JPH02104953A - Device for recovering exhaust heat of engine - Google Patents

Device for recovering exhaust heat of engine

Info

Publication number
JPH02104953A
JPH02104953A JP63258160A JP25816088A JPH02104953A JP H02104953 A JPH02104953 A JP H02104953A JP 63258160 A JP63258160 A JP 63258160A JP 25816088 A JP25816088 A JP 25816088A JP H02104953 A JPH02104953 A JP H02104953A
Authority
JP
Japan
Prior art keywords
heat
temperature
heat recovery
engine
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63258160A
Other languages
Japanese (ja)
Inventor
Isamu Kubomoto
久保元 勇
Kazuhiko Ogura
小倉 和彦
Tomoaki Imamura
友昭 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63258160A priority Critical patent/JPH02104953A/en
Publication of JPH02104953A publication Critical patent/JPH02104953A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To prevent the thermal breakage of an exhaust-heat absorbing heat exchanger by operating a variable flow-dividing valve more to a heat radiation increasing side by means of a flow-dividing rate control device as a heat recovering liquid temperature gets higher and increasing the flow-dividing rate on the heat radiating side of cooling water. CONSTITUTION:If the heat recovering quantity by a heat recovering device is reduced by an external factor reducing the heat radiating quantity of an engine exhaust heat from a heat exchanger 6 or when the load of an engine E is increased increasing the engine exhaust heat itself, the temperature of cooling water passing through the discharge-side water passage 7 side of the engine exhaust-heat recovering heat exchanger 6 is increased, also increasing the temperature of a heat recovering liquid of a heat-recovering heat absorbing side liquid passage 15 for changing heat therewith. This is detected by a temperature sensor 30 and a variable flow-dividing valve 12 is operated to a heat radiating rate increasing side by a signal from a flow-dividing rate control device 14, to make cooling water dividingly flow in a larger quantity on the heat radiating passage 10 side whereas in a smaller quantity on the heat-recovering discharge-side water passage 7 side thereby, increasing the heat radiating rate of the exhaust heat of the engine E to restrain the increase in temperature of the heat recovering liquid. Thus, the thermal breakage of the exhaust-heat absorbing heat exchanger can be prevented.

Description

【発明の詳細な説明】 本発明は、エンジン本体熱や排気熱などのエンジンから
の排出熱を回収する装置に関し、エンジン負荷や熱回収
負荷が変動しても、エンジン排出熱回収用熱交換器から
取り出す液温を一定の範囲に保持できるものを提供する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for recovering exhaust heat from an engine such as engine body heat and exhaust heat, and the present invention relates to a device for recovering exhaust heat from an engine such as engine body heat and exhaust heat. To provide a device that can maintain the temperature of liquid taken out from a liquid within a certain range.

〈従来技術〉 本発明の対象とするエンジンの排出熱回収装置の基本構
造は、第1図又は第4図に示すように、エンジンEのウ
ォータジャケット2に、排気熱吸収用熱交換器3の排気
熱吸収路4・温水路5・エンジン排出熱回収用熱交換器
6の熱回収用放出側水路7・及び冷水路8を順に直列循
環状に連通連結して構成した形式のものである。
<Prior art> As shown in FIG. 1 or 4, the basic structure of the engine exhaust heat recovery device to which the present invention is applied is that a heat exchanger 3 for absorbing exhaust heat is installed in the water jacket 2 of the engine E. The exhaust heat absorption path 4, the hot water path 5, the heat recovery discharge side water path 7 of the engine exhaust heat recovery heat exchanger 6, and the cold water path 8 are connected in series in a circulating manner.

この形式の従来技術としては、米国特許第422621
4号公報(第4図参照)に示すように、エンジンEと発
電機Gとを連動連結し、発電機Gで発電を行うとともに
、ウォータジャケット2で吸熱したエンジン本体熱と、
排気熱吸収路4で吸熱した排気熱とを、エンジン排出熱
回収用熱交換器6内で放熱して、同然交換器6の熱回収
用吸熱側液路15からエンジンEの排出熱を回収するよ
うに構成したものがある。
As a prior art of this type, US Pat. No. 4,226,21
As shown in Publication No. 4 (see Figure 4), an engine E and a generator G are interlocked, and the generator G generates electricity, and the engine body heat absorbed by the water jacket 2,
The exhaust heat absorbed in the exhaust heat absorption path 4 is radiated in the engine exhaust heat recovery heat exchanger 6, and the exhaust heat of the engine E is recovered from the heat recovery side liquid path 15 of the heat exchanger 6. There is something configured like this.

尚、符号50は、エンジンEの始動時に、冷却水路を温
水路5から直接的に冷水路8に短絡させて、早期にエン
ジンEを暖機できるようにするための切り換え用三方弁
である。
Reference numeral 50 designates a three-way switching valve that short-circuits the cooling waterway directly from the hot waterway 5 to the cold waterway 8 when the engine E is started, so that the engine E can be warmed up quickly.

〈発明が解決しようとする課題〉 しかしながら、上記従来技術では、季節的要因や人数的
要因などの外部要因によってエンジン排出熱回収用熱交
換器6からの熱回収量が減少した場合、エンジンEの排
出熱が当該熱交換器6で熱回収液側に放熱する割合は低
下するので、冷却水温が急上昇してエンジンEが過熱す
るうえ、排気熱吸収用熱交換器3に急激な熱応力がかか
り、熱交換器3が熱破損する虞れがある。
<Problems to be Solved by the Invention> However, in the above conventional technology, when the amount of heat recovered from the engine exhaust heat recovery heat exchanger 6 decreases due to external factors such as seasonal factors and number of people, the engine E Since the rate at which the exhaust heat is radiated to the heat recovery liquid side in the heat exchanger 6 decreases, the cooling water temperature sharply increases and the engine E overheats, and a sudden thermal stress is applied to the exhaust heat absorption heat exchanger 3. , there is a risk that the heat exchanger 3 will be thermally damaged.

また、熱回収量が一定でも、エンジン発電機の負荷が増
大した場合には、エンジンEの排出熱が増えるにも拘わ
らず、放熱割合はそれに見合っては増えないので、やは
り冷却水温の急上昇により排気熱吸収用熱交換器3が熱
破損する虞れがある。
In addition, even if the amount of heat recovery is constant, if the load on the engine generator increases, even though the heat emitted from engine E increases, the heat radiation rate does not increase commensurately, so the sudden increase in cooling water temperature will cause There is a risk that the heat exchanger 3 for absorbing exhaust heat may be thermally damaged.

しかも、上述のように、熱交換器6がらの熱回収量が減
少したり、エンジンEの負荷が増大すると、熱交換器6
の熱回収用吸熱側液路15からの出湯温度が急速に高く
なり、 逆に、熱交換器6からの熱回収量が増大したり、エンジ
ンEの負荷が減少すると、熱交換器6の熱回収用吸熱側
液路15からの出湯温度が急速に低くなって、 熱交換器6の熱回収負荷及びエンジンEの負荷の変動に
よって出湯温度が急速に変化して一定しないという問題
点がある。
Moreover, as described above, when the amount of heat recovered from the heat exchanger 6 decreases or the load on the engine E increases, the heat exchanger 6
When the temperature of the hot water discharged from the heat recovery endothermic liquid path 15 increases rapidly, and conversely, when the amount of heat recovered from the heat exchanger 6 increases or the load on the engine E decreases, the heat of the heat exchanger 6 increases. There is a problem in that the temperature of hot water discharged from the heat-absorbing liquid path 15 for recovery rapidly decreases, and the temperature of hot water rapidly changes and is not constant due to fluctuations in the heat recovery load of the heat exchanger 6 and the load of the engine E.

本発明は、熱交換器の熱回収負荷やエンジンの負荷が変
動した場合でも、エンジン排出熱回収用熱交換器の吸熱
側液路から出る熱回収液温を一定温度範囲に保持すると
ともに、排気熱吸収用熱交換器が熱破損することを防止
することを技術的課題とする。
The present invention maintains the temperature of the heat recovery liquid exiting from the heat absorption side liquid path of the heat exchanger for engine exhaust heat recovery within a constant temperature range even when the heat recovery load of the heat exchanger or the engine load changes, and The technical challenge is to prevent thermal damage to heat exchangers for heat absorption.

〈課題を解決するための手段〉 上記課題を解消する手段を、実施例に対応する図面を用
いて以下に説明する。
<Means for Solving the Problems> Means for solving the above problems will be described below using drawings corresponding to embodiments.

即ち、本発明は、前記基本構造のエンジンの排出熱回収
装置において、 エンジン排出熱回収用熱交換器6の熱回収用放出側水路
7に放熱器1の放熱路10を並列状に接続し、 冷水路8・ウォータジャケット2・排気熱吸収路4・及
び温水路5から成るエンジン冷却水路11に対して、熱
回収用放出側水路7と放熱路10とを、可変分流弁12
で可変分流可能に接続し、エンジン排出熱回収用熱交換
器6の熱回収用吸熱側液路15の出口側に温度センサ3
0を設け、温度センサ30に分流率制御装置14を介し
て可変分流弁12を分流率制御可能に連携し、温度セン
サ30は、熱回収用吸熱側液路15を通過した熱回収液
の液温を検出するものであって、その熱回収液温の検出
温度T、が、放熱開始用設定湯度Tt(L)とこれより
も高温の全部放熱用設定温度T2(H)との間の放熱制
御用温度領域A内にある場合において、 その熱回収液温の検出温度が高くなるほど、分流率制御
装置14が可変分流弁12を放熱増量側に作動させて、
エンジン冷却水路11から放熱路IOへの冷却水の放熱
側分流率を増加させるとともに、熱回収用放出側水路7
への冷却水の熱回収側分流率を減少させ、 その熱回収液温の検出温度が低くなるほど、分流率制御
装置14が可変分流弁12を放熱減量側に作動させて、
前記放熱側分流率を減少させるとともに、熱回収側分流
率を増加させるように構成したことを特徴とするもので
ある。
That is, the present invention provides an engine exhaust heat recovery device having the above-mentioned basic structure, in which the heat radiation path 10 of the radiator 1 is connected in parallel to the heat recovery discharge side water channel 7 of the engine exhaust heat recovery heat exchanger 6, An engine cooling waterway 11 consisting of a cold waterway 8, a water jacket 2, an exhaust heat absorption path 4, and a hot waterway 5 is connected to a heat recovery discharge side waterway 7 and a heat radiation path 10 using a variable flow divider valve 12.
A temperature sensor 3 is connected to the outlet side of the endothermic liquid path 15 for heat recovery of the heat exchanger 6 for engine exhaust heat recovery.
0 is provided, and the variable flow dividing valve 12 is connected to the temperature sensor 30 via the flow dividing ratio control device 14 so as to be able to control the flow dividing ratio. The detected temperature T of the heat recovery liquid temperature is between the hot water temperature set for starting heat radiation Tt (L) and the higher temperature set temperature T2 (H) for total heat radiation. When the temperature is within the heat radiation control temperature range A, the higher the detected temperature of the heat recovery liquid temperature is, the more the division ratio control device 14 operates the variable flow division valve 12 to increase the heat radiation amount.
The heat radiation side distribution rate of cooling water from the engine cooling waterway 11 to the heat radiation path IO is increased, and the heat recovery discharge side waterway 7
The division ratio of the cooling water to the heat recovery side is decreased, and the lower the detected temperature of the heat recovery liquid is, the division ratio control device 14 operates the variable division valve 12 to the heat radiation loss side,
The present invention is characterized in that the heat radiation side division ratio is decreased and the heat recovery side division ratio is increased.

〈作用〉 熱回収用吸熱側液路15の熱回収液温T、が、上記放熱
制御用温度領域A内にある場合、(1)外部要因により
熱回収器からの熱回収量が低減して、熱交換器6からの
エンジン排出熱の放熱量が減ったり、或いは、エンジン
Eの負荷が増大して、エンジン排出熱自体が増大すると
、エンジン排出熱回収用熱交換器6の放出側水路7側を
通る冷却水温が上昇し、これと熱交換する熱回収用吸熱
側液路15の熱回収液の液温T、も上昇しようとするが
、 温度センサ30がこの熱回収液温T、の上昇を検出し、
分流率制御装置14からの信号で可変分流弁12が放熱
割合増加側に作動して、冷却水を放熱路10の側に多く
分流し、熱回収用放出側水路7の側に少な(分流して、
エンジンEの排出熱の放熱割合を増加するので、 エンジン排出熱回収用熱交換器6の熱回収用放出側水路
7を通る冷却水温が低下し、これと熱交換する熱回収用
吸熱側液路15の熱回収液の温度Ttの上昇は抑制され
る。
<Function> When the heat recovery liquid temperature T of the heat recovery endothermic side liquid path 15 is within the temperature range A for heat radiation control, (1) the amount of heat recovered from the heat recovery device is reduced due to external factors; , when the amount of heat dissipated from the engine exhaust heat from the heat exchanger 6 decreases, or when the load on the engine E increases and the engine exhaust heat itself increases, the discharge side water channel 7 of the heat exchanger 6 for recovering engine exhaust heat As the temperature of the cooling water passing through the cooling water increases, the temperature T of the heat recovery liquid in the heat recovery endothermic side liquid path 15 that exchanges heat with it also tends to rise, but the temperature sensor 30 detects this heat recovery liquid temperature T. detect a rise,
The variable diverter valve 12 operates to increase the heat radiation rate in response to a signal from the diverter ratio control device 14, so that more cooling water is diverted to the heat radiation path 10 side, and less cooling water is diverted to the heat recovery discharge water channel 7 side. hand,
Since the heat dissipation rate of the exhaust heat of the engine E is increased, the temperature of the cooling water passing through the heat recovery discharge side water channel 7 of the engine exhaust heat recovery heat exchanger 6 decreases, and the heat recovery endothermic side fluid channel that exchanges heat with the heat recovery discharge side water channel 7 decreases. The increase in the temperature Tt of the heat recovery liquid No. 15 is suppressed.

(2)逆に、外部要因により熱回収器からの熱回収量が
増加して、熱交換器6からのエンジン排出熱の放熱量が
増えたり、或いは、エンジンEの負荷が低下して、エン
ジンの排出熱自体が減ると、エンジン排出熱回収用熱交
換器6の放出側水路7側を通る冷却水温が低下し、これ
と熱交換する熱回収用吸熱側液路15の熱回収液の液温
T、も低下しようとするが、 温度センサ30がこの熱回収液温T、の低下を検出し、
分流率制御装置14からの信号で可変分流弁12が放熱
割合低下側に作動して、冷却水を放熱路10の側に少な
く分流し、熱回収用放出側水路7の側に多く分流して、
エンジンEの排出熱の放熱割合を低くするので、 エンジン排出熱回収用熱交換器6の熱回収用放出側水路
7を通る冷却水温が上昇し、これと熱交換する熱回収用
吸熱側液路15の熱回収液の温度T!の低下は抑制され
る。
(2) Conversely, the amount of heat recovered from the heat recovery device increases due to external factors, and the amount of heat released from the engine exhaust from the heat exchanger 6 increases, or the load on the engine E decreases, causing the engine When the exhaust heat itself decreases, the temperature of the cooling water passing through the discharge side waterway 7 side of the engine exhaust heat recovery heat exchanger 6 decreases, and the heat recovery liquid in the heat recovery endothermic side liquidway 15 that exchanges heat with it decreases. The temperature T also tries to decrease, but the temperature sensor 30 detects this decrease in the heat recovery liquid temperature T,
The variable distribution valve 12 operates to lower the heat radiation rate in response to a signal from the distribution ratio control device 14, and diverts less cooling water to the heat radiation path 10 side and more to the heat recovery discharge waterway 7 side. ,
Since the heat dissipation rate of the exhaust heat of the engine E is lowered, the temperature of the cooling water passing through the heat recovery discharge side water channel 7 of the engine exhaust heat recovery heat exchanger 6 increases, and the heat recovery endothermic side liquid channel that exchanges heat with this increases. 15 Temperature T of heat recovery liquid! The decline in is suppressed.

また、上述のように、エンジン排出熱回収用熱交換器6
からの熱回収量やエンジンEの負荷が変動しても、当該
熱交換器6の熱回収用放出側水路7を通る冷却水温は変
動幅が小さくなり、この冷却水から熱を回収する熱回収
用吸熱側液路15の熱回収液もその温度変化を小さくで
きる。
In addition, as described above, the engine exhaust heat recovery heat exchanger 6
Even if the amount of heat recovered from the heat exchanger 6 or the load on the engine E changes, the temperature of the cooling water passing through the heat recovery discharge side water channel 7 of the heat exchanger 6 will fluctuate less, and the heat recovery that recovers heat from this cooling water will reduce the fluctuation range. The temperature change of the heat recovery liquid in the endothermic side liquid path 15 can also be reduced.

〈発明の効果〉 (1)エンジン排出熱回収用熱交換器からの熱回収量や
エンジンの負荷が変動しても、当該熱交換器の熱回収用
放出側水路の冷却水温は一定温度範囲内に保持されるの
で、この冷却水から熱を回収する熱回収用吸熱側液路内
の熱回収液の温度変化は小さく抑えられる。
<Effects of the invention> (1) Even if the amount of heat recovered from the engine exhaust heat recovery heat exchanger or the engine load changes, the cooling water temperature of the heat recovery discharge side waterway of the heat exchanger remains within a constant temperature range. Therefore, the temperature change of the heat recovery liquid in the heat recovery endothermic side liquid path that recovers heat from the cooling water can be suppressed to a small level.

(2)外部要因によってエンジン排出熱回収用熱交換器
からの熱回収量が低減したり、エンジンの負荷が増加し
て、エンジン排出熱が増大しても、温度センサに連携し
た可変分流弁の分流機能により、冷却水路の冷却水温が
急激に上昇することはないので、排気熱吸収用熱交換器
の熱破損をなくせる。
(2) Even if the amount of heat recovered from the engine exhaust heat recovery heat exchanger decreases due to external factors, or the engine load increases, the engine exhaust heat increases. The diversion function prevents the temperature of the cooling water in the cooling waterway from rising rapidly, thereby eliminating heat damage to the heat exchanger for absorbing exhaust heat.

〈実施例〉 以下、本発明の実施例を図面に基づいて述べる。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図は熱併給エンジン発電装置の系統原理図、第2図
は同装置における冷却水温・ラジェータ側冷却水分流率
の関係図であって、当該熱併給エンジン発電装置は、縦
型ガスエンジンEと発電機Gとを前後方向に連動連結し
て、発電を行うと同時に、エンジン本体熱と排気熱との
エンジン排出熱を回収するように構成しである。
Fig. 1 is a system principle diagram of a cogeneration engine power generation device, and Fig. 2 is a diagram showing the relationship between cooling water temperature and radiator side cooling water flow rate in the same device. and a generator G are interlocked in the front-rear direction to generate electricity and at the same time recover engine exhaust heat including engine body heat and exhaust heat.

上記ガスエンジンEのシリンダプロ・ツク及びシリンダ
ヘッド内につを一タジャケット2を形成し、エンジンE
の排気路21に排気熱吸収用熱交換器3及びマフラ20
を順番に取り付ける。
A jacket 2 is formed in the cylinder protrusion and cylinder head of the gas engine E, and the engine E
A heat exchanger 3 for absorbing exhaust heat and a muffler 20 are installed in the exhaust passage 21 of
Install them in order.

また、エンジンEにラジェータ1を付設して、エンジン
排出熱を系外に放熱可能に構成するとともに、エンジン
排出熱回収用熱交換器6を付設して、熱交換器6の熱回
収用放出側水路7でエンジン排出熱を放出し、その熱回
収用吸熱側水路15でその排出熱を回収し、吸熱側水路
15から取り出した給湯水を温水タンク23に貯留して
、給湯に利用するように構成される。
In addition, a radiator 1 is attached to the engine E so that engine exhaust heat can be radiated outside the system, and a heat exchanger 6 for recovering engine exhaust heat is attached to the heat recovery discharge side of the heat exchanger 6. The engine exhaust heat is released in the water channel 7, the exhaust heat is recovered in the heat absorption side water channel 15 for heat recovery, and the hot water taken out from the heat absorption side water channel 15 is stored in the hot water tank 23 and used for hot water supply. configured.

尚、符号24は制御装置であって、上記ラジェータ1の
冷却ファン25、後述の循環ポンプ22、ガス燃料導入
路の減圧弁などを制御している。
The reference numeral 24 denotes a control device that controls the cooling fan 25 of the radiator 1, the circulation pump 22 (to be described later), the pressure reducing valve of the gas fuel introduction path, and the like.

上記ウォータジャケット2に、排気熱吸収用熱交換器3
の排気熱吸収路4と、熱交換済みの冷却水をエンジンE
から導出する温水路5と、熱交換前の冷却水をエンジン
Eに導入する冷水路8と、循環ポンプ22とを直列循環
状に連通連結し、温水路5と冷水路8との間に、上記ラ
ジェータlを通る放熱路lOとエンジン排出熱回収用熱
交換器6の熱回収用放出側水路7とを並列状に連通ずる
A heat exchanger 3 for absorbing exhaust heat is attached to the water jacket 2.
The exhaust heat absorption path 4 and the heat-exchanged cooling water are transferred to the engine E.
A hot waterway 5 led out from the engine, a cold waterway 8 that introduces the cooling water before heat exchange to the engine E, and a circulation pump 22 are connected in a serial circulation manner, and between the hot waterway 5 and the cold waterway 8, The heat radiation path lO passing through the radiator I and the heat recovery discharge side water channel 7 of the engine exhaust heat recovery heat exchanger 6 are communicated in parallel.

但し、符号26はサーモスタット弁であって、温水路5
から冷水路8に短絡状に分岐したバイパス路27の分岐
入口部に配置され、始動時には弁26をバイパス路27
の側に切り替えて、エンジンEを出た冷却水を温水路5
から冷水路8に短絡的に流通させ、その放熱量を最小に
抑えて、早期に暖機できるように構成しである。
However, the reference numeral 26 is a thermostatic valve, and the hot water channel 5
The valve 26 is disposed at the branch inlet of the bypass passage 27 which branches into the cold water channel 8 in a short-circuit manner.
Switch to the side of
It is configured to short-circuit from the cold water channel 8 to the cold water channel 8, thereby minimizing the amount of heat dissipated and allowing early warm-up.

一方、上記温水路5から放熱路10と熱回収用放出側水
路7とを二股状に分岐した部位に、三方弁から成る可変
分流弁12を介装し、上記エンジン排出熱回収用熱交換
器6の吸熱側水路15の出口側に温度センサ30を付設
し、温度センサ30に分流率制御装置14を介して可変
分流弁12を分流率制御可能に連携して、当該吸熱側水
路15内を流出する給湯水の温度を一定範囲に保持する
ように構成される。
On the other hand, a variable flow dividing valve 12 consisting of a three-way valve is interposed at a portion where the heat radiation path 10 and the heat recovery discharge side waterway 7 are bifurcated from the hot waterway 5, and the heat exchanger for engine exhaust heat recovery is installed. A temperature sensor 30 is attached to the outlet side of the endothermic side water channel 15 of No. 6, and the temperature sensor 30 is linked to the variable flow dividing valve 12 via the flow dividing ratio control device 14 so as to be able to control the flow dividing ratio. It is configured to maintain the temperature of the hot water flowing out within a certain range.

即ち、上記分流率制御装置14に放熱制御用温度領域A
を設定し、この領域Aの下限を放熱開始温度T 2(L
 )とし、その上限を放熱率が100%になる温度T2
(H)として、この温度領域Aに対する温度センサ30
の給湯水検出温度T、のレベルにより可変分流弁12を
下記の(1)〜(3)のように制御して、 ■温水路5−放熱路10 ■温水路5→熱交換器6の熱回収用放出側水路7の二つ
の流路への分流率を変化させ、放熱と熱回収の割合を変
えるように構成される。
That is, the temperature range A for heat radiation control is applied to the division ratio control device 14.
is set, and the lower limit of this region A is the heat radiation start temperature T 2 (L
), and its upper limit is the temperature T2 at which the heat dissipation rate becomes 100%.
(H), the temperature sensor 30 for this temperature range A
The variable flow divider valve 12 is controlled as shown in (1) to (3) below according to the level of the detected temperature T of the hot water supply water. It is configured to change the rate of division of the recovery discharge side waterway 7 into the two flow paths to change the ratio of heat radiation and heat recovery.

但し、当然ながらT2(L)<T、(H)であって、実
際的には、熱回収用吸熱側水路15からの給湯水温は8
0℃前後に保つのが良好であるので、当該温度を中心に
±3℃をとって、’rt(L)は77℃に、T2(H)
は83℃に各々設定される。
However, as a matter of course, T2(L)<T,(H), and in reality, the temperature of the hot water supplied from the heat recovery endothermic side waterway 15 is 8.
It is best to keep it around 0°C, so take ±3°C around this temperature, set 'rt(L) to 77°C, and set T2(H) to 77°C.
are each set at 83°C.

また、上記可変分流弁12は、当該実施例のような三方
弁に限らず、第3図に示すように、温水路5から分岐し
た放熱路10と熱回収用放出側水路7とに通常の二方向
型調量弁12aを各々付設し、これらを一つの分流率制
御装置14に連携するように構成しても差し支えない。
Further, the variable diverter valve 12 is not limited to the three-way valve as in the embodiment, but as shown in FIG. Two-way metering valves 12a may be provided, and these may be configured to cooperate with one flow rate control device 14.

(1)検出温度T、<放熱開始温度Tt(L)の場合(
即ち、給湯水温が異常に低下した場合)第2図に示すよ
うに、分流率制御装置14により、可変分流弁12は放
熱路IOへの分流率が0%で、熱回収用放出側水路7へ
の分流率が100%になるように制御され、 ウォータジャケット2を通ってエンジン本体熱を吸熱し
、排気熱吸収路4を通って排気熱を吸熱したエンジン冷
却水は、温水路5から可変分流弁12を経て全て熱交換
器6の熱放出側水路7に流れて、冷却水に蓄熱されたエ
ンジン排出熱を熱回収用放出側水路15で有効に熱回収
する。
(1) When the detected temperature T is less than the heat radiation start temperature Tt (L) (
In other words, when the hot water temperature drops abnormally), as shown in FIG. The engine cooling water, which has absorbed engine body heat through the water jacket 2 and absorbed exhaust heat through the exhaust heat absorption path 4, is controlled to have a diversion rate of 100%. All of the engine exhaust heat that flows into the heat release side water channel 7 of the heat exchanger 6 via the diversion valve 12 and is stored in the cooling water is effectively recovered by the heat recovery release side water channel 15.

そして、熱交換器6で熱を回収された後の冷却水は、冷
水路8を通って循環ポンプ22によりエンジンEのウォ
ータジャケット2に還流し、再びエンジンEの排出熱を
吸熱する。
After the heat has been recovered by the heat exchanger 6, the cooling water passes through the cold water channel 8, returns to the water jacket 2 of the engine E by the circulation pump 22, and absorbs the exhaust heat of the engine E again.

但し、本制御においては、ハンチングを避けるため、給
湯水温が放熱開始温度T*(L)をかなり上回る温度に
上昇するまで、放熱側分流率をO%に継続する。
However, in this control, in order to avoid hunting, the heat radiation side diversion rate is maintained at 0% until the hot water temperature rises to a temperature considerably higher than the heat radiation start temperature T*(L).

(2)放熱開始温度T!(L)≦ 検出温度T、≦全部放出温度T 、(H)の場合(即ち
、給湯水温が正常温度領域にある場合)第2図に示すよ
うに、分流率制御装置14により、可変分流弁12は下
記のように制御される。
(2) Heat radiation start temperature T! In the case of (L)≦detected temperature T,≦all discharge temperature T, (H) (that is, when the hot water temperature is in the normal temperature range), as shown in FIG. 12 is controlled as follows.

■検出温度T、が高くなるほど、放熱路10への放熱側
分流率を増加させ、熱回収用放出側水路15への熱回収
側分流率を減少させる。
(2) As the detected temperature T becomes higher, the heat radiation side diversion rate to the heat radiation path 10 is increased, and the heat recovery side diversion rate to the heat recovery discharge side waterway 15 is decreased.

■検出温度T、が低くなるほど、放熱路10への放熱側
分流率を減少させ、熱回収用放出側水路15への熱回収
側分流率を増加させる。
(2) As the detected temperature T becomes lower, the heat radiation side diversion rate to the heat radiation path 10 is decreased, and the heat recovery side diversion rate to the heat recovery discharge side waterway 15 is increased.

従って、検出温度T、が高くなるほど、温水路5→放熱
路10への冷却水の分流割合が増えて、冷却水の放熱効
率が高くなり、温水路5の温水温度は速やかに低下する
Therefore, as the detected temperature T becomes higher, the proportion of cooling water diverted from the hot water channel 5 to the heat radiation path 10 increases, the heat radiation efficiency of the cooling water increases, and the hot water temperature of the hot water channel 5 quickly decreases.

この結果、熱交換器6の熱回収用吸熱側水路15から出
る給湯水の温度も速やかに下がって適温に調整される。
As a result, the temperature of the hot water coming out of the heat recovery endothermic side water channel 15 of the heat exchanger 6 is also quickly lowered and adjusted to an appropriate temperature.

また、逆に、検出温度T、が低くなるほど、温水路5→
熱回収用放出側水路7への冷却水の分流割合が増えて、
冷却水の放熱効率が低くなり、温水路5の温水温度は速
やかに上昇する。
Conversely, the lower the detected temperature T, the warm water channel 5→
The proportion of cooling water diverted to the heat recovery discharge side waterway 7 increases,
The heat dissipation efficiency of the cooling water becomes low, and the temperature of the hot water in the hot water channel 5 quickly rises.

この結果、熱交換器6の熱回収用吸熱側水路15から出
る給湯水の温度も速やかに上がって適温に調整される。
As a result, the temperature of the hot water coming out of the heat recovery endothermic water channel 15 of the heat exchanger 6 also rises quickly and is adjusted to an appropriate temperature.

(3)全部放出温度”r*(H)<検出温度T、の場合
(即ち、給湯水温が異常に上昇した場合)第2図に示す
ように、分流率制御装置14により、可変分流弁12は
放熱路10への分流率が100%で、熱回収用放出側水
路7への分流率が0%になるように制御され、 エンジンEから流出した冷却水は、温水路5から可変分
流弁12を経て全て放熱路10に流れ込み、冷却水に蓄
熱されたエンジン排出熱をシステム系外に放熱して、熱
回収用放出側水路7の冷却水温を低下させ、熱回収用吸
熱側水路15を流れる給湯水温を低下させる。
(3) When the total discharge temperature "r*(H)<detected temperature T" (that is, when the hot water temperature rises abnormally) As shown in FIG. is controlled so that the diversion rate to the heat radiation path 10 is 100% and the diversion rate to the heat recovery discharge side waterway 7 is 0%, and the cooling water flowing out from the engine E is transferred from the hot waterway 5 to the variable diversion valve. 12, all flows into the heat radiation path 10, and the engine exhaust heat stored in the cooling water is radiated outside the system, lowering the cooling water temperature in the heat recovery discharge side waterway 7, and reducing the heat recovery endothermic side waterway 15. Decrease the temperature of flowing hot water.

尚、上述したように、本制御においても、ノ\ンチング
を避けるために、給湯水温が全部放熱温度T2(H)を
かなり下回る温度に下降するまで、放熱側分流率を10
0%に継続する。
As mentioned above, in this control as well, in order to avoid notching, the heat dissipation side flow rate is kept at 10 until the temperature of the hot water all drops to a temperature well below the heat dissipation temperature T2 (H).
Continue at 0%.

他方、上記温水路5に温度センサ13を付設し、当該温
度センサ13を分流率制御装置14を介して可変分流弁
12に連動することにより、エンジンEの過熱を防止す
るように構成しである。
On the other hand, a temperature sensor 13 is attached to the hot water channel 5, and the temperature sensor 13 is linked to the variable flow dividing valve 12 via the flow dividing ratio control device 14, so that overheating of the engine E is prevented. .

即ち、分流率制御装置14に上限温度T□(H)を設定
し、温度センサ13で検出されたエンジンEの温排水温
T、が、当該上限温度TI(H)に対していかなるレベ
ルにあるかにより、下記の(イ)〜(ロ)の制御を行う
That is, the upper limit temperature T Depending on the situation, the following controls (a) to (b) are performed.

(イ)検出温度T、<上限温度T、(H)の場合(即ち
、エンジン温排水が正常温度領域にある場合)上記温度
センサ30からの給湯水検出温度T。
(a) Detected temperature T, < upper limit temperature T, in the case of (H) (that is, when the engine heated waste water is in the normal temperature range) the detected temperature T of hot water from the temperature sensor 30.

の情報に基づいて、可変分流弁12の分流率制御が前記
(1)〜(3)のように分流率制御装置14によって行
われる。
Based on the information, the flow division ratio control of the variable flow division valve 12 is performed by the flow division ratio control device 14 as described in (1) to (3) above.

(ロ)上限温度TI(H)≦検出温度T、の場合(即ち
、エンジン温排水が異常上昇した場合)温度センサ13
からの情報が上記温度センサ30からの情報に優先して
働き、放熱路10に流れる冷却水の分流率を100%と
し、熱交換器6の熱回収用放出側水路7への分流率を0
%とするように可変分流弁12を分流率制御し、温水路
5を流れる温水の全てを放熱11の側に流して、冷却水
循環システムの系外への放熱割合を最大にし、早期にエ
ンジンEからの温排水を冷却して、エンジンEの過熱を
防止する。
(b) When upper limit temperature TI(H)≦detected temperature T (i.e., when engine heated waste water rises abnormally) temperature sensor 13
The information from the temperature sensor 30 takes priority over the information from the temperature sensor 30, and the division ratio of cooling water flowing into the heat radiation path 10 is set to 100%, and the division ratio to the heat recovery discharge side water channel 7 of the heat exchanger 6 is set to 0.
%, all of the hot water flowing through the hot water channel 5 flows to the heat radiation 11 side, maximizing the heat radiation rate to the outside of the cooling water circulation system, and early starting the engine E. This prevents the engine E from overheating by cooling the heated waste water from the engine.

尚、本制御においても、上記ハンチング防止措置が採ら
れる。
Note that the hunting prevention measures described above are also taken in this control.

但し、上記温度センサ13は、温水路5・冷水路8・つ
を−タジャケット2及び排気熱吸収路4から成る冷却水
路11のうちの、いずれに設けても良いが、エンジンE
の過熱を迅速に防止するには、温水路5の温水温度を測
定するのが好ましい。
However, the temperature sensor 13 may be provided in any of the cooling channels 11 consisting of the hot water channel 5, the cold water channel 8, and the engine jacket 2 and the exhaust heat absorption channel 4.
In order to quickly prevent overheating, it is preferable to measure the temperature of the hot water in the hot water channel 5.

以上のように、本発明は、温度センサをエンジン排出熱
熱回収用熱交換器の熱回収用吸熱側水路に付設し、当該
温度センサに制御装置を介して連携した可変分流弁の作
用により、エンジン排出熱を吸熱した冷却水を、放熱器
の放熱路と熱交換器の熱回収用水路とに所定分流率で振
り分けることを特徴とするので、エンジンEはエンジン
発電機に限らス、エンジンコンプレッサ、エンジンウェ
ルダなどの他のエンジン作業機、或いはミエンジン単独
でも差し支えない。
As described above, in the present invention, a temperature sensor is attached to the endothermic waterway for heat recovery of a heat exchanger for recovering engine exhaust heat, and by the action of a variable flow divider valve linked to the temperature sensor via a control device, The engine E is characterized by distributing the cooling water that has absorbed engine exhaust heat to the heat radiation path of the radiator and the heat recovery water path of the heat exchanger at a predetermined distribution ratio, so that the engine E is limited to an engine generator, an engine compressor, Other engine work equipment such as an engine welder, or the engine alone may be used.

また、上記放熱器1は、ラジェータに限らず、コンデン
サやホッパでも良い。
Further, the heat radiator 1 is not limited to a radiator, but may be a condenser or a hopper.

上記エンジン排出熱回収用熱交換器の吸熱側水路を流れ
る熱回収液は、上記実施例のように水に限らず、オイル
などでも差し支えない。
The heat recovery liquid flowing through the heat absorption side waterway of the engine exhaust heat recovery heat exchanger is not limited to water as in the above embodiments, but may also be oil or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示すエンジンの排出熱回収装
置の原理系統図、第2図は熱回収液の温度・放熱路への
分流率の関係図、第3図は可変分流弁の他の実施態様を
示す要部系統図、第4図は従来技術を示す第1図相当図
である。 l・・・放熱器、2・・・つ寸−タジャケット、3・・
・排気熱吸収用熱交換器、4・・・排気熱吸収路、5・
・・温水路、6・・・エンジン排出熱回収用熱交換器、
7・・・6の熱回収用放出側水路、8・・・冷水路、1
0・・・放熱路、12・・・可変分流弁、14・・・分
流率制御装置、15・・・6の熱回収用吸熱側液路、3
0・・・温度センサ、E・・・エンジン、T、・・・1
5での検出温度%T1(L)・・・放熱開始温度、T、
(H)・・・全部放熱温度、A・・・放熱制御用領域。 特許出願人  久保田鉄工株式会社 第2図 第1図
Fig. 1 is a diagram of the principle of an engine exhaust heat recovery device showing an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between the temperature of the heat recovery liquid and the diversion rate to the heat radiation path, and Fig. 3 is a diagram of the variable diversion valve. A main part system diagram showing another embodiment, FIG. 4 is a diagram corresponding to FIG. 1 showing the prior art. l...Radiator, 2...Thin jacket, 3...
・Exhaust heat absorption heat exchanger, 4...Exhaust heat absorption path, 5.
・・Hot water channel, 6.・Heat exchanger for engine exhaust heat recovery,
7...6 heat recovery discharge side waterway, 8...cold waterway, 1
0... Heat radiation path, 12... Variable flow divider valve, 14... Diversion ratio control device, 15... Heat absorption side liquid path for heat recovery of 6, 3
0...Temperature sensor, E...Engine, T,...1
Detected temperature %T1 (L) at 5: Heat radiation start temperature, T,
(H)...All heat radiation temperature, A...Heat radiation control area. Patent applicant Kubota Iron Works Co., Ltd. Figure 2 Figure 1

Claims (1)

【特許請求の範囲】 1、エンジンEのウォータジャケット2に、排気熱吸収
用熱交換器3の排気熱吸収路4・温水路5・エンジン排
出熱回収用熱交換器6の熱回収用放出側水路7・及び冷
水路8を順に直列循環状に連通連結して構成したエンジ
ンの排出熱回収装置において、 エンジン排出熱回収用熱交換器6の熱回収用放出側水路
7に放熱器1の放熱路10を並列状に接続し、 冷水路8・ウォータジャケット2・排気熱吸収路4・及
び温水路5から成るエンジン冷却水路11に対して、熱
回収用放出側水路7と放熱路10とを、可変分流弁12
で可変分流可能に接続し、 エンジン排出熱回収用熱交換器6の熱回収用吸熱側液路
15の出口側に温度センサ30を設け、温度センサ30
に分流率制御装置14を介して可変分流弁12を分流率
制御可能に連携し、 温度センサ30は、熱回収用吸熱側液路15を通過した
熱回収液の液温を検出するものであって、 その熱回収液温の検出温度T_2が、放熱開始用設定温
度T_2(L)とこれよりも高温の全部放熱用設定温度
T_2(H)との間の放熱制御用温度領域A内にある場
合において、 その熱回収液温の検出温度が高くなるほど、分流率制御
装置14が可変分流弁12を放熱増量側に作動させて、
エンジン冷却水路11から放熱路10への冷却水の放熱
側分流率を増加させるとともに、熱回収用放出側水路7
への冷却水の熱回収側分流率を減少させ、 その熱回収液温の検出温度が低くなるほど、分流率制御
装置14が可変分流弁12を放熱減量側に作動させて、
前記放熱側分流率を減少させるとともに、熱回収側分流
率を増加させるように構成したことを特徴とするエンジ
ンの排出熱回収装置
[Claims] 1. The water jacket 2 of the engine E includes the exhaust heat absorption path 4 of the exhaust heat absorption heat exchanger 3, the hot water channel 5, and the heat recovery discharge side of the engine exhaust heat recovery heat exchanger 6. In an engine exhaust heat recovery device configured by serially connecting a water channel 7 and a cold water channel 8 in a serial circulation manner, the heat dissipation of the radiator 1 is carried out in the heat recovery discharge side water channel 7 of the heat exchanger 6 for engine exhaust heat recovery. The heat recovery discharge side waterway 7 and the heat radiation path 10 are connected in parallel to the engine cooling waterway 11 consisting of the cold waterway 8, the water jacket 2, the exhaust heat absorption path 4, and the hot waterway 5. , variable flow divider valve 12
A temperature sensor 30 is provided on the outlet side of the heat recovery endothermic liquid path 15 of the engine exhaust heat recovery heat exchanger 6, and the temperature sensor 30
The variable flow dividing valve 12 is connected to the variable flow dividing valve 12 via the flow dividing ratio control device 14 so as to be able to control the flow dividing rate, and the temperature sensor 30 detects the liquid temperature of the heat recovery liquid that has passed through the heat recovery endothermic side liquid path 15. The detected temperature T_2 of the heat recovery liquid temperature is within the heat radiation control temperature range A between the heat radiation start set temperature T_2 (L) and the higher temperature total heat radiation set temperature T_2 (H). In this case, the higher the detected temperature of the heat recovery liquid is, the more the diversion rate control device 14 operates the variable diversion valve 12 to the heat radiation increasing side,
The heat radiation side distribution rate of cooling water from the engine cooling waterway 11 to the heat radiation path 10 is increased, and the heat recovery discharge side waterway 7
The division ratio of the cooling water to the heat recovery side is decreased, and the lower the detected temperature of the heat recovery liquid is, the division ratio control device 14 operates the variable division valve 12 to the heat radiation loss side,
An exhaust heat recovery device for an engine, characterized in that the engine exhaust heat recovery device is configured to reduce the heat radiation side division ratio and increase the heat recovery side division ratio.
JP63258160A 1988-10-12 1988-10-12 Device for recovering exhaust heat of engine Pending JPH02104953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63258160A JPH02104953A (en) 1988-10-12 1988-10-12 Device for recovering exhaust heat of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63258160A JPH02104953A (en) 1988-10-12 1988-10-12 Device for recovering exhaust heat of engine

Publications (1)

Publication Number Publication Date
JPH02104953A true JPH02104953A (en) 1990-04-17

Family

ID=17316369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63258160A Pending JPH02104953A (en) 1988-10-12 1988-10-12 Device for recovering exhaust heat of engine

Country Status (1)

Country Link
JP (1) JPH02104953A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711475B2 (en) * 1977-01-28 1982-03-04
JPS6158658A (en) * 1984-08-30 1986-03-25 三洋化成工業株式会社 Absorbing material and absorbable article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711475B2 (en) * 1977-01-28 1982-03-04
JPS6158658A (en) * 1984-08-30 1986-03-25 三洋化成工業株式会社 Absorbing material and absorbable article

Similar Documents

Publication Publication Date Title
JP4069893B2 (en) Thermoelectric generator
KR100711788B1 (en) High efficiency of Power Supply and Power Generation System
JPS629053B2 (en)
US4589262A (en) Absorption type air conditioning system
JP4208792B2 (en) Cogeneration system
JPH02104953A (en) Device for recovering exhaust heat of engine
JPH02104954A (en) Device for recovering exhaust heat of engine
JPH02252949A (en) Engine exhaust heat recovery device
JPH02104957A (en) Device for recovering exhaust heat of engine
JP3594252B2 (en) Cogeneration system
JP3631521B2 (en) Cogeneration system cooling water circuit equipment
JP3788354B2 (en) Engine exhaust heat recovery device
JP3836526B2 (en) Hot water system
JP3400708B2 (en) Engine exhaust heat recovery device
JPH04334705A (en) Co-generation system
JP2575514Y2 (en) Automatic transmission
JPH0157269B2 (en)
JPS60236A (en) Room cooling, heating and hot-water supplying device utilizing internal-combustion engine
JPH0738654Y2 (en) Waste heat recovery device for water-cooled engine
JP3292763B2 (en) Method and apparatus for controlling absorption refrigerator
JPH05248707A (en) Heat recoverying device with parallel heat exchanger
JP4408269B2 (en) Waste heat recovery system and cogeneration system
JP2822081B2 (en) Power and heat output devices for cogeneration equipment
JPS62141430A (en) Apparatus for supplying heat in heat pump heating, cooling, and hot water supply system with internal combustion engine
JP6548144B2 (en) Hot water heater