10の側に多く
分流し、熱回収用放出側水路7の側に少なく分流して、
エンジンEの排出熱の放熱割合を増加するので、上記冷
却水温TIの上昇は抑制される。
Effect> When the cooling water temperature T1 of the engine cooling waterway 11 is within the temperature range A for heat radiation control, (1) The amount of heat recovered from the heat recovery device is reduced due to external factors, and the amount of heat recovered from the heat exchanger 6 is reduced. When the amount of heat dissipated from the engine exhaust heat decreases, or when the load on the engine E increases and the engine exhaust heat itself increases, the cooling water aTl in the engine cooling water passage 11 tends to rise, but the temperature sensor 13 detects this. , the diversion rate control device 14 that has obtained the information on the increase in the cooling water temperature T, controls the variable diversion valve 12 to increase the heat radiation rate, thereby diverting a large amount of the cooling water to the heat radiation path 10 side for heat recovery. A small amount of water is diverted to the discharge side waterway 7,
Since the heat dissipation rate of the exhaust heat of the engine E is increased, the increase in the cooling water temperature TI is suppressed.

(2)逆に、外部要因により熱回収器からの熱回収量が
増加して、熱交換器6からのエンジン排出熱の放熱量が
増えたり、或いは、エンジンEの負荷が低下して、エン
ジンの排出熱自体が減ると、エンジン冷却水路11の冷
却水温T1が低下しようとするが、 温度センサ13の検出で、この冷却水温T1の低下の情
報を得た分流率制御装置14が可変分流弁12を放熱割
合低下側に制御して、冷却水を放熱路IOの側に少なく
分流し、熱回収用放出側水路7の側に多く分流して、エ
ンジンEの排出熱ノ放熱割合を低くするので、上記冷却
水温T1の低下は抑制される。
(2) Conversely, the amount of heat recovered from the heat recovery device increases due to external factors, and the amount of heat released from the engine exhaust from the heat exchanger 6 increases, or the load on the engine E decreases, causing the engine When the exhaust heat itself decreases, the cooling water temperature T1 of the engine cooling waterway 11 tends to decrease, but the diversion ratio control device 14, which has obtained information about the decrease in the cooling water temperature T1 through the detection of the temperature sensor 13, operates the variable diversion valve. 12 to the side where the heat radiation rate decreases, less cooling water is diverted to the heat radiation path IO side, and more of the cooling water is diverted to the heat recovery discharge side waterway 7 side, thereby lowering the heat radiation rate of the exhaust heat of the engine E. Therefore, the decrease in the cooling water temperature T1 is suppressed.

また、上述のように、エンジン排出熱回収用熱交換器6
からの熱回収量やエンジンEの負荷が変動しても、上記
冷却水路11の冷却水温T1は一定温度範囲内に保持さ
れることから、当該熱交換器6の熱回収用放出側水路7
を通る冷却水温は変動幅が小さくなり、この冷却水から
熱を回収して熱交換器6の熱回収用吸熱側液路から出る
熱回収液もその温度変化を小さくできる。
In addition, as described above, the engine exhaust heat recovery heat exchanger 6
Even if the amount of heat recovered from the engine or the load on the engine E changes, the cooling water temperature T1 of the cooling water channel 11 is maintained within a constant temperature range.
The fluctuation range of the temperature of the cooling water passing through the cooling water becomes small, and the temperature change of the heat recovery liquid that recovers heat from this cooling water and exits from the heat recovery endothermic side liquid path of the heat exchanger 6 can also be reduced.

〈発明の効果〉 (1)外部要因によってエンジン排出熱回収用熱交換器
からの熱回収量が低減したり、エンジンの負荷が増加し
て、エンジン排出熱が増大しても、温度センサに連携し
た可変分流弁の分流機能により、冷却水路を流れる冷却
水の温度上昇は一定範囲内に抑制されるので、エンジン
の過熱を円滑に防止できるうえ、排気熱吸収用熱交換器
の熱破損をなくせる。
<Effects of the Invention> (1) Even if the amount of heat recovered from the engine exhaust heat recovery heat exchanger decreases due to external factors or the engine load increases, the engine exhaust heat increases, it will not work in conjunction with the temperature sensor. The diversion function of the variable diversion valve suppresses the temperature rise of the cooling water flowing through the cooling waterway within a certain range, which not only smoothly prevents engine overheating but also prevents heat damage to the exhaust heat absorption heat exchanger. let

(2)エンジン排出熱回収用熱交換器からの熱回収量や
エンジンの負荷が変動しても、上記冷却水路の冷却水温
は一定温度範囲内に保持されるので、エンジン排出熱回
収用熱交換器の吸熱側液路から流出する熱回収液の温度
変化を小さく抑えられる。
(2) Even if the amount of heat recovered from the engine exhaust heat recovery heat exchanger or the engine load changes, the cooling water temperature in the cooling waterway is maintained within a constant temperature range, so the heat exchanger for engine exhaust heat recovery The temperature change of the heat recovery liquid flowing out from the heat absorption side liquid path of the vessel can be suppressed to a small level.

〈実施例〉 以下、本発明の実施例を図面に基づいて述べる。<Example> Hereinafter, embodiments of the present invention will be described based on the drawings.

第1図は熱併給エンジン発電装置の系統原理図、第2図
は同装置における冷却水温・ラジェータ側冷却水分流率
の関係図であって、当該熱併給エンジン発電装置は、縦
型ガスエンジンEと発’1411Gとを前後方向に連動
連結して、発電を行うと同時に、エンジン本体熱と排気
熱とのエンジン排出熱を回収するように構成しである。
Fig. 1 is a system principle diagram of a cogeneration engine power generation device, and Fig. 2 is a diagram showing the relationship between cooling water temperature and radiator side cooling water flow rate in the same device. and the generator '1411G are interlocked in the front and rear direction to generate electricity and at the same time recover the engine exhaust heat, which is the engine body heat and the exhaust heat.

上記ガスエンジンEのシリンダブロック及びシリンダヘ
ッド内にウォータジャケット2を形成し、エンジンEの
排気路21に排気熱吸収用熱交換器3及びマフラ20を
順番に取り付ける。
A water jacket 2 is formed in the cylinder block and cylinder head of the gas engine E, and an exhaust heat absorption heat exchanger 3 and a muffler 20 are attached to the exhaust path 21 of the engine E in this order.

また、エンジンEにラジェータ1を付設して、エンジン
排出熱を系外に放熱可能に構成するとともに、エンジン
排出熱回収用熱交換器6を付設して、熱交換器6の熱回
収用放出側水路7でエンジン排出熱を放出し、その熱回
収用吸熱側水路15でその排出熱を回収し、吸熱側水路
15から取り出した給湯水を温水タンク23に貯留して
、給湯に利用するように構成される。
In addition, a radiator 1 is attached to the engine E so that engine exhaust heat can be radiated outside the system, and a heat exchanger 6 for recovering engine exhaust heat is attached to the heat recovery discharge side of the heat exchanger 6. The engine exhaust heat is released in the water channel 7, the exhaust heat is recovered in the heat absorption side water channel 15 for heat recovery, and the hot water taken out from the heat absorption side water channel 15 is stored in the hot water tank 23 and used for hot water supply. configured.

符号24は制御装置であって、上記ラジェータ1の冷却
ファン25、後述の循環ポンプ22、ガス燃料導入路の
減圧弁などを制御している。
Reference numeral 24 denotes a control device that controls the cooling fan 25 of the radiator 1, the circulation pump 22 (described later), the pressure reducing valve of the gas fuel introduction path, and the like.

上記つを一タジャケット2に、排気熱吸収用熱交換器3
の排気熱吸収路4と、熱交換済みの冷却水をエンジンE
から導出する温水路5と、熱交換前の冷却水をエンジン
Eに導入する冷水路8と、循環ポンプ22とを直列循環
状に連通連結し、温水路5と冷水路8との間に、上記ラ
ジェータ1を通る放熱路10とエンジン排出熱回収用熱
交換器6の熱回収用放出側水路7とを並列状に連通ずる
The above two are combined into a jacket 2 and a heat exchanger 3 for absorbing exhaust heat.
The exhaust heat absorption path 4 and the heat-exchanged cooling water are transferred to the engine E.
A hot waterway 5 led out from the engine, a cold waterway 8 that introduces the cooling water before heat exchange to the engine E, and a circulation pump 22 are connected in a serial circulation manner, and between the hot waterway 5 and the cold waterway 8, The heat radiation path 10 passing through the radiator 1 and the heat recovery discharge side water channel 7 of the engine exhaust heat recovery heat exchanger 6 are communicated in parallel.

但し、符号26はサーモスタット弁であって、温水路5
から冷水路8に短絡状に分岐したバイパス路27の分岐
入口部に配置され、始動時には弁26をバイパス路27
の側に切り替えて、冷却水を温水路5から冷水路8に短
絡させ、その放熱量を最小に抑えて、早期に暖機できる
ように構成しである。
However, the reference numeral 26 is a thermostatic valve, and the hot water channel 5
The valve 26 is disposed at the branch inlet of the bypass passage 27 which branches into the cold water channel 8 in a short-circuit manner.
, the cooling water is short-circuited from the hot water channel 5 to the cold water channel 8, and the amount of heat dissipated is minimized to enable early warm-up.

上記温水路5から放熱路10と熱回収用放出側水路7と
を二股状に分岐した部位に、三方弁から成る可変分流弁
12を介装し、温水路5に温度センサ13を付設し、温
度センサ13に分流率制御装置14を介して可変分流弁
12を分流率制御可能に連携して、エンジン負荷或いは
熱回収負荷が変動しても、温水路5内を流れる温水の温
度を一定範囲内に保持するように構成される。
A variable flow dividing valve 12 consisting of a three-way valve is interposed at a portion where the heat radiation path 10 and the heat recovery discharge side waterway 7 are bifurcated from the hot waterway 5, and a temperature sensor 13 is attached to the hot waterway 5. The variable flow dividing valve 12 is connected to the temperature sensor 13 via the flow dividing ratio control device 14 so as to be able to control the flow dividing ratio, so that even if the engine load or the heat recovery load fluctuates, the temperature of the hot water flowing in the hot water channel 5 is kept within a certain range. Configured to hold within.

即ち、上記分流率制御装置14に放熱制御用温度領域A
を設定し、この領域Aの下限を放熱開始温度TI(L)
とし、その上限を放熱率が100%になる温度T1(H
)として、この温度領域Aに対する温度センサ13の温
水検出温度T、のレベルにより可変分流弁12を下記(
1)〜(3)のように制御して、 ■温水路5→放熱路10 ■温水路5→熱交換器6の熱回収用放出側水路7の二つ
の流路への分流率を変化させ、放熱と熱回収の割合を変
えるように構成される。
That is, the temperature range A for heat radiation control is applied to the division ratio control device 14.
and set the lower limit of this area A as the heat radiation start temperature TI(L)
The upper limit is the temperature T1 (H
), the variable flow divider valve 12 is operated as follows (
Control as in 1) to (3) to change the division ratio into two flow paths: ■ Hot water channel 5 → heat radiation path 10 ■ Hot water channel 5 → heat recovery discharge side water channel 7 of heat exchanger 6 , configured to vary the ratio of heat dissipation and heat recovery.

但し、当然ながらT 1(L )< T 1(H)であ
って、実際的には、エンジンEからの排水温は90℃前
後に保つのが良好であるので、当該温度を中心に±3°
Cをとって、T1(L)は87°Cに、T1(H)は9
3℃に各々設定される。
However, as a matter of course, T 1 (L) < T 1 (H), and in practice, it is best to maintain the temperature of the waste water from the engine E at around 90°C, so the temperature is ±3 around this temperature. °
C, T1(L) is 87°C, T1(H) is 9
Each was set at 3°C.

また、上記可変分流弁12は、当該実施例のような三方
弁に限らず、第3図のように、温水路5から分岐した放
熱路10と熱回収用放出側水路7とに通常の二方向型の
調量弁12aを各々付設し、これらを一つの分流率制御
装置14に連携するように構成しても良い。
Further, the variable flow dividing valve 12 is not limited to the three-way valve as in the embodiment, but may be a normal two-way valve that connects the heat radiation path 10 branched from the hot water channel 5 and the heat recovery discharge side water channel 7, as shown in FIG. Directional metering valves 12a may be provided respectively, and these may be configured to cooperate with one flow rate control device 14.

(1)検出温度T、<放熱開始温度TI(L)の場合(
即ち、温水温が異常に低下した場合)第2図に示すよう
に、分流率制御装置14により、可変分流弁12は放熱
路10への分流率が0%で、熱回収用放出側水路7への
分流率が100%になるように制御され、 エンジン排出熱を吸熱したエンジン冷却水は、温水路5
から可変分流弁12を経て全て熱交換器6の熱回収用放
出側水路7に流れて、放熱割合を最小にするので、温水
温の低下は抑制され、エンジン排出熱はきわめて高い割
合で熱回収用吸熱側水路15に回収される。
(1) When detected temperature T is less than heat radiation start temperature TI (L) (
In other words, when the hot water temperature drops abnormally), as shown in FIG. The engine cooling water that has absorbed engine exhaust heat is controlled to have a diversion rate of 100% to the hot water channel 5.
All of the heat flows from the heat exchanger 6 through the variable flow divider valve 12 to the heat recovery discharge waterway 7 of the heat exchanger 6, minimizing the heat radiation rate, suppressing a drop in hot water temperature, and recovering engine exhaust heat at an extremely high rate. The water is collected in the endothermic side waterway 15.

そして、熱交換器6で熱を回収された後の冷却水は、冷
水路8を通って循環ポンプ22によりエンジンEのウォ
ータジャケット2に還流し、再びエンジンEの排出熱を
吸熱する。
After the heat has been recovered by the heat exchanger 6, the cooling water passes through the cold water channel 8, returns to the water jacket 2 of the engine E by the circulation pump 22, and absorbs the exhaust heat of the engine E again.

尚、本制御においては、ハンチングを避けるために、温
水温が放熱開始温度T 1(L )をかなり上回る温度
に上昇するまで、放熱側分流率を0%に継続する。
In this control, in order to avoid hunting, the heat dissipation side division ratio is maintained at 0% until the hot water temperature rises to a temperature considerably higher than the heat dissipation start temperature T 1 (L).

(2)放熱開始温度T1(L)≦ 検出温度T、≦全部放出温度TI(H)の場合(即ち、
温水温が正常温度領域にある場合)第2図に示すように
、分流率制御装置14により、可変分流弁12は下記の
ように制御される。
(2) When heat radiation start temperature T1 (L) ≦ detected temperature T, ≦ total radiation temperature TI (H) (i.e.,
(When the hot water temperature is in the normal temperature range) As shown in FIG. 2, the variable flow dividing valve 12 is controlled by the flow dividing ratio control device 14 as follows.

■検出温度T1が高くなるほど、放熱路IOへの放熱側
分流率を増加させ、熱回収用放出側水路7への熱回収側
分流率を減少させる。
(2) As the detected temperature T1 becomes higher, the heat radiation side diversion rate to the heat radiation path IO is increased, and the heat recovery side diversion rate to the heat recovery discharge side water channel 7 is decreased.

■検出温度T1が低くなるほど、放熱路10への放熱側
分流率を減少させ、熱回収用放出側水路7への熱回収側
分流率を増加させる。
(2) As the detected temperature T1 becomes lower, the heat radiation side diversion rate to the heat radiation path 10 is decreased, and the heat recovery side diversion rate to the heat recovery discharge side waterway 7 is increased.

従って、検出温度T、が高くなると、温水路5−放熱路
10への冷却水の分流率が増えて、冷却水の放熱割合が
太き(なり、温水路5の温水温度は速やかに低下する。
Therefore, as the detected temperature T becomes higher, the division rate of cooling water from the hot water channel 5 to the heat radiation path 10 increases, the heat radiation ratio of the cooling water becomes thicker, and the hot water temperature of the hot water channel 5 quickly decreases. .

この結果、熱交換器6の熱回収用吸熱側水路15から出
る給湯水の温度も速やかに下がって適温に調整される。
As a result, the temperature of the hot water coming out of the heat recovery endothermic side water channel 15 of the heat exchanger 6 is also quickly lowered and adjusted to an appropriate temperature.

また、逆に、検出温度T1が低くなると、温水路5→熱
回収用放出側水路7への冷却水の分流率が増えて、冷却
水の放熱割合が小さくなり、温水路5の温水温度は速や
かに上昇する。
Conversely, when the detected temperature T1 becomes lower, the distribution rate of the cooling water from the hot water channel 5 to the heat recovery discharge side water channel 7 increases, the heat radiation rate of the cooling water decreases, and the hot water temperature of the hot water channel 5 decreases. Rise quickly.

この結果、熱交換器6の熱回収用吸熱側水路15から出
る給湯水の温度も速やかに上がって適温に調整される。
As a result, the temperature of the hot water coming out of the heat recovery endothermic water channel 15 of the heat exchanger 6 also rises quickly and is adjusted to an appropriate temperature.

(3)全部放出温度T1(H)<検出温度T、の場合(
即ち、温水温が異常に上昇した場合)第2図に示すよう
に、分流率制御装置14により、可変分流弁12は放熱
路10への分流率が100%で、熱回収用放出側水路7
への分流率が0%になるように制御され、 エンジンEから流出した冷却水は、温水路5から可変分
流弁12を経て全て放熱路10に流れ込み、冷却水中に
蓄熱されたエンジン排出熱を/ステム系外にきわめて大
きな割合で放熱して、迅速にエンジンEの過熱を防止し
、温水路5を流れる温水温を速やかに低下させる。
(3) In the case of total release temperature T1 (H) < detection temperature T, (
In other words, when the hot water temperature rises abnormally), as shown in FIG.
The cooling water flowing out from the engine E flows from the hot water channel 5 through the variable diverter valve 12 into the heat radiation path 10, and the engine exhaust heat stored in the cooling water is removed. / Heat is radiated outside the stem system at a very large rate to quickly prevent overheating of the engine E and quickly lower the temperature of the hot water flowing through the hot water channel 5.

尚、上述のように、本制御においても、ハンチングを避
けるために、温水温が全部放熱温度T1(H)をかなり
下回る温度に下降するまで、放熱側分流率を100%に
継続する。
As described above, in this control as well, in order to avoid hunting, the heat dissipation side division ratio is maintained at 100% until the hot water temperature all falls to a temperature considerably lower than the heat dissipation temperature T1 (H).

但し、放熱路10への分流率が低いままに可変分流弁1
2が置き残されて、エンジンEが停止した場合には、再
始動したときに放熱効率が低いままでエンジンEが過熱
する虞れがあるが、エンジンEが停止する直前に、この
動作を所定のセンサ(例えば、エンジン回転数検出セン
サ、ガス燃料・空気混合器のスロットル弁の位置検出セ
ンサなど)で検出し、可変分流弁12の放熱側分流率を
100%に制御するように構成すると、放熱効率を充分
に高くして始動時のエンジン過熱を円滑に防止できる。
However, when the variable flow diverter valve 1 is
2 is left behind and engine E stops, there is a risk that when engine E is restarted, heat dissipation efficiency remains low and engine E overheats. When configured to detect with a sensor (for example, an engine rotation speed detection sensor, a throttle valve position detection sensor of a gas fuel/air mixer, etc.) and control the heat radiation side division ratio of the variable distribution valve 12 to 100%, Heat dissipation efficiency is made sufficiently high to smoothly prevent engine overheating during startup.

以上のように、本発明は、温度センサに制御装置を介し
て連携した可変分流弁の作用により、エンジン排出熱を
吸熱した冷却水を、放熱器の放熱路と熱交換器の熱回収
用水路とに所定分流率で振り分けることを特徴とするの
で、エンジンEはエンジン発電機に限らず、エンジンコ
ンプレッサ、エンジンウエルダなどの他のエンジン作業
機、或いは、エンジン単独でも差し支えない。
As described above, the present invention allows cooling water that has absorbed engine exhaust heat to be routed between the heat radiation path of the radiator and the heat recovery waterway of the heat exchanger by the action of the variable flow dividing valve linked to the temperature sensor via the control device. The engine E is not limited to an engine generator, but may also be another engine working machine such as an engine compressor or an engine welder, or the engine alone.

また、上記放熱器1は、ラジェータに限らず、コンデン
サやホッパでも良い。
Further, the heat radiator 1 is not limited to a radiator, but may be a condenser or a hopper.

上記温度センサ13は、温水路5・冷水路8・ウォータ
ジャケット2及び排気熱吸収路4から成る冷却水路11
のうちの、いずれに設けても良いが、エンジン排出熱回
収用熱交換器6からの給湯水温を所定に保持しようとす
れば、温水路5の温水温度を測定するのが好ましい。
The temperature sensor 13 includes a cooling water channel 11 consisting of a hot water channel 5, a cold water channel 8, a water jacket 2, and an exhaust heat absorption channel 4.
Although it may be provided in any of the above, it is preferable to measure the temperature of the hot water in the hot water channel 5 in order to maintain the temperature of the hot water supplied from the engine exhaust heat recovery heat exchanger 6 at a predetermined level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示すエンジンの排出熱回収装
置の原理系統図、第2図は温水路の温水温・放熱路への
分流率の関係図、第3図は可変分流弁の他の実施態様を
示す要部系統図、第4図は従来技術を示す第1図相当図
である。 1・・・放熱器、2・・・ウォータジャケット、3・・
・排気熱吸収用熱交換器、4・・・排気熱吸収路、5・
・・温水路、6・・・エンジン排出熱回収用熱交換器、
7・・・6の熱回収用放出側水路、8・・・冷水路、1
0・・・放熱路、12・・・可変分流弁、13・・・温
度センサ、14・・・分流率制御装置、E・・・エンジ
ン、T1・・・検出温度、T1(L)・・・放熱開始温
度、TI(H)・・・全部放熱温度、A・・・放熱制御
用領域。 特許出願人  久保田鉄工株式会社 4−J?    押   入        −1)−
z    *    Jてスで闇ミン\第2図 第1図
Fig. 1 is a diagram of the principle of an engine exhaust heat recovery device showing an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between the hot water temperature of the hot water channel and the diversion ratio to the heat radiation path, and Fig. 3 is a diagram of the variable diversion valve. A main part system diagram showing another embodiment, FIG. 4 is a diagram corresponding to FIG. 1 showing the prior art. 1...Radiator, 2...Water jacket, 3...
・Exhaust heat absorption heat exchanger, 4...Exhaust heat absorption path, 5.
・・Hot water channel, 6.・Heat exchanger for engine exhaust heat recovery,
7...6 heat recovery discharge side waterway, 8...cold waterway, 1
0... Heat radiation path, 12... Variable flow diversion valve, 13... Temperature sensor, 14... Diversion ratio control device, E... Engine, T1... Detection temperature, T1 (L)...・Heat radiation start temperature, TI(H)...All heat radiation temperature, A...Heat radiation control area. Patent applicant: Kubota Iron Works Co., Ltd. 4-J? Oshiiri -1)-
z * Yami Min \Figure 2Figure 1

Claims (1)

【特許請求の範囲】 1、エンジンEのウォータジャケット2に、排気熱吸収
用熱交換器3の排気熱吸収路4・温水路5・エンジン排
出熱回収用熱交換器6の熱回収用放出側水路7・及び冷
水路8を順に直列循環状に連通連結して構成したエンジ
ンの排出熱回収装置において、 エンジン排出熱回収用熱交換器6の熱回収用放出側水路
7に放熱器1の放熱路10を並列状に接続し、 冷水路8・ウォータジャケット2・排気熱吸収路4・及
び温水路5から成るエンジン冷却水路11に対して、熱
回収用放出側水路7と放熱路10とを、可変分流弁12
で可変分流可能に接続し、 エンジン冷却水路11に温度センサ13を設け、温度セ
ンサ13に分流率制御装置14を介して可変分流弁12
を分流率制御可能に連携し、 温度センサ13は、エンジン冷却水路11を通過するエ
ンジン冷却水の水温を検出するものであつて、 その冷却水温の検出温度T_1が、放熱開始用設定温度
T_1(L)とこれよりも高温の全部放熱用設定温度T
_1(H)との間の放熱制御用温度領域A内にある場合
において、その冷却水温の検出温度が高くなるほど、 分流率制御装置14が可変分流弁12を放熱増量側に作
動させて、エンジン冷却水路11から放熱路10への冷
却水の放熱側分流率を増加させるとともに、熱回収用放
出側水路7への冷却水の熱回収側分流率を減少させ、 その冷却水温の検出温度が低くなるほど、 分流率制御装置14が可変分流弁12を放熱減量側に作
動させて、前記放熱側分流率を減少させるとともに、熱
回収側分流率を増加させるように構成したことを特徴と
するエンジンの排出熱回収装置
[Claims] 1. The water jacket 2 of the engine E includes the exhaust heat absorption path 4 of the exhaust heat absorption heat exchanger 3, the hot water channel 5, and the heat recovery discharge side of the engine exhaust heat recovery heat exchanger 6. In an engine exhaust heat recovery device configured by serially connecting a water channel 7 and a cold water channel 8 in a serial circulation manner, the heat dissipation of the radiator 1 is carried out in the heat recovery discharge side water channel 7 of the heat exchanger 6 for engine exhaust heat recovery. The heat recovery discharge side waterway 7 and the heat radiation path 10 are connected in parallel to the engine cooling waterway 11 consisting of the cold waterway 8, the water jacket 2, the exhaust heat absorption path 4, and the hot waterway 5. , variable flow divider valve 12
A temperature sensor 13 is provided in the engine cooling water channel 11, and a variable diverter valve 12 is connected to the temperature sensor 13 via a diverter ratio controller 14.
The temperature sensor 13 detects the temperature of the engine cooling water passing through the engine cooling water channel 11, and the detected temperature T_1 of the cooling water temperature is set to the heat radiation start temperature T_1 ( L) and the set temperature T for total heat dissipation which is higher than this.
_1 (H), the higher the detected temperature of the cooling water, the more the diversion ratio control device 14 operates the variable diversion valve 12 to increase the amount of heat radiation, increasing the temperature of the engine. The heat radiation side division ratio of the cooling water from the cooling water channel 11 to the heat radiation path 10 is increased, and the heat recovery side division ratio of the cooling water to the heat recovery discharge side waterway 7 is decreased, so that the detected temperature of the cooling water is low. Indeed, the engine is characterized in that the division ratio control device 14 operates the variable division valve 12 to the heat radiation loss side to decrease the heat radiation side division ratio and increase the heat recovery side division ratio. Exhaust heat recovery device
JP63258161A 1988-10-04 1988-10-12 Device for recovering exhaust heat of engine Pending JPH02104954A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63258161A JPH02104954A (en) 1988-10-12 1988-10-12 Device for recovering exhaust heat of engine
US07/335,404 US4951871A (en) 1988-10-04 1989-04-10 Sound-proof type engine working machine with waste heat recovery apparatus
DE3912256A DE3912256C2 (en) 1988-10-04 1989-04-14 Soundproof motor-driven work machine with waste heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63258161A JPH02104954A (en) 1988-10-12 1988-10-12 Device for recovering exhaust heat of engine

Publications (1)

Publication Number Publication Date
JPH02104954A true JPH02104954A (en) 1990-04-17

Family

ID=17316383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63258161A Pending JPH02104954A (en) 1988-10-04 1988-10-12 Device for recovering exhaust heat of engine

Country Status (1)

Country Link
JP (1) JPH02104954A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1475532A3 (en) * 2003-05-06 2005-02-09 Denso Corporation Thermoelectric generating device
US6913068B2 (en) * 2001-04-20 2005-07-05 Honda Giken Kogyo Kabushiki Kaisha Engine exhaust heat recovering apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913068B2 (en) * 2001-04-20 2005-07-05 Honda Giken Kogyo Kabushiki Kaisha Engine exhaust heat recovering apparatus
EP1475532A3 (en) * 2003-05-06 2005-02-09 Denso Corporation Thermoelectric generating device

Similar Documents

Publication Publication Date Title
JP3599761B2 (en) Fuel cell warm-up system
JP4069893B2 (en) Thermoelectric generator
JP2003240345A (en) Waste heat recovery hot water supply system
JP2016205751A (en) Cogeneration system and heating equipment
JP4208792B2 (en) Cogeneration system
JPH02104954A (en) Device for recovering exhaust heat of engine
US6749016B2 (en) Brine temperature control apparatus using a three-way proportional valve
JP2014083918A (en) Intake air temperature regulating system
JP2004247096A (en) Cooling for fuel cell vehicle
JP2004084882A (en) Oil temperature controller of transmission
JPH02104953A (en) Device for recovering exhaust heat of engine
JP3594252B2 (en) Cogeneration system
JP3631521B2 (en) Cogeneration system cooling water circuit equipment
JPH02252949A (en) Engine exhaust heat recovery device
JPH02104957A (en) Device for recovering exhaust heat of engine
JP3788354B2 (en) Engine exhaust heat recovery device
JP2688828B2 (en) Cooling system for engine with supercharger
JPH06280722A (en) Heat accumulator for engine
JP2020112084A (en) Heat storage and radiation device for internal combustion engine
JP4408269B2 (en) Waste heat recovery system and cogeneration system
JPH05248707A (en) Heat recoverying device with parallel heat exchanger
JP2575514Y2 (en) Automatic transmission
JPH04334705A (en) Co-generation system
JP3112596B2 (en) Absorption refrigerator and control method thereof
JPH0738654Y2 (en) Waste heat recovery device for water-cooled engine