JP2004247096A - Cooling for fuel cell vehicle - Google Patents

Cooling for fuel cell vehicle Download PDF

Info

Publication number
JP2004247096A
JP2004247096A JP2003033957A JP2003033957A JP2004247096A JP 2004247096 A JP2004247096 A JP 2004247096A JP 2003033957 A JP2003033957 A JP 2003033957A JP 2003033957 A JP2003033957 A JP 2003033957A JP 2004247096 A JP2004247096 A JP 2004247096A
Authority
JP
Japan
Prior art keywords
temperature
heat storage
storage material
fuel cell
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003033957A
Other languages
Japanese (ja)
Inventor
Hitoshi Shimonosono
均 下野園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003033957A priority Critical patent/JP2004247096A/en
Publication of JP2004247096A publication Critical patent/JP2004247096A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure a proper inlet water temperature in a fuel cell even in a service condition that a cooling water temperature significantly fluctuates. <P>SOLUTION: A cooling water outlet 1a and a radiator 3 of the fuel cell 1 are connected through a cooling water outlet passage 5, and a cooling water inlet 1b and the radiator 3 of the fuel cell 1 are connected through a cooling water inlet passage 7. The cooling water inlet passage 7 is provided with a thermal storage medium wherein a low temperature side latent heat storage material 19 having a phase change temperature lower than an inlet target water temperature of the fuel cell 1 and a high temperature side latent heat storage material 21 having a high phase change temperature are arranged in series, and a mixed water temperature sensor 37 detecting the inlet water temperature at the thermal storage medium. A cooling fan 11 blowing air to the radiator 3 and a three-way valve 15 are activated so that the inlet water temperature at the thermal storage medium is between phase change temperatures of the low temperature side and the high temperature side latent heat storage materials 19, 21. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、燃料電池とラジエータとを冷却水循環流路で接続して構成した燃料電池車両の冷却システムに関する。
【0002】
【従来の技術】
従来の技術としては、例えば 特許文献1に記載のものがある。
【0003】
【特許文献1】
特開2000−315513号公報
【0004】
これは、燃料電池冷却用の第1のラジエータと、燃料電池以外の構成部品冷却用の第2のラジエータと、冷却水を循環させるポンプと、ラジエータに冷却風を送風する冷却ファンとを、それぞれ備えている。
【0005】
そして、通常の運転状態では、燃料電池を第1のラジエータ経路で、燃料電池以外の構成部品を第2のラジエータ経路でそれぞれ個別に冷却する。一方、燃料電池が過冷状態にあるとき、例えば燃料電池が比較的低出力つまりその放熱量が比較的少ない場合には、第1のラジエータ経路によって燃料電池と燃料電池以外の構成部品の双方を冷却するように冷却水流路を切り替えるようにしている。
【0006】
これにより、燃料電池の冷却水温度の低下および燃料電池の内部温度の低下を抑え、燃料電池の内部温度の低下による出力低下防止を図っている。
【0007】
また、特許文献2には、蓄熱材を用いて燃料電池の暖機を行う技術が開示されている。
【0008】
【特許文献2】
特開2002−42846号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上記した従来のものは、例えば車両の加速状態など、燃料電池の冷却水温が大きく変動するような運転条件では、燃料電池の入口水温を適正に確保することが困難となっている。
【0010】
そこで、この発明は、冷却水温が大きく変動するような運転条件であっても、燃料電池の入口水温を適正に確保することを目的としている。
【0011】
【課題を解決するための手段】
前記目的を達成するために、この発明は、燃料電池とラジエータとを冷却水循環流路で接続し、この冷却水循環流路に、冷却水を循環させる冷却水ポンプと、前記燃料電池から出た冷却水が前記ラジエータをバイパスするラジエータバイパス流路と、前記燃料電池から出た冷却水を、前記ラジエータと前記ラジエータバイパス流路との少なくともいずれか一方に流れるよう流路を切り替えるラジエータバイパス流路切替弁と、前記燃料電池の冷却水入口温度または同冷却水出口温度に基づき作動して前記ラジエータに送風する冷却ファンとを、それぞれ備える燃料電池車両の冷却システムにおいて、前記燃料電池の冷却水入口部に、燃料電池の入口目標水温よりも低温の相変化温度をもつ低温側潜熱蓄熱材と、同高温の相変化温度を持つ高温側潜熱蓄熱材とを互いに直列に配置した蓄熱材部を設けるとともに、この蓄熱材部の入口水温を検出する水温センサを設け、この水温センサが検出する前記蓄熱材部の入口水温が、前記低温側と高温側の各潜熱蓄熱材の相変化温度の間に入るように、前記冷却ファンおよび前記ラジエータバイパス流路切替弁を作動させる構成としてある。
【0012】
【発明の効果】
この発明によれば、燃料電池の冷却水入口部に、燃料電池の目標入口水温よりも低温の相変化温度をもつ低温側潜熱蓄熱材と、同高温の相変化温度を持つ高温側潜熱蓄熱材とを直列に備えた蓄熱材部を設けるとともに、この蓄熱材部の入口水温を検知する水温センサを設け、蓄熱材部の入口水温が低温側と高温側の各潜熱蓄熱材の相変化温度の間に入るように、ラジエータに送風する冷却ファンおよびラジエータバイパス流路切替弁を作動させるようにしたので、冷却水温が大きく変動するような運転条件であっても、燃料電池の入口水温を適正に確保することができる。
【0013】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づき説明する。
【0014】
図1は、この発明の一実施形態に係わる燃料電池システムの全体構成図である。燃料電池1の冷却水出口部1aとラジエータ3の冷却水入口部3aとを、冷却水出口流路5で接続するとともに、ラジエータ3の冷却水出口部3bと燃料電池1の冷却水入口部1bとを、冷却水入口流路7で接続する。冷却水出口流路5と冷却入出口流路7とで冷却水循環流路を構成している。
【0015】
冷却水入口流路7には、冷却水ポンプ9を設置して冷却水を矢印Wで示す方向に循環させる。ラジエータ3には、ラジエータ3に対して冷却風を送風する冷却ファン11を設けてある。
【0016】
ラジエータ3と冷却水ポンプ9との間の冷却水入口流路7と、冷却水出口流路5とは、ラジエータバイパス流路13で接続する。このラジエータバイパス流路13と冷却水出口流路5との接続部には、燃料電池1から出た冷却水を、ラジエータ3に向かう経路Bとラジエータバイパス流路13に向かう経路Aとの少なくともいずれか一方に流れるよう流路を切り替えるラジエータバイパス流路切替弁としての三方弁15を設ける。
【0017】
また、ラジエータバイパス流路13には、燃焼器と熱交換器とをそれぞれ備えた冷却水加熱器17を設け、冷却水温が燃料電池1の暖機が必要なほど低下している場合、水素などの燃料電池1の燃料を燃焼させて冷却水を加熱する。
【0018】
冷却水ポンプ9と燃料電池入口部1bとの間の冷却水入口流路7には、上流側に、燃料電池1の入口目標水温よりも低温の相変化温度をもつ低温側潜熱蓄熱材19を、下流側に、同高温の相変化温度を持つ高温側潜熱蓄熱材21を、互いに直列に配置して、これらを蓄熱材部とする。
【0019】
また、上記した2つの蓄熱材19,21をバイパスする蓄熱材バイパス流路23を設けるとともに、低温側潜熱蓄熱材19をバイパスする低温側潜熱蓄熱材バイパス流路25を設ける。蓄熱材バイパス流路23および低温側潜熱蓄熱材バイパス流路25のそれぞれの上流側端部と、冷却水入口流路7との接続部には、蓄熱材バイパス流路切替弁としての四方弁27を設置する。
【0020】
すなわち、四方弁27により、冷却水が、低温側潜熱蓄熱材19および高温側潜熱蓄熱材21の双方を流れる経路Dと、低温側潜熱蓄熱材19をバイパスして高温側潜熱蓄熱材21を流れる経路Eと、低温側潜熱蓄熱材19および高温側潜熱蓄熱材21の双方をバイバスする経路Cとに、切り替える。
【0021】
低温側潜熱蓄熱材19および高温側潜熱蓄熱材21には、温度センサ29および31をそれぞれ設けて低温側潜熱蓄熱材19および高温側潜熱蓄熱材21の温度を検出する。また、燃料電池1の冷却水出口部1aと三方弁15との間の冷却水出口流路5には燃料電池出口水温センサ33を、ラジエータバイパス流路13と冷却水入口流路7との接続部と、ラジエータ3との間の冷却水入口流路7には、ラジエータ出口水温センサ35を、冷却水ポンプ9と四方弁27との間の冷却水入口流路7には、混合水温センサ37を、蓄熱材バイパス流路23と冷却水入口流路7との接続部と、燃料電池1の冷却水入口部1bとの間の冷却水入口流路7には、燃料電池入口水温センサ39を、それぞれ設ける。
【0022】
上記した温度センサ29,31および各水温センサ33,35,37,39の検出値は、燃料電池1の負荷とともにコンローラ41が取り込み、コントローラ41は、冷却水ポンプ9,冷却ファン11,三方弁15および四方弁27を駆動制御する。
【0023】
また、ラジエータ3と三方弁15との間の冷却水出口流路5には、リザーバタンク43を設けてある。さらに、燃料電池1の冷却水入口部1bと燃料電池入口水温センサ39との間の冷却水入口流路7と、燃料電池出口水温センサ33と三方弁15との間の冷却水出口流路5とを、ヒータコア45を備えた暖房用冷却水流路47で接続する。この暖房用冷却水流路47と前記した蓄熱材バイパス流路23とを暖房用流路45aで接続している。
【0024】
上記したヒータコア45には、冷却水ポンプ9が吐出する冷却水が流れ込み、空調装置に熱を伝達する。
【0025】
次に作用を説明する。
燃料電池1は、所要の温度(例えば70℃強)の冷却水にて冷却することにより、高い運転効率を確保できる。したがって、燃料電池1の冷却水入口部1bでの冷却水温を、最適な温度に保つことが要求される。また、燃料電池1の電解質膜は、その熱信頼性を確保するために最高冷却水温が決められており、燃料電池1の冷却水出口部1aでの冷却水温をある許容値(例えば90℃)以下に抑える必要がある。
【0026】
この目的のために、コントローラ41は、燃料電池出口水温センサ33およびラジエータ出口水温センサ35の各検出値を取り込んで、三方弁15が、ラジエータ3へ至る経路Bの冷却水量と、ラジエータバイパス流路13に至る経路Aの冷却水量を調整し、これらが混合した後の水温を、混合水温センサ37で検出して一定に保つように制御する。
【0027】
ここで、冷却水ポンプ9に対しては、燃料電池1の負荷(これは冷却水への放熱量にほぼ比例する)に応じて送水量を決めるように制御するので、上記したように燃料電池入口水温を制御すれば、燃料電池出口水温もそれに応じて適正な温度に制御される。
【0028】
三方弁15を、冷却水が全量ラジエータ3側(経路B)へ流れるよう切り替えても、混合水温センサ37が検出する水温が目標値よりも高くなる場合は、冷却ファン11を作動させて、ラジエータ出口水温センサ35が検出するラジエータ出口水温を低下させる。
【0029】
しかしながら、車両の走行状態は非定常で変化するため、燃料電池1の負荷すなわち冷却水への放熱量が変化し、また車速風の変動により、ラジエータ3の放熱量も変化する。
【0030】
この変動に対して、燃料電池入口水温センサ39が検出する燃料電池入口水温を一定に保つために前述のごとく制御するが、三方弁15や冷却水ポンプ9,冷却ファン11の応答性には限りがあるとともに、冷却水量が熱容量として作用するため、燃料電池入口水温は走行状態の変動に対して少なからず変動することになる。
【0031】
そこで、燃料電池1の暖機終了後は、四方弁27を経路Dとなるよう切り替え、冷却水を、低温側潜熱蓄熱材19および高温側潜熱蓄熱材21へ順次通過させた後、燃料電池1へ流入させる。
【0032】
ここで、暖機終了後は、混合水温センサ37が検出する水温は、燃料電池1の入口目標水温近辺になっているため、低温側潜熱蓄熱材19は液化しており、高温側潜熱蓄熱材21は固体となっている。
【0033】
この状態で、車両走行状態が変動し、混合水温センサ37が検出する水温が、低温側潜熱蓄熱材19の相変化温度よりも低くなった場合には、冷却水は、低温側潜熱蓄熱材19を流れる際に、低温側潜熱蓄熱材19の凝固熱を吸収し、低温側潜熱蓄熱材19の相変化温度まで温度上昇して、高温側潜熱蓄熱材31に流出する。
【0034】
高温側潜熱蓄熱材31に流入する冷却水温は、ここでの高温側潜熱蓄熱材31の相変化温度よりも低いため、高温側潜熱蓄熱材31は、融解することなく固体のままで顕熱交換のみを行う。相変化熱量に対して顕熱は小さいので、冷却水はほぼ低温側潜熱蓄熱材19の相変化温度相当で燃料電池1へ流入する。
【0035】
一方、混合水温センサ37が検出する水温が、高温側潜熱蓄熱材21の相変化温度よりも高くなった場合には、冷却水は、低温側潜熱蓄熱材19を流れる際に、低温側潜熱蓄熱材19の相変化温度よりも高いので、低温側潜熱蓄熱材19の凝固は起こらず、顕熱のみの熱交換となる。
【0036】
上記低温側潜熱蓄熱材19と顕熱のみの熱交換を行った冷却水が高温側潜熱蓄熱材21に流入すると、この冷却水は、ここでの高温側潜熱蓄熱材21の相変化温度よりも高いため、高温側潜熱蓄熱材21は融解熱を冷却水から吸収する。したがって、冷却水はほぼ高温側潜熱蓄熱材21の相変化温度相当で燃料電池1へ流入する。
【0037】
このように、三方弁15の作用によって混合された後の混合水温センサ37が検出する水温が大きく変動した場合でも、燃料電池1の入口水温は、低温側潜熱蓄熱材19の相変化温度と、高温側潜熱蓄熱材21の相変化温度との間に入ることになって適正に確保されたものとなり、燃料電池1は常に最適な状態で作動する。
【0038】
次に、燃料電池1の冷間始動時の制御について説明する。
【0039】
冷間始動時は、三方弁15を経路Aとなるよう切り替え、冷却水の全量をラジエータバイパス流路13に流し、冷却水加熱器17を用いて冷却水を加熱する。
【0040】
また、温度センサ31により高温側潜熱蓄熱材21の温度を検出し、この検出温度が混合水温センサ37が検出する水温よりも低ければ、四方弁27を経路Cとなるよう切り替え、冷却水を蓄熱材バイパス流路23に流す。これにより冷却水は、蓄熱材部に熱量を吸収されることなく、燃料電池1の入口水温が迅速に上昇する。
【0041】
燃料電池1が温まって混合水温センサ37が検出する水温が燃料電池1の入口目標水温を上回ったら、四方弁27を経路Dとなるよう切り替え、燃料電池1の排熱を蓄熱材19および21に吸収させる。一方、燃料電池1の入口水温が目標入口水温を下回ったら、 四方弁27を経路Cとなるよう切り替えて、燃料電池1の入口水温を回復させる。すなわち、温度センサ29で検出する低温側潜熱蓄熱材19の温度が、ここでの相変化温度を上回るまでは、燃料電池1の入口水温制御を、四方弁27の切り替えのみで行なう。
【0042】
低温側潜熱蓄熱材19の温度がここでの相変化温度を上回ったら、四方弁27を経路Dとなるよう切り替え、三方弁15および冷却ファン11により、混合水温センサ37が検出する水温を、燃料電池1の目標入口水温になるよう制御し、車速や負荷変動による水温変化を 蓄熱材19,21で吸収する。
【0043】
次に、燃料電池1が運転停止してからの時間が短く、高温側潜熱蓄熱材21の温度が混合水温センサ37が検出する水温よりも高い場合、四方弁27を経路Eとなるよう切り替え、冷却水に高温側潜熱蓄熱材21に溜まった熱量を回収させ、水温上昇をさらに早くさせる。
【0044】
以上の制御内容を、フローチャートにして図2〜図4に示す。
【0045】
まず、冷却水ポンプ9を、燃料電池1の負荷情報に基づき、負荷に比例した流量の冷却水を流すように制御する(ステップ201)。次に、低温側潜熱蓄熱材19の温度を温度センサ29で検出し、その温度が低温側潜熱蓄熱材19の相変化温度よりも低いかどうかを判断する(ステップ203)。ここで、低温側潜熱蓄熱材19の温度がその相変化温度よりも低い場合には、暖機モードに入る。
【0046】
図3に示す暖機モードでは、まず三方弁15を経路Aとなるよう切り替え(ステップ301)、混合水温センサ37が検出する水温が燃料電池1の目標入口水温よりも高いかどうかを判断する(ステップ303)。ここで、混合水温センサ37の検出温度が目標入口水温よりも高い場合には、四方弁27を経路Dとなるよう切り替えて(ステップ305)、冷却水により低温側潜熱蓄熱材19および高温側潜熱蓄熱材21を加温するとともにに、燃料電池1の入口水温を規定値に保つ。
【0047】
逆に、混合水温センサ37の検出温度が、燃料電池1の目標入口水温以下の場合には、高温側潜熱蓄熱材21の温度が混合水温センサ37の検出温度以下かどうかを判断する(ステップ307)。ここで、高温側潜熱蓄熱材21の温度が混合水温センサ37の検出温度以下の場合は、四方弁27を経路Cとなるよう切り替えて(ステップ309)、蓄熱材バイパス流路23に冷却水を流す。
【0048】
一方、高温側潜熱蓄熱材21の温度が混合水温センサ37の検出温度より高い場合、すなわち混合水温センサ37が検出する冷却水温が高温側潜熱蓄熱材21の温度よりも低い場合は、四方弁27を経路Eとなるよう切り替えて(ステップ311)、高温側潜熱蓄熱材21に蓄熱された熱を冷却水が回収し、この冷却水を燃料電池1へ流入させる。
【0049】
前記図2のステップ203で、低温側潜熱蓄熱材19の温度がその相変化温度以上の場合には、燃料電池1の暖機は終了しているので、通常の温度制御モードに進む。
【0050】
通常の温度制御モードでは、図4に示すように、まず、四方弁27を経路Dとなるよう切り替え(ステップ401)、蓄熱材部への経路を選択する。次に、燃料電池出口水温センサ33,ラジエータ出口水温センサ35,混合水温センサ37により、それぞれ冷却水温度を検出し、混合水温センサ37が検出する水温が燃料電池1の入口目標水温となるように、三方弁15の開度を演算して決定する(ステップ403)。
【0051】
その後、三方弁15の開度が経路Bに対して100%でかつ、混合水温センサ37が検出する水温が目標水温以上かどうかを判断する(ステップ405)。ここで、三方弁15の開度が経路Bに対して100%でかつ、混合水温センサ37が検出する水温が目標水温以上の場合は、混合水温センサ37が検出する水温が、目標水温となるよう冷却ファン11を作動させる(ステップ407)。
【0052】
なお、上記した実施形態において、低温側と高温側の各蓄熱材19,21は、互いに直列に配置してあればよく、高温側潜熱蓄熱材21を上流に、低温側潜熱蓄熱材19を下流に、それぞれ配置しても構わない。また、高温側潜熱蓄熱材21の温度が冷却水温より高い場合、高温側潜熱蓄熱材21の熱を放出して冷却水を加熱したが、低温側潜熱蓄熱材19も冷却水の加熱に用いてもよい。
【0053】
以上のように、本実施形態によれば、次のような効果を奏する。
【0054】
(1)燃料電池1の冷却水入口部1bに接続する冷却水入口流路7に、燃料電池1の目標入口水温よりも低温の相変化温度をもつ低温側潜熱蓄熱材19と、高温の相変化温度を持つ高温側潜熱蓄熱材21とを直列に備えた蓄熱材部を設けるとともに、この蓄熱材部の入口水温を検出する混合水温センサ37を設け、蓄熱材部入口水温が低温側と高温側の各潜熱蓄熱材19,21の相変化温度の間に入るように、ラジエータ3に送風する冷却ファン11および三方弁15を作動させるようにしたので、車両負荷や車速などの変動により、蓄熱材部の入口水温が大きく変動した場合にも、燃料電池1の入口水温をほぼ一定に保つことができる。
【0055】
(2)燃料電池1の暖機運転中は、冷却水を蓄熱材バイパス流路23に流すようにしたので、燃料電池1の冷間時からの始動でも、蓄熱材部に無為に熱を取られることなく、水温の昇温性能を確保できる。
【0056】
(3)混合水温センサ37が検出する冷却水温が蓄熱材部の温度よりも低い場合は、冷却水を蓄熱材部を通過させて燃料電池1へ流すようにしたので、冷間始動時に、蓄熱材部に蓄熱された熱を冷却水に回収することができ、水温の昇温性能を向上することができる。
【0057】
(4)高温側潜熱蓄熱材21の温度を検出する温度センサ31を設け、混合水温センサ37が検出する冷却水温が、高温側潜熱蓄熱材21の温度よりも低い場合は、冷却水を低温側潜熱蓄熱材バイパス流路25に流すようにしたので、冷間始動時に、高温側潜熱蓄熱材21に蓄熱された熱を冷却水に回収することができ、水温の昇温性能を向上することができる。このとき、低温側潜熱蓄熱材19に蓄えられた熱量は、燃料電池1の暖機に使用しない。
【0058】
低温側潜熱蓄熱材19の役割は、暖機終了後の過渡走行中、水温が下がったときに放熱して冷却水温度を上げることなので、暖機中に放熱してしまうと, 暖機直後の過渡走行時に冷却水温が下がった場合、加熱する手段がなくなってしまう。そのため、高温側潜熱蓄熱材21のみを暖機時の放熱に用いることにより、暖機後の燃料電池1の運転の安定性も確保することができる。
【0059】
(5)低温側潜熱蓄熱材19を高温側潜熱蓄熱材21の上流側に配置して、低温側潜熱蓄熱材19をバイパスする低温側潜熱蓄熱材バイパス流路25を設けたので、低温側潜熱蓄熱材バイパス流路25の上流側端部を、蓄熱材部バイパス流路23の上流側端部とともに冷却水入口流路7に接続して、この接続部に1つの四方弁27を設置することができ、冷却水路の構造が簡単になる。
【図面の簡単な説明】
【図1】この発明の一実施形態に係わる燃料電池システムの全体構成図である。
【図2】図1の実施形態に係わる燃料電池システムにおける制御動作を示すフローチャートである。
【図3】図2の制御動作における暖機モードを示すフローチャートである。
【図4】図2の制御動作における通常温度制御モードを示すフローチャートである。
【符号の説明】
1 燃料電池
1b 冷却水入口部
3 ラジエータ
5 冷却水出口流路(冷却水循環流路)
7 冷却水入口流路(冷却水循環流路)
9 冷却水ポンプ
11 冷却ファン
13 ラジエータバイパス流路
15 三方弁(ラジエータバイパス流路切替弁)
19 低温側潜熱蓄熱材(蓄熱材部)
21 高温側潜熱蓄熱材(蓄熱材部)
23 蓄熱材バイパス流路
25 低温側潜熱蓄熱材バイパス流路
27 四方弁(蓄熱材バイパス流路切替弁)
31 蓄熱材部の温度を検出する温度センサ
37 蓄熱材部の入口水温を検出する水温センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell vehicle cooling system configured by connecting a fuel cell and a radiator through a cooling water circulation channel.
[0002]
[Prior art]
As a conventional technique, for example, there is one described in Patent Document 1.
[0003]
[Patent Document 1]
JP 2000-315513 A
This includes a first radiator for cooling the fuel cell, a second radiator for cooling components other than the fuel cell, a pump for circulating cooling water, and a cooling fan for blowing cooling air to the radiator. Have.
[0005]
Then, in the normal operation state, the fuel cell is individually cooled by the first radiator path, and the components other than the fuel cell are individually cooled by the second radiator path. On the other hand, when the fuel cell is in a supercooled state, for example, when the fuel cell has a relatively low output, that is, the amount of heat radiation is relatively small, both the fuel cell and components other than the fuel cell are connected by the first radiator path. The cooling water flow path is switched so as to perform cooling.
[0006]
As a result, a decrease in the cooling water temperature of the fuel cell and a decrease in the internal temperature of the fuel cell are suppressed, and a decrease in output due to a decrease in the internal temperature of the fuel cell is prevented.
[0007]
Patent Document 2 discloses a technique for warming up a fuel cell using a heat storage material.
[0008]
[Patent Document 2]
JP 2002-42846 A
[Problems to be solved by the invention]
However, in the above-described conventional apparatus, it is difficult to properly secure the inlet water temperature of the fuel cell under the operating conditions in which the cooling water temperature of the fuel cell fluctuates greatly, for example, in an acceleration state of the vehicle.
[0010]
Accordingly, it is an object of the present invention to appropriately secure the inlet water temperature of the fuel cell even under operating conditions in which the cooling water temperature fluctuates greatly.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a fuel cell and a radiator which are connected by a cooling water circulation flow path, a cooling water pump for circulating cooling water in the cooling water circulation flow path, and a cooling water discharged from the fuel cell. A radiator bypass flow path through which water bypasses the radiator, and a radiator bypass flow path switching valve that switches a flow path such that cooling water flowing from the fuel cell flows to at least one of the radiator and the radiator bypass flow path. And a cooling fan that operates based on the cooling water inlet temperature or the cooling water outlet temperature of the fuel cell and blows air to the radiator, wherein the cooling system of the fuel cell vehicle includes a cooling water inlet portion of the fuel cell. , A low-temperature latent heat storage material with a phase change temperature lower than the target water temperature at the inlet of the fuel cell, and a high-temperature latent heat storage material with the same high phase change temperature A heat storage material portion in which the latent heat storage material and the heat storage material portion are arranged in series is provided, and a water temperature sensor for detecting an inlet water temperature of the heat storage material portion is provided, and the inlet water temperature of the heat storage material portion detected by the water temperature sensor is lower than the low temperature side. The cooling fan and the radiator bypass flow path switching valve are operated so as to be between the phase change temperatures of the latent heat storage materials on the high-temperature side and the high-temperature side.
[0012]
【The invention's effect】
According to the present invention, a low-temperature latent heat storage material having a phase change temperature lower than the target inlet water temperature of the fuel cell and a high-temperature latent heat storage material having the same high phase change temperature are provided at the cooling water inlet of the fuel cell. And a water temperature sensor for detecting the inlet water temperature of the heat storage material section, and the inlet water temperature of the heat storage material section is determined by the phase change temperature of each latent heat storage material on the low temperature side and the high temperature side. The cooling fan that blows to the radiator and the radiator bypass flow path switching valve are operated so that the cooling water temperature can fluctuate. Can be secured.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
FIG. 1 is an overall configuration diagram of a fuel cell system according to one embodiment of the present invention. The cooling water outlet 1a of the fuel cell 1 and the cooling water inlet 3a of the radiator 3 are connected by a cooling water outlet channel 5, and the cooling water outlet 3b of the radiator 3 and the cooling water inlet 1b of the fuel cell 1 are connected. Are connected by a cooling water inlet channel 7. The cooling water outlet passage 5 and the cooling inlet / outlet passage 7 constitute a cooling water circulation passage.
[0015]
A cooling water pump 9 is installed in the cooling water inlet channel 7 to circulate the cooling water in the direction indicated by the arrow W. The radiator 3 is provided with a cooling fan 11 for sending cooling air to the radiator 3.
[0016]
The cooling water inlet passage 7 between the radiator 3 and the cooling water pump 9 and the cooling water outlet passage 5 are connected by a radiator bypass passage 13. At the connection between the radiator bypass flow path 13 and the cooling water outlet flow path 5, cooling water discharged from the fuel cell 1 is supplied to at least one of a path B toward the radiator 3 and a path A toward the radiator bypass flow path 13. A three-way valve 15 is provided as a radiator bypass flow path switching valve that switches a flow path to flow to one side.
[0017]
The radiator bypass passage 13 is provided with a cooling water heater 17 provided with a combustor and a heat exchanger, respectively. When the cooling water temperature is so low that the fuel cell 1 needs to be warmed up, hydrogen or the like is used. The fuel of the fuel cell 1 is burned to heat the cooling water.
[0018]
In the cooling water inlet channel 7 between the cooling water pump 9 and the fuel cell inlet 1b, a low-temperature latent heat storage material 19 having a phase change temperature lower than the inlet target water temperature of the fuel cell 1 is provided upstream. On the downstream side, a high-temperature latent heat storage material 21 having the same high phase change temperature is arranged in series with each other, and these are used as a heat storage material portion.
[0019]
In addition, a heat storage material bypass flow path 23 that bypasses the above-described two heat storage materials 19 and 21 is provided, and a low temperature side latent heat storage material bypass flow path 25 that bypasses the low temperature side latent heat storage material 19 is provided. A four-way valve 27 as a heat storage material bypass flow path switching valve is provided at the connection between the upstream end of each of the heat storage material bypass flow path 23 and the low temperature side latent heat storage material bypass flow path 25 and the cooling water inlet flow path 7. Is installed.
[0020]
That is, the four-way valve 27 allows the cooling water to flow through both the low-temperature latent heat storage material 19 and the high-temperature latent heat storage material 21 and the high-temperature latent heat storage material 21 bypassing the low-temperature latent heat storage material 19. The path is switched to a path E and a path C that bypasses both the low-temperature latent heat storage material 19 and the high-temperature latent heat storage material 21.
[0021]
Temperature sensors 29 and 31 are provided on the low-temperature latent heat storage material 19 and the high-temperature latent heat storage material 21 to detect the temperatures of the low-temperature latent heat storage material 19 and the high-temperature latent heat storage material 21, respectively. Further, a fuel cell outlet water temperature sensor 33 is provided in the cooling water outlet channel 5 between the cooling water outlet 1a of the fuel cell 1 and the three-way valve 15, and a connection between the radiator bypass channel 13 and the cooling water inlet channel 7 is provided. A radiator outlet water temperature sensor 35 is provided in the cooling water inlet channel 7 between the cooling water pump 9 and the four-way valve 27, and a mixed water temperature sensor 37 is provided in the cooling water inlet channel 7 between the cooling water pump 9 and the four-way valve 27. A fuel cell inlet water temperature sensor 39 is provided in the cooling water inlet flow path 7 between the connection between the heat storage material bypass flow path 23 and the cooling water inlet flow path 7 and the cooling water inlet 1b of the fuel cell 1. , Respectively.
[0022]
The detected values of the temperature sensors 29, 31 and the water temperature sensors 33, 35, 37, 39 are taken in by the controller 41 together with the load of the fuel cell 1, and the controller 41 sends the cooling water pump 9, the cooling fan 11, the three-way valve 15 And the drive of the four-way valve 27 is controlled.
[0023]
Further, a reservoir tank 43 is provided in the cooling water outlet flow path 5 between the radiator 3 and the three-way valve 15. Further, a cooling water inlet passage 7 between the cooling water inlet 1b of the fuel cell 1 and the fuel cell inlet water temperature sensor 39, and a cooling water outlet passage 5 between the fuel cell outlet water temperature sensor 33 and the three-way valve 15. Are connected by a cooling water flow path 47 provided with a heater core 45. The heating cooling water channel 47 and the above-described heat storage material bypass channel 23 are connected by a heating channel 45a.
[0024]
The cooling water discharged from the cooling water pump 9 flows into the heater core 45 described above, and transfers heat to the air conditioner.
[0025]
Next, the operation will be described.
The fuel cell 1 can secure high operation efficiency by cooling with cooling water at a required temperature (for example, a little over 70 ° C.). Therefore, it is required that the cooling water temperature at the cooling water inlet 1b of the fuel cell 1 be maintained at an optimum temperature. The maximum cooling water temperature of the electrolyte membrane of the fuel cell 1 is determined in order to ensure its thermal reliability, and the cooling water temperature at the cooling water outlet 1a of the fuel cell 1 is set to a certain allowable value (for example, 90 ° C.). It is necessary to keep it below.
[0026]
For this purpose, the controller 41 takes in the respective detected values of the fuel cell outlet water temperature sensor 33 and the radiator outlet water temperature sensor 35, and sets the three-way valve 15 to the cooling water amount of the path B to the radiator 3 and the radiator bypass flow path. The amount of cooling water in the path A reaching 13 is adjusted, and the temperature of the water after mixing is controlled by the mixed water temperature sensor 37 so as to be kept constant.
[0027]
Here, the cooling water pump 9 is controlled so as to determine the amount of water supply according to the load of the fuel cell 1 (this is substantially proportional to the amount of heat released to the cooling water). If the inlet water temperature is controlled, the fuel cell outlet water temperature is also controlled to an appropriate temperature.
[0028]
If the water temperature detected by the mixed water temperature sensor 37 becomes higher than the target value even when the three-way valve 15 is switched so that the entire amount of cooling water flows to the radiator 3 side (path B), the cooling fan 11 is operated and the radiator is operated. The radiator outlet water temperature detected by the outlet water temperature sensor 35 is reduced.
[0029]
However, since the running state of the vehicle changes in an unsteady state, the load of the fuel cell 1, that is, the amount of heat radiation to the cooling water changes, and the amount of heat radiation of the radiator 3 also changes due to the fluctuation of the vehicle speed wind.
[0030]
In order to keep the fuel cell inlet water temperature detected by the fuel cell inlet water temperature sensor 39 constant, control is performed as described above in response to this fluctuation. In addition, since the amount of cooling water acts as a heat capacity, the fuel cell inlet water temperature fluctuates not less than the fluctuation of the running state.
[0031]
Therefore, after the fuel cell 1 has been warmed up, the four-way valve 27 is switched to the path D, and the cooling water is sequentially passed through the low-temperature latent heat storage material 19 and the high-temperature latent heat storage material 21. Flow into
[0032]
Here, after the warming-up, the water temperature detected by the mixed water temperature sensor 37 is near the target water temperature at the inlet of the fuel cell 1, so that the low-temperature latent heat storage material 19 is liquefied, and the high-temperature latent heat storage material 19 is liquefied. 21 is solid.
[0033]
In this state, if the running state of the vehicle changes and the water temperature detected by the mixed water temperature sensor 37 becomes lower than the phase change temperature of the low-temperature latent heat storage material 19, the cooling water becomes the low-temperature latent heat storage material 19. , The solidification heat of the low-temperature latent heat storage material 19 is absorbed, the temperature rises to the phase change temperature of the low-temperature latent heat storage material 19, and flows out to the high-temperature latent heat storage material 31.
[0034]
Since the temperature of the cooling water flowing into the high-temperature-side latent heat storage material 31 is lower than the phase change temperature of the high-temperature-side latent heat storage material 31 here, the high-temperature-side latent heat storage material 31 does not melt but remains solid and sensible heat exchange. Do only. Since the sensible heat is smaller than the phase change heat quantity, the cooling water flows into the fuel cell 1 substantially at a temperature corresponding to the phase change temperature of the low-temperature side latent heat storage material 19.
[0035]
On the other hand, when the water temperature detected by the mixed water temperature sensor 37 becomes higher than the phase change temperature of the high-temperature side latent heat storage material 21, the cooling water, when flowing through the low-temperature side latent heat storage material 19, cools down. Since the temperature is higher than the phase change temperature of the material 19, the low-temperature side latent heat storage material 19 does not solidify, and only sensible heat is exchanged.
[0036]
When the cooling water having exchanged heat with only the sensible heat with the low-temperature latent heat storage material 19 flows into the high-temperature latent heat storage material 21, the cooling water has a temperature higher than the phase change temperature of the high-temperature latent heat storage material 21. Since it is high, the high-temperature side latent heat storage material 21 absorbs the heat of fusion from the cooling water. Therefore, the cooling water flows into the fuel cell 1 substantially at a temperature corresponding to the phase change temperature of the high-temperature side latent heat storage material 21.
[0037]
As described above, even if the water temperature detected by the mixed water temperature sensor 37 after mixing by the action of the three-way valve 15 fluctuates greatly, the inlet water temperature of the fuel cell 1 is the same as the phase change temperature of the low-temperature side latent heat storage material 19, The temperature is between the phase change temperature of the high-temperature side latent heat storage material 21 and the temperature is properly secured, and the fuel cell 1 always operates in an optimum state.
[0038]
Next, control during cold start of the fuel cell 1 will be described.
[0039]
At the time of cold start, the three-way valve 15 is switched to the path A, the entire amount of the cooling water flows through the radiator bypass passage 13, and the cooling water is heated using the cooling water heater 17.
[0040]
Further, the temperature of the high-temperature side latent heat storage material 21 is detected by the temperature sensor 31. If the detected temperature is lower than the water temperature detected by the mixed water temperature sensor 37, the four-way valve 27 is switched to the path C to store the cooling water. It flows into the material bypass channel 23. As a result, the inlet water temperature of the fuel cell 1 quickly rises without the cooling water being absorbed by the heat storage material portion.
[0041]
When the temperature of the fuel cell 1 is warmed and the water temperature detected by the mixed water temperature sensor 37 exceeds the target water temperature at the inlet of the fuel cell 1, the four-way valve 27 is switched to the path D, and the exhaust heat of the fuel cell 1 is transferred to the heat storage materials 19 and 21. Absorb. On the other hand, when the inlet water temperature of the fuel cell 1 falls below the target inlet water temperature, the four-way valve 27 is switched to the path C to recover the inlet water temperature of the fuel cell 1. That is, until the temperature of the low-temperature side latent heat storage material 19 detected by the temperature sensor 29 exceeds the phase change temperature here, the inlet water temperature control of the fuel cell 1 is performed only by switching the four-way valve 27.
[0042]
When the temperature of the low-temperature-side latent heat storage material 19 exceeds the phase change temperature here, the four-way valve 27 is switched to the path D, and the three-way valve 15 and the cooling fan 11 determine the water temperature detected by the mixed water temperature sensor 37 as fuel. Control is performed so as to reach the target inlet water temperature of the battery 1, and changes in water temperature due to vehicle speed and load fluctuations are absorbed by the heat storage materials 19 and 21.
[0043]
Next, when the time after the operation of the fuel cell 1 is stopped is short and the temperature of the high-temperature side latent heat storage material 21 is higher than the water temperature detected by the mixed water temperature sensor 37, the four-way valve 27 is switched to the path E, The amount of heat accumulated in the high-temperature side latent heat storage material 21 is recovered by the cooling water, and the temperature rise of the water is further accelerated.
[0044]
The above control contents are shown in flowcharts in FIGS.
[0045]
First, the cooling water pump 9 is controlled based on the load information of the fuel cell 1 so that the cooling water flows at a flow rate proportional to the load (step 201). Next, the temperature of the low-temperature latent heat storage material 19 is detected by the temperature sensor 29, and it is determined whether or not the temperature is lower than the phase change temperature of the low-temperature latent heat storage material 19 (step 203). If the temperature of the low-temperature latent heat storage material 19 is lower than the phase change temperature, the warm-up mode is entered.
[0046]
In the warm-up mode shown in FIG. 3, first, the three-way valve 15 is switched to the path A (step 301), and it is determined whether or not the water temperature detected by the mixed water temperature sensor 37 is higher than the target inlet water temperature of the fuel cell 1 (step 301). Step 303). Here, when the detected temperature of the mixed water temperature sensor 37 is higher than the target inlet water temperature, the four-way valve 27 is switched so as to be in the path D (step 305), and the low-temperature latent heat storage material 19 and the high-temperature latent heat are switched by the cooling water. While heating the heat storage material 21, the inlet water temperature of the fuel cell 1 is maintained at a specified value.
[0047]
Conversely, when the detected temperature of the mixed water temperature sensor 37 is equal to or lower than the target inlet water temperature of the fuel cell 1, it is determined whether the temperature of the high-temperature side latent heat storage material 21 is equal to or lower than the detected temperature of the mixed water temperature sensor 37 (step 307). ). Here, when the temperature of the high-temperature side latent heat storage material 21 is equal to or lower than the detection temperature of the mixed water temperature sensor 37, the four-way valve 27 is switched so as to be in the path C (step 309), and the cooling water is supplied to the heat storage material bypass flow path 23. Shed.
[0048]
On the other hand, when the temperature of the high-temperature side latent heat storage material 21 is higher than the detection temperature of the mixed water temperature sensor 37, that is, when the cooling water temperature detected by the mixed water temperature sensor 37 is lower than the temperature of the high-temperature side latent heat storage material 21, the four-way valve 27 Is switched to the path E (step 311), the cooling water recovers the heat stored in the high-temperature side latent heat storage material 21, and the cooling water flows into the fuel cell 1.
[0049]
If the temperature of the low-temperature side latent heat storage material 19 is equal to or higher than the phase change temperature in step 203 of FIG. 2, the warm-up of the fuel cell 1 has been completed, and the process proceeds to the normal temperature control mode.
[0050]
In the normal temperature control mode, as shown in FIG. 4, first, the four-way valve 27 is switched to the path D (step 401), and the path to the heat storage material section is selected. Next, the coolant temperature is detected by the fuel cell outlet water temperature sensor 33, the radiator outlet water temperature sensor 35, and the mixed water temperature sensor 37, and the water temperature detected by the mixed water temperature sensor 37 becomes the inlet target water temperature of the fuel cell 1. Then, the opening of the three-way valve 15 is calculated and determined (step 403).
[0051]
Thereafter, it is determined whether or not the opening of the three-way valve 15 is 100% with respect to the path B and the water temperature detected by the mixed water temperature sensor 37 is equal to or higher than the target water temperature (step 405). Here, when the opening of the three-way valve 15 is 100% with respect to the path B and the water temperature detected by the mixed water temperature sensor 37 is equal to or higher than the target water temperature, the water temperature detected by the mixed water temperature sensor 37 becomes the target water temperature. The cooling fan 11 is operated (step 407).
[0052]
In the above-described embodiment, the low-temperature side and high-temperature side heat storage materials 19 and 21 may be arranged in series with each other, and the high-temperature side latent heat storage material 21 is located upstream and the low-temperature side latent heat storage material 19 is located downstream. May be arranged. When the temperature of the high-temperature side latent heat storage material 21 is higher than the cooling water temperature, the heat of the high-temperature side latent heat storage material 21 is released to heat the cooling water, but the low-temperature side latent heat storage material 19 is also used for heating the cooling water. Is also good.
[0053]
As described above, according to the present embodiment, the following effects can be obtained.
[0054]
(1) A low-temperature-side latent heat storage material 19 having a phase change temperature lower than the target inlet water temperature of the fuel cell 1 and a high-temperature phase in the cooling water inlet passage 7 connected to the cooling water inlet 1b of the fuel cell 1. A heat storage material section having a high-temperature side latent heat storage material 21 having a changing temperature in series is provided, and a mixed water temperature sensor 37 for detecting an inlet water temperature of the heat storage material section is provided. The cooling fan 11 and the three-way valve 15 that blow air to the radiator 3 are operated so as to be between the phase change temperatures of the latent heat storage materials 19 and 21 on the side. The inlet water temperature of the fuel cell 1 can be kept substantially constant even when the inlet water temperature of the material part fluctuates greatly.
[0055]
(2) During the warm-up operation of the fuel cell 1, the cooling water is caused to flow through the heat storage material bypass channel 23, so that even when the fuel cell 1 is started from a cold time, heat is unnecessarily taken to the heat storage material part. Without increasing the temperature, the performance of increasing the water temperature can be secured.
[0056]
(3) When the cooling water temperature detected by the mixed water temperature sensor 37 is lower than the temperature of the heat storage material portion, the cooling water is caused to flow through the heat storage material portion and flow to the fuel cell 1. The heat stored in the material portion can be recovered by the cooling water, and the performance of increasing the water temperature can be improved.
[0057]
(4) A temperature sensor 31 for detecting the temperature of the high-temperature latent heat storage material 21 is provided. If the cooling water temperature detected by the mixed water temperature sensor 37 is lower than the temperature of the high-temperature latent heat storage material 21, the cooling water Since the latent heat storage material is bypassed to the latent heat storage material bypass flow path 25, the heat stored in the high-temperature side latent heat storage material 21 can be recovered into the cooling water at the time of a cold start, and the performance of increasing the water temperature can be improved. it can. At this time, the amount of heat stored in the low-temperature side latent heat storage material 19 is not used for warming up the fuel cell 1.
[0058]
The role of the low-temperature latent heat storage material 19 is to increase the cooling water temperature by radiating heat when the water temperature decreases during transient running after the warm-up. If the temperature of the cooling water drops during transient running, there is no longer any means for heating. Therefore, by using only the high-temperature-side latent heat storage material 21 for heat radiation during warm-up, the operation stability of the fuel cell 1 after warm-up can be ensured.
[0059]
(5) Since the low-temperature latent heat storage material 19 is disposed upstream of the high-temperature latent heat storage material 21 and the low-temperature latent heat storage material bypass channel 25 that bypasses the low-temperature latent heat storage material 19 is provided, the low-temperature latent heat storage material 19 is provided. Connecting the upstream end of the heat storage material bypass flow path 25 to the cooling water inlet flow path 7 together with the upstream end of the heat storage material part bypass flow path 23, and installing one four-way valve 27 at this connection portion. And the structure of the cooling water channel is simplified.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a fuel cell system according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a control operation in the fuel cell system according to the embodiment of FIG.
FIG. 3 is a flowchart showing a warm-up mode in the control operation of FIG. 2;
FIG. 4 is a flowchart showing a normal temperature control mode in the control operation of FIG. 2;
[Explanation of symbols]
Reference Signs List 1 fuel cell 1b cooling water inlet 3 radiator 5 cooling water outlet flow path (cooling water circulation flow path)
7 Cooling water inlet channel (cooling water circulation channel)
9 cooling water pump 11 cooling fan 13 radiator bypass passage 15 three-way valve (radiator bypass passage switching valve)
19 Low-temperature side latent heat storage material (heat storage material part)
21 High-temperature side latent heat storage material (heat storage material section)
23 heat storage material bypass channel 25 low temperature side latent heat storage material bypass channel 27 four-way valve (heat storage material bypass channel switching valve)
31 Temperature sensor for detecting the temperature of the heat storage material section 37 Water temperature sensor for detecting the inlet water temperature of the heat storage material section

Claims (5)

燃料電池とラジエータとを冷却水循環流路で接続し、この冷却水循環流路に、冷却水を循環させる冷却水ポンプと、前記燃料電池から出た冷却水が前記ラジエータをバイパスするラジエータバイパス流路と、前記燃料電池から出た冷却水を、前記ラジエータと前記ラジエータバイパス流路との少なくともいずれか一方に流れるよう流路を切り替えるラジエータバイパス流路切替弁と、前記燃料電池の冷却水入口温度または同冷却水出口温度に基づき作動して前記ラジエータに送風する冷却ファンとを、それぞれ備える燃料電池車両の冷却システムにおいて、前記燃料電池の冷却水入口部に、燃料電池の入口目標水温よりも低温の相変化温度をもつ低温側潜熱蓄熱材と、同高温の相変化温度を持つ高温側潜熱蓄熱材とを互いに直列に配置した蓄熱材部を設けるとともに、この蓄熱材部の入口水温を検出する水温センサを設け、この水温センサが検出する前記蓄熱材部の入口水温が、前記低温側と高温側の各潜熱蓄熱材の相変化温度の間に入るように、前記冷却ファンおよび前記ラジエータバイパス流路切替弁を作動させることを特徴とする燃料電池車両の冷却システム。A fuel cell and a radiator are connected by a cooling water circulation flow path, a cooling water pump that circulates cooling water, a cooling water pump that circulates cooling water, and a radiator bypass flow path through which the cooling water discharged from the fuel cell bypasses the radiator. A radiator bypass flow path switching valve that switches a flow path of cooling water discharged from the fuel cell to at least one of the radiator and the radiator bypass flow path, and a cooling water inlet temperature of the fuel cell. A cooling fan that operates based on the cooling water outlet temperature and blows the radiator to the radiator, wherein the cooling water inlet of the fuel cell has a phase lower than the target water temperature of the fuel cell. A low-temperature latent heat storage material with a change temperature and a high-temperature latent heat storage material with the same high phase change temperature are arranged in series with each other. And a water temperature sensor for detecting an inlet water temperature of the heat storage material portion. The water temperature sensor detects the inlet water temperature of the heat storage material portion, and the phase change of the latent heat storage material on the low temperature side and the high temperature side. A cooling system for a fuel cell vehicle, wherein the cooling fan and the radiator bypass flow path switching valve are operated so as to enter a temperature range. 請求項1記載の燃料電池車両の冷却システムにおいて、前記蓄熱材部をバイパスする蓄熱材バイパス流路を設けるとともに、冷却水が、前記蓄熱材バイパス流路に流れる状態と前記蓄熱材部に流れる状態とのいずれかに流路を切り替える蓄熱材バイパス流路切替弁を設け、前記燃料電池の暖機運転中は、冷却水を前記蓄熱材バイパス流路に流すよう前記蓄熱材バイパス流路切替弁を切り替えることを特徴とする燃料電池車両の冷却システム。2. The cooling system for a fuel cell vehicle according to claim 1, further comprising: a heat storage material bypass flow path that bypasses the heat storage material part, and a state in which cooling water flows through the heat storage material bypass flow path and the heat storage material part. A heat storage material bypass flow path switching valve for switching the flow path is provided in any one of the above, and during the warm-up operation of the fuel cell, the heat storage material bypass flow path switching valve is configured to flow cooling water to the heat storage material bypass flow path. A cooling system for a fuel cell vehicle characterized by switching. 請求項2記載の燃料電池車両の冷却システムにおいて、前記蓄熱材部の温度を検出する温度センサを設け、前記水温センサが検出する冷却水温が前記温度センサが検出する蓄熱材部の温度よりも低い場合は、冷却水を前記蓄熱材部に通過させてから前記燃料電池へ流すよう前記蓄熱材バイパス流路切替弁を切り替えることを特徴とする燃料電池車両の冷却システム。3. The cooling system for a fuel cell vehicle according to claim 2, further comprising a temperature sensor for detecting a temperature of the heat storage material portion, wherein a cooling water temperature detected by the water temperature sensor is lower than a temperature of the heat storage material portion detected by the temperature sensor. In this case, the cooling system for the fuel cell vehicle is characterized in that the heat storage material bypass flow path switching valve is switched so that the cooling water passes through the heat storage material part and then flows to the fuel cell. 請求項3記載の燃料電池車両の冷却システムにおいて、冷却水が、前記蓄熱材部のうち前記低温側潜熱蓄熱材をバイパスするとともに、高温側潜熱蓄熱材へ流入する低温側潜熱蓄熱材バイパス流路を設け、前記蓄熱材部の温度として前記高温側潜熱蓄熱材の温度を検出する温度センサを設け、前記水温センサが検出する冷却水温が、前記温度センサが検出する高温側潜熱蓄熱材の温度よりも低い場合は、冷却水を前記低温側潜熱蓄熱材バイパス流路に流すよう前記蓄熱材バイパス流路切替弁を切り替えることを特徴とする燃料電池車両の冷却システム。4. The cooling system for a fuel cell vehicle according to claim 3, wherein the cooling water bypasses the low-temperature latent heat storage material of the heat storage material section and flows into the high-temperature latent heat storage material. Provided, a temperature sensor for detecting the temperature of the high-temperature side latent heat storage material as the temperature of the heat storage material portion, the cooling water temperature detected by the water temperature sensor is higher than the temperature of the high-temperature side latent heat storage material detected by the temperature sensor The cooling system for the fuel cell vehicle, wherein the cooling water is switched to the low-temperature side latent heat storage material bypass flow passage when the cooling water is also low. 請求項4記載の燃料電池車両の冷却システムにおいて、前記低温側潜熱蓄熱材を前記高温側潜熱蓄熱材の上流側に配置し、この低温側潜熱蓄熱材をバイパスする前記低温側潜熱蓄熱材バイパス流路の上流側端部に、前記蓄熱材バイパス流路切替弁を配置してこれを四方弁で構成したことを特徴とする燃料電池車両の冷却システム。5. The cooling system for a fuel cell vehicle according to claim 4, wherein the low-temperature latent heat storage material is disposed upstream of the high-temperature latent heat storage material, and the low-temperature latent heat storage material bypass flow bypasses the low-temperature latent heat storage material. A cooling system for a fuel cell vehicle, characterized in that the heat storage material bypass flow path switching valve is arranged at an upstream end of a road and is constituted by a four-way valve.
JP2003033957A 2003-02-12 2003-02-12 Cooling for fuel cell vehicle Pending JP2004247096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003033957A JP2004247096A (en) 2003-02-12 2003-02-12 Cooling for fuel cell vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033957A JP2004247096A (en) 2003-02-12 2003-02-12 Cooling for fuel cell vehicle

Publications (1)

Publication Number Publication Date
JP2004247096A true JP2004247096A (en) 2004-09-02

Family

ID=33019780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033957A Pending JP2004247096A (en) 2003-02-12 2003-02-12 Cooling for fuel cell vehicle

Country Status (1)

Country Link
JP (1) JP2004247096A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064955A1 (en) * 2004-12-15 2006-06-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2006185657A (en) * 2004-12-27 2006-07-13 Toyota Motor Corp Warming-up device of fuel cell stack
WO2007139059A1 (en) * 2006-05-30 2007-12-06 Kabushiki Kaisha Toshiba Fuel cell
JP2009016173A (en) * 2007-07-04 2009-01-22 Espec Corp Fuel cell system, control method of fuel cell system, fuel cell system control program, computer readable recording medium recording the program capable
KR100911591B1 (en) 2007-12-14 2009-08-10 현대자동차주식회사 Heat and air control method of fuel-cell system at high power load
WO2010083927A1 (en) * 2009-01-23 2010-07-29 Robert Bosch Gmbh Climate control of electrochemical energy store by means of controllable latent heat store
US20110086279A1 (en) * 2008-04-18 2011-04-14 Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. Fluid cooling apparatus for a fuel cell device and fuel cell system
FR2984611A1 (en) * 2011-12-20 2013-06-21 Renault Sa HEAT STORAGE DEVICE FOR HEATING A VEHICLE BATTERY
KR20180045716A (en) * 2016-10-26 2018-05-04 현대자동차주식회사 Thermal management system for fuel cell vehicle and control method thereof
KR20190051270A (en) * 2017-11-06 2019-05-15 현대자동차주식회사 COD Heater Using PCM, Driving System and Method Thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8142946B2 (en) 2004-12-15 2012-03-27 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2006064955A1 (en) * 2004-12-15 2006-06-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8420270B2 (en) 2004-12-15 2013-04-16 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2006185657A (en) * 2004-12-27 2006-07-13 Toyota Motor Corp Warming-up device of fuel cell stack
WO2007139059A1 (en) * 2006-05-30 2007-12-06 Kabushiki Kaisha Toshiba Fuel cell
JP2009016173A (en) * 2007-07-04 2009-01-22 Espec Corp Fuel cell system, control method of fuel cell system, fuel cell system control program, computer readable recording medium recording the program capable
KR100911591B1 (en) 2007-12-14 2009-08-10 현대자동차주식회사 Heat and air control method of fuel-cell system at high power load
US20110086279A1 (en) * 2008-04-18 2011-04-14 Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. Fluid cooling apparatus for a fuel cell device and fuel cell system
WO2010083927A1 (en) * 2009-01-23 2010-07-29 Robert Bosch Gmbh Climate control of electrochemical energy store by means of controllable latent heat store
FR2984611A1 (en) * 2011-12-20 2013-06-21 Renault Sa HEAT STORAGE DEVICE FOR HEATING A VEHICLE BATTERY
WO2013093319A1 (en) * 2011-12-20 2013-06-27 Renault S.A.S. Heat-storage device for heating a vehicle battery
KR20180045716A (en) * 2016-10-26 2018-05-04 현대자동차주식회사 Thermal management system for fuel cell vehicle and control method thereof
CN107994242A (en) * 2016-10-26 2018-05-04 现代自动车株式会社 Heat management system and its control method for fuel-cell vehicle
CN107994242B (en) * 2016-10-26 2021-06-29 现代自动车株式会社 Thermal management system for fuel cell vehicle and control method thereof
US11139491B2 (en) 2016-10-26 2021-10-05 Hyundai Motor Company Thermal management system for fuel cell vehicle and control method thereof
KR102485321B1 (en) * 2016-10-26 2023-01-06 현대자동차주식회사 Thermal management system for fuel cell vehicle and control method thereof
US11843141B2 (en) 2016-10-26 2023-12-12 Hyundai Motor Company Thermal management system for fuel cell vehicle and control method thereof
KR20190051270A (en) * 2017-11-06 2019-05-15 현대자동차주식회사 COD Heater Using PCM, Driving System and Method Thereof
KR102484857B1 (en) * 2017-11-06 2023-01-05 현대자동차주식회사 COD Heater Using PCM, Driving System and Method Thereof

Similar Documents

Publication Publication Date Title
JP4023472B2 (en) Thermoelectric generator
JP2007294305A (en) Cooling system of fuel cell
JP2007016718A (en) Engine cooling device
US8132422B2 (en) Cogeneration system
CN101180757A (en) Fuel cell system
JP2006179198A (en) Fuel cell system
JP2004247096A (en) Cooling for fuel cell vehicle
JPH11313406A (en) Cooler for hybrid vehicle
JP2007064526A (en) Heat recovery device, and cogeneration system
JP2010025440A (en) Air conditioning system
CN110871712B (en) Thermal management system for a vehicle
JP2003249251A (en) Fuel cell system
JP4396351B2 (en) Thermoelectric generator
JP2003314366A (en) Engine exhaust gas reuse apparatus
JP4208792B2 (en) Cogeneration system
JP2011052662A (en) Waste heat recovery device for vehicle
US11897315B2 (en) Thermal management system for battery electric vehicle
JP4976222B2 (en) Waste heat recovery device
JP5182561B2 (en) Heat utilization device
JP4833707B2 (en) Waste heat recovery device
JP2012197012A (en) Air conditioning system
JP5445811B2 (en) Cogeneration system and storage tank side unit
JP2006216302A (en) Cooling system of fuel cell and cooling method
JP2011257130A (en) Apparatus for recovering exhaust heat
JPH06280722A (en) Heat accumulator for engine