JP3594252B2 - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP3594252B2
JP3594252B2 JP15856294A JP15856294A JP3594252B2 JP 3594252 B2 JP3594252 B2 JP 3594252B2 JP 15856294 A JP15856294 A JP 15856294A JP 15856294 A JP15856294 A JP 15856294A JP 3594252 B2 JP3594252 B2 JP 3594252B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
water supply
supply line
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15856294A
Other languages
Japanese (ja)
Other versions
JPH0828955A (en
Inventor
秀行 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP15856294A priority Critical patent/JP3594252B2/en
Publication of JPH0828955A publication Critical patent/JPH0828955A/en
Application granted granted Critical
Publication of JP3594252B2 publication Critical patent/JP3594252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【産業上の利用分野】
本発明は、ガスエンジンを含む内燃機関で発電機を駆動し、電気を発生させると同時に、内燃機関の冷却水および排気ガスのもつ高温熱エネルギーを回収し、これを暖房や給湯に利用する所謂コージェネレーションシステムに関するものである。
【0002】
【従来の技術】
従来のコージェネレーションシステムの構成を図2に基づいて説明する。
図2において、符号の1はガスエンジンにより発電機を駆動して発電を行う発電システム、2はガスエンジンの冷却水、排気ガス熱を回収する排熱回収ライン、3は貯湯槽であって、前記排熱回収ライン2はこの貯湯槽3内に組み込んだ排熱回収用熱交換器4を経由して循環することにより、貯湯槽3内の水に排熱を与える構成である。
5は補助加熱用ボイラーであって、この補助加熱用ボイラー5は、貯湯槽3内の水温が設定値である約70℃以下の場合に、70℃以上になるように貯湯槽3内の水温を水温センサ6により検出して駆動し、補助熱交換器7により貯湯槽3内の水温を上昇させるものである。8は貯湯槽3内に給水するための給水ラインである。
9は貯湯槽3から給湯栓10…に対して給湯を行う給湯ライン、11は給湯ライン9の端末9aに結ばれたリターンラインであって、このリターンライン11を経由して貯湯槽3内の温水を保温運転ポンプ12により循環させることにより、即給湯を実現している。図中13はクーリングライン、14はクーリングタワーである。
上記従来のガスコージェネレーションシステムは、エネルギーを70〜80%の高い効率で使用することができるため、省エネルギーシステムとして近年特に普及している。
【0003】
【発明が解決しようとする課題】
しかし、補助加熱用ボイラーを用いる従来例においては、次のような欠点がある。
a.発電需要は比較的安定しているが、給湯需要は変動が激しい。例えば、一時的に大きな給湯需要があった場合は、貯湯槽3の温度が急激に下がり、補助加熱用ボイラー5が駆動を始めるが、70℃まで昇温されない間に給湯需要があった場合、希望する温度の温水が得られない。
b.常時安定した水温の給湯及び保温運転を実現するために、補助加熱用ボイラー5は貯湯槽3内の水温を約70℃に確保している。このため、排熱回収用熱交換器4で排熱回収する場合、排熱温度約90℃と約70℃との間には約20℃の温度差しかなく、排熱回収効率が悪い。又、貯湯槽3内の水温が80℃以上の場合は、排熱は貯湯槽3側には廻らず、クーリングタワー14側に廻り、ここで大気中に放棄している。このため、排熱を有効に回収しきれていない場合が多い。
c.貯湯槽3の容量が大きいため、自然放熱ロスが大きい。
d.補助加熱用ボイラー5は貯湯槽3内の水量全体を昇温するため、補助加熱用燃料の消費が大きい。
e.給湯栓10…には、貯湯槽3内の温水が直接給湯されるため、貯湯水温である約70℃以上の高温水を得ることはできない。
本発明の目的は、コージェネレーションシステムにおいて、特に排熱回収効率の向上と使い勝手の向上を図ることである。
【0004】
【課題を解決するための手段】
本発明に係るコージェネレーションシステムの構成は次のとおりである。
1.排熱回収用熱交換器を組み込んで成る貯湯手段、
前記貯湯手段に結ばれた給水ライン、
前記貯湯手段内に貯湯された温水を給湯栓に供給する給湯ライン、
前記給湯ラインから給湯栓に給湯される温水を加熱するために給湯ラインに取り付けられた昇温手段、
前記給湯ラインから給湯栓に給湯される温水の温度を水温センサにより検出し、この検出温度が設定値以下の場合に前記昇温手段を駆動して、水温を設定温度に昇温する給湯温度制御手段、
前記給湯ラインにおいて、前記昇温手段をバイパスするバイパスラインを設けると共に、給湯水温が設定値以上の場合には当該バイパスラインを開放するダイレクト給湯手段、
前記給湯ラインの端末と昇温手段の入側をリターンラインにて結び、このリターンラインに取り付けた保温運転ポンプを駆動して常時保温運転を行っている保温運転手段、
から成るコージェネレーションシステム。
2.昇温手段として給湯側の水圧が一定値以下に低下した時に駆動を開始するガス湯沸器を用いて成る前記1記載のコージェネレーションシステム。
3.昇温手段は、昇温温度設定自在であるところの前記1又は2記載のコージェネレーションシステム。
4.貯湯槽に昇温手段及び保温運転手段付の給湯ライン及びリターンラインを複数系統設けて成る前記1又は3記載のコージェネレーションシステム。
【0005】
【作用】
貯湯手段には、給水ラインを経由して出湯に見合う水量の給水が自動的に行われる。発電機を駆動する内燃機関の排熱は、排熱回収ラインを経由して貯湯手段内の排熱回収用交換器内に入り、ここで貯湯手段内の水に熱を与えて再び内燃機関に戻る。この作用により、排熱は貯湯手段内に貯えられた水で回収される。この結果、貯湯手段内の水は昇温する。給湯需要があり、この給湯需要設定水温が貯湯手段内の水温よりも高い場合には、昇温手段が駆動して給湯需要設定水温になるまで給湯ライン内を流れる温水を加熱して、これを給湯する。
【0006】
一方、貯湯手段から出湯される水温が給湯需要設定水温と同一かこれよりも高い場合には、昇温手段を経由せず、バイパスラインを経由してダイレクトに給湯を行う。
保温運転手段は、昇温手段により加熱した温水を常時昇温手段→給湯ライン→保温運転ポンプ→給湯ライン端末→リターンライン→昇温手段と循環させておくことにより、即給湯を実現している。又、昇温手段にて昇温した温水を、貯湯槽に戻さないことにより、貯湯槽に入る内燃機関側からの排熱回収量を多くとれ、昇温手段の運転時間を短くできる。
【0007】
【実施例】
図1に基づいて本発明の実施例を詳述する。図1において、1はガスエンジンにより発電機を駆動して発電を行う発電システム、2はガスエンジンの冷却水、排気ガス熱を回収する排熱回収ライン、3は貯湯手段としての貯湯槽であって、前記排熱回収ライン2はこの貯湯槽3内に組み込まれた排熱回収用熱交換器4を経由して貯湯槽3内の水に排熱を与える構成である。
8は貯湯槽3内に給水を行う給水ラインであって、この給水ライン8には貯湯槽3内の水位を水位センサ8aにより検出して、常時一定の水位に保持するように給水バルブ8bを制御する給水制御手段が取り付けてある。但し、この給水制御手段は、貯湯槽3内の水位が給湯により下がった場合に、水道水圧で自動的に給水される方式とすることにより、無くすことができる。
9は給湯ライン、13はクーリングライン、14はクーリングタワーである。
【0008】
15は前記給湯ライン9に取り付けられた昇温手段の一例としての出湯温度設定自在の先止め方式のガス温水器(以下「昇温器」という)、16は昇温器15の出口側の給湯ライン9bに取り付けられた水温検出センサ、11は給湯ライン9bの端末9aと昇温器15の入側を結ぶリターンライン、12は昇温器15の出側に取り付けられた保温運転ポンプである。17は昇温器15の上流側において、給湯ライン9を分岐して三方弁18により給湯ライン9bに結んだダイレクト給湯手段としてのバイパスライン、19は貯湯槽3の出口の水温を検出する水温検出センサーであって、この水温検出センサ19がある設定水温以上を検出したときに三方弁18をバイパスライン17側に切り換えて直接貯湯槽3内の温水を給湯栓10…側に給湯することができる。
【0009】
上記実施例についての作用を次に説明する。
貯湯槽3には給水ライン8を経由して、水位センサー8a、給水バルブ8bにより、出湯に見合う水量の給水が自動的に行われる。発電機を駆動するガスエンジンからの排熱は、排熱回収ライン2を経由して貯湯槽3内の排熱回収用交換器4内に入り、ここで貯湯槽3内の水に熱を与えて再びガスエンジンに戻る。この作用により排熱は貯湯槽3内に貯えられた水で回収される。この結果、貯湯槽3内の水は昇温する。給湯需要があり、水温検出センサー19で検出される水温が給湯需要設定水温よりも低い場合には、昇温器15が駆動して給湯需要設定水温になるまで給湯ライン9bからリターンライン11を流れる温水を加熱する。
一方、水温検出センサー19で検出される貯湯槽3内の水温が給湯需要設定水温と同一かこれよりも高い場合には、三方弁18を切り換えてバイパスライン17を経由してダイレクトに給湯栓10…に対して給湯を行う。
保温運転は、給湯需要がある無しに拘らず、保温運転ポンプ12が駆動して昇温器15により昇温した温水を昇温器15→給湯ライン9b→保温運転ポンプ12→給湯ライン端末9a→リターンライン11→昇温器15と循環して、即給湯に備える。
【0010】
【発明の効果】
本発明による効果は次のとおりである。
a.貯湯手段内には、排熱回収用熱交換器により昇温した温度の水だけを貯湯し、従来のように補助加熱用ボイラーを用いて約70℃まで加熱しておく手段を排除すると共に昇温手段にて加温された温水を従来のように貯湯手段に戻さないように構成した。この結果、貯湯手段内の水温は、排熱から回収された熱で決まり、又給湯需要が多い場合、貯湯手段内の水温はどんどん下がるため、排熱と水温との差が大きくなって内燃機関側からの排熱の回収効率が向上する。この点を従来例と比較すると、本発明の場合、12時間連続運転において、排熱は合計約10時間回収されていたが、従来の補助加熱用ボイラーを取り付けて貯湯槽内を約70℃に加熱するシステムにおいては、クーリングタワーの駆動が約9時間で、排熱回収運転は僅か3時間にすぎなかった。
b.昇温手段は、給湯需要設定水温に見合う昇温を行うため、従来のように貯湯槽内の水温が低いために需要設定水温が得られないことがあると云った使い勝手の悪さがなくなる。
c.貯湯手段内には、従来のように約70℃の高温水が貯湯されていないため、自然放熱ロスが少ない。
d.昇温手段により、給湯需要水量だけを昇温するため、効率的な水温加熱が可能である。
e.昇温手段に昇温温度制御自在なものを利用することにより、約70℃以上の温水は得られなかった従来例に比較して、80〜90℃の温水を得ることができる。
f.給湯ラインに昇温手段を設けたことにより、従来のように、貯湯槽の容量を大きく設定する必要がない。この結果、貯湯槽の小型化が可能である。
g.昇温手段には、例えば小型の先止め式給湯器を用いることができる。
h.昇温手段を給湯栓に近い位置に設置することにより、貯湯槽まで配管していた従来例に比較して、リターンラインの配管距離を短くできる。
【図面の簡単な説明】
【図1】本発明を実施したコージェネレーションシステムの実施例の説明図。
【図2】従来のコージェネレーションシステムの説明図。
【符号の説明】
1 発電システム
2 排熱回収ライン
3 貯湯槽
4 排熱回収用熱交換器
5 補助加熱用ボイラー
6 水温センサー
7 補助熱交換器
8 給水ライン
8a 水位センサー
8b 給水バルブ
9 給湯ライン
9a 端末
9b 給湯ライン
10… 給湯栓
11 リターンライン
12 保温運転ポンプ
13 クーリングライン
14 クーリングタワー
15 昇温器
16 水温検出センサ
17 バイパスライン
18 三方弁
19 水温検出センサー
[0001]
[Industrial applications]
The present invention drives a generator by an internal combustion engine including a gas engine to generate electricity, and at the same time, collects high-temperature heat energy of cooling water and exhaust gas of the internal combustion engine, and uses the recovered heat for heating and hot water supply. It is related to cogeneration systems.
[0002]
[Prior art]
The configuration of a conventional cogeneration system will be described with reference to FIG.
In FIG. 2, reference numeral 1 denotes a power generation system that generates power by driving a generator by a gas engine, 2 denotes an exhaust heat recovery line that recovers cooling water and exhaust gas heat of the gas engine, and 3 denotes a hot water tank. The waste heat recovery line 2 is configured to circulate through a waste heat recovery heat exchanger 4 incorporated in the hot water storage tank 3 to give the waste heat to the water in the hot water storage tank 3.
Reference numeral 5 denotes an auxiliary heating boiler. When the water temperature in the hot water storage tank 3 is equal to or lower than a set value of about 70 ° C., the water temperature in the hot water storage tank 3 becomes 70 ° C. or higher. Is detected and driven by the water temperature sensor 6, and the water temperature in the hot water storage tank 3 is raised by the auxiliary heat exchanger 7. Reference numeral 8 denotes a water supply line for supplying water into the hot water storage tank 3.
Reference numeral 9 denotes a hot water supply line for supplying hot water from the hot water storage tank 3 to the hot water taps 10..., And 11 denotes a return line connected to a terminal 9 a of the hot water supply line 9. Hot water supply is realized by circulating the hot water by the heat keeping operation pump 12. In the figure, 13 is a cooling line, and 14 is a cooling tower.
The above-described conventional gas cogeneration system can be used with high efficiency of energy of 70 to 80%, and thus has been particularly popular recently as an energy saving system.
[0003]
[Problems to be solved by the invention]
However, the conventional example using the auxiliary heating boiler has the following disadvantages.
a. Power generation demand is relatively stable, but hot water demand is volatile. For example, when there is a temporary large demand for hot water, if the temperature of the hot water storage tank 3 suddenly drops and the auxiliary heating boiler 5 starts driving, but there is a demand for hot water while the temperature is not raised to 70 ° C. Hot water at the desired temperature cannot be obtained.
b. The auxiliary heating boiler 5 keeps the temperature of the water in the hot water storage tank 3 at about 70 ° C. in order to realize a stable hot water supply and a warming operation at all times. For this reason, when the exhaust heat is recovered by the exhaust heat recovery heat exchanger 4, the temperature of the exhaust heat is about 20 ° C. between about 90 ° C. and about 70 ° C., and the exhaust heat recovery efficiency is poor. When the water temperature in the hot water storage tank 3 is 80 ° C. or higher, the exhaust heat is not directed to the hot water storage tank 3 but to the cooling tower 14 side, where it is discarded in the atmosphere. For this reason, in many cases, the exhaust heat has not been effectively recovered.
c. Since the capacity of the hot water storage tank 3 is large, the natural heat dissipation loss is large.
d. Since the auxiliary heating boiler 5 raises the temperature of the whole water in the hot water storage tank 3, the consumption of the auxiliary heating fuel is large.
e. Since hot water in the hot water storage tank 3 is directly supplied to the hot water taps 10..., It is not possible to obtain high-temperature water having a temperature of about 70 ° C. or higher, which is the hot water storage water temperature.
An object of the present invention is to improve, in particular, the efficiency of exhaust heat recovery and the usability in a cogeneration system.
[0004]
[Means for Solving the Problems]
The configuration of the cogeneration system according to the present invention is as follows.
1. Hot water storage means incorporating a heat exchanger for exhaust heat recovery,
A water supply line connected to the hot water storage means,
A hot water supply line for supplying hot water stored in the hot water storage means to a hot water tap,
Heating means attached to the hot water supply line to heat hot water supplied to the hot water tap from the hot water supply line,
The temperature of hot water supplied to the hot water tap from the hot water supply line is detected by a water temperature sensor, and when the detected temperature is equal to or lower than a set value, the temperature raising means is driven to raise the water temperature to the set temperature. means,
In the hot water supply line, a bypass line that bypasses the temperature raising unit is provided, and when the hot water temperature is equal to or higher than a set value, a direct hot water supply unit that opens the bypass line;
A heat retaining operation means which connects the terminal of the hot water supply line and the inlet side of the temperature raising means with a return line, and drives a heat retaining operation pump attached to the return line to constantly perform a temperature retaining operation;
Cogeneration system consisting of
2. 2. The cogeneration system according to claim 1, wherein a gas water heater that starts driving when the water pressure on the hot water supply side falls below a certain value is used as the temperature raising means.
3. 3. The cogeneration system according to the above 1 or 2, wherein the heating means is capable of setting the heating temperature.
4. 4. The cogeneration system according to the above 1 or 3, wherein a plurality of hot water supply lines and return lines with a temperature raising means and a heat retaining operation means are provided in the hot water storage tank.
[0005]
[Action]
Hot water is automatically supplied to the hot water storage means via a water supply line with an amount of water suitable for tapping. The waste heat of the internal combustion engine that drives the generator enters the waste heat recovery exchanger in the hot water storage means via the waste heat recovery line, where it gives heat to the water in the hot water storage means and returns it to the internal combustion engine again. Return. By this action, the exhaust heat is recovered by the water stored in the hot water storage means. As a result, the temperature of the water in the hot water storage means rises. If there is a hot water demand and the hot water demand set water temperature is higher than the water temperature in the hot water storage means, the heating means is driven to heat the hot water flowing in the hot water supply line until the hot water demand set water temperature is reached. Hot water.
[0006]
On the other hand, when the temperature of the hot water discharged from the hot water storage means is equal to or higher than the hot water supply demand set water temperature, hot water is supplied directly via the bypass line without passing through the temperature raising means.
The warming operation means realizes immediate hot water supply by constantly circulating hot water heated by the warming means with the warming means → hot water supply line → warming operation pump → hot water supply line terminal → return line → warming means. . Further, by not returning the warm water heated by the temperature raising means to the hot water tank, a large amount of exhaust heat can be recovered from the internal combustion engine entering the hot water tank, and the operating time of the temperature raising means can be shortened.
[0007]
【Example】
An embodiment of the present invention will be described in detail with reference to FIG. In FIG. 1, reference numeral 1 denotes a power generation system that drives a generator by a gas engine to generate power, 2 denotes an exhaust heat recovery line that recovers cooling water and exhaust gas heat of the gas engine, and 3 denotes a hot water storage tank as hot water storage means. The exhaust heat recovery line 2 is configured to apply exhaust heat to water in the hot water storage tank 3 via a heat exchanger 4 for recovering heat which is incorporated in the hot water storage tank 3.
Reference numeral 8 denotes a water supply line for supplying water into the hot water storage tank 3. The water supply line 8 detects a water level in the hot water storage tank 3 by a water level sensor 8a and has a water supply valve 8b so as to always maintain a constant water level. Water supply control means to control is attached. However, this water supply control means can be eliminated by adopting a system in which water is automatically supplied by tap water pressure when the water level in the hot water storage tank 3 drops due to hot water supply.
9 is a hot water supply line, 13 is a cooling line, and 14 is a cooling tower.
[0008]
Reference numeral 15 denotes a gas water heater of a stop-stop type (hereinafter, referred to as a “heater”) capable of setting a tapping temperature as an example of a heating means attached to the hot water supply line 9, and reference numeral 16 denotes hot water supply at an outlet side of the heater 15. A water temperature detecting sensor attached to the line 9b, 11 is a return line connecting the terminal 9a of the hot water supply line 9b and the inlet side of the heater 15, and 12 is a warming operation pump attached to the outlet side of the heater 15. Reference numeral 17 denotes a bypass line as a direct hot water supply means which is branched from the hot water supply line 9 and connected to the hot water supply line 9b by a three-way valve 18 on the upstream side of the heater 15 and 19 is a water temperature detection for detecting the water temperature at the outlet of the hot water storage tank 3. The three-way valve 18 is switched to the bypass line 17 side when the water temperature detection sensor 19 detects a certain set water temperature or more, and the hot water in the hot water storage tank 3 can be directly supplied to the hot water taps 10. .
[0009]
The operation of the above embodiment will now be described.
Water is automatically supplied to the hot water storage tank 3 via a water supply line 8 by a water level sensor 8a and a water supply valve 8b. Waste heat from the gas engine driving the generator enters the waste heat recovery exchanger 4 in the hot water storage tank 3 via the waste heat recovery line 2, where heat is applied to the water in the hot water storage tank 3. Return to the gas engine again. By this action, the exhaust heat is recovered by the water stored in the hot water storage tank 3. As a result, the temperature of the water in the hot water storage tank 3 rises. If there is a hot water demand and the water temperature detected by the water temperature detection sensor 19 is lower than the hot water demand setting water temperature, the heater 15 is driven to flow from the hot water supply line 9b to the return line 11 until the hot water demand setting water temperature is reached. Heat the hot water.
On the other hand, when the water temperature in the hot water storage tank 3 detected by the water temperature detection sensor 19 is equal to or higher than the hot water supply demand set water temperature, the three-way valve 18 is switched to directly connect the hot water tap 10 via the bypass line 17. Supply hot water to….
Regarding the warming operation, regardless of whether or not there is a demand for hot water supply, the warming operation pump 12 drives the warm water heated by the warmer 15 to the warmer 15 → the hot water supply line 9 b → the warming operation pump 12 → the hot water supply line terminal 9 a → It circulates from the return line 11 to the heater 15 to prepare for hot water supply immediately.
[0010]
【The invention's effect】
The effects of the present invention are as follows.
a. In the hot water storage means, only the water having the temperature raised by the heat exchanger for exhaust heat recovery is stored, and a means for heating to about 70 ° C. by using the auxiliary heating boiler as in the related art is eliminated and the temperature is raised. The hot water heated by the warming means is configured not to return to the hot water storage means as in the prior art. As a result, the water temperature in the hot water storage means is determined by the heat recovered from the exhaust heat, and when there is a large demand for hot water supply, the water temperature in the hot water storage means decreases rapidly, so that the difference between the exhaust heat and the water temperature increases, and the internal combustion engine The efficiency of collecting exhaust heat from the side is improved. Comparing this point with the conventional example, in the case of the present invention, in the continuous operation for 12 hours, the exhaust heat was recovered for a total of about 10 hours. However, the conventional auxiliary heating boiler was attached and the inside of the hot water tank was reduced to about 70 ° C. In the heating system, the driving of the cooling tower was about 9 hours, and the exhaust heat recovery operation was only 3 hours.
b. Since the temperature raising means raises the temperature corresponding to the hot water supply demand set water temperature, the inconvenience of usability that the demand set water temperature may not be obtained due to the low water temperature in the hot water storage tank as in the related art is eliminated.
c. Since hot water of about 70 ° C. is not stored in the hot water storage means as in the related art, a natural heat radiation loss is small.
d. Since only the hot water supply demand water amount is raised by the temperature raising means, efficient water temperature heating is possible.
e. By using a device capable of controlling the temperature rise as the temperature raising means, it is possible to obtain hot water of 80 to 90 ° C. as compared with the conventional example in which hot water of about 70 ° C. or more was not obtained.
f. By providing the temperature raising means in the hot water supply line, it is not necessary to increase the capacity of the hot water storage tank as in the conventional case. As a result, the size of the hot water storage tank can be reduced.
g. As the temperature raising means, for example, a small tip-stop water heater can be used.
h. By disposing the temperature raising means at a position close to the hot water tap, the piping distance of the return line can be reduced as compared with the conventional example in which piping is provided to the hot water storage tank.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of a cogeneration system embodying the present invention.
FIG. 2 is an explanatory diagram of a conventional cogeneration system.
[Explanation of symbols]
Reference Signs List 1 power generation system 2 waste heat recovery line 3 hot water storage tank 4 waste heat recovery heat exchanger 5 auxiliary heating boiler 6 water temperature sensor 7 auxiliary heat exchanger 8 water supply line 8a water level sensor 8b water supply valve 9 hot water supply line 9a terminal 9b hot water supply line 10 … Hot water tap 11 return line 12 warming operation pump 13 cooling line 14 cooling tower 15 heater 16 water temperature detection sensor 17 bypass line 18 three-way valve 19 water temperature detection sensor

Claims (4)

排熱回収用熱交換器を組み込んで成る貯湯手段、
前記貯湯手段に結ばれた給水ライン、
前記貯湯手段内に貯湯された温水を給湯栓に供給する給湯ライン、
前記給湯ラインから給湯栓に給湯される温水を加熱するために給湯ラインに取り付けられた昇温手段、
前記給湯ラインから給湯栓に給湯される温水の温度を水温センサにより検出し、この検出温度が設定値以下の場合に前記昇温手段を駆動して、水温を設定温度に昇温する給湯温度制御手段、
前記給湯ラインにおいて、前記昇温手段をバイパスするバイパスラインを設けると共に、給湯水温が設定値以上の場合には当該バイパスラインを開放するダイレクト給湯手段、
前記給湯ラインの端末と昇温手段の入側をリターンラインにて結び、このリターンラインに取り付けた保温運転ポンプを駆動して常時保温運転を行っている保温運転手段、
から成るコージェネレーションシステム。
Hot water storage means incorporating a heat exchanger for exhaust heat recovery,
A water supply line connected to the hot water storage means,
A hot water supply line for supplying hot water stored in the hot water storage means to a hot water tap,
Heating means attached to the hot water supply line to heat hot water supplied to the hot water tap from the hot water supply line,
The temperature of hot water supplied to the hot water tap from the hot water supply line is detected by a water temperature sensor, and when the detected temperature is equal to or lower than a set value, the temperature raising means is driven to raise the water temperature to the set temperature. means,
In the hot water supply line, a bypass line that bypasses the temperature raising unit is provided, and when the hot water temperature is equal to or higher than a set value, a direct hot water supply unit that opens the bypass line;
A heat retaining operation means which connects the terminal of the hot water supply line and the inlet side of the temperature raising means with a return line, and drives a heat retaining operation pump attached to the return line to constantly perform a temperature retaining operation;
Cogeneration system consisting of
昇温手段として給湯側の水圧が一定値以下に低下した時に駆動を開始するガス湯沸器を用いて成る請求項1記載のコージェネレーションシステム。2. The cogeneration system according to claim 1, wherein a gas water heater that starts driving when the water pressure on the hot water supply side falls below a certain value is used as the temperature raising means. 昇温手段は、昇温温度設定自在であるところの請求項1又は2記載のコージェネレーションシステム。The cogeneration system according to claim 1 or 2, wherein the temperature raising means is capable of setting a temperature raising temperature. 貯湯槽に昇温手段及び保温運転手段付の給湯ライン及びリターンラインを複数系統設けて成る請求項1又は3記載のコージェネレーションシステム。The cogeneration system according to claim 1 or 3, wherein the hot water storage tank is provided with a plurality of hot water supply lines and return lines provided with a temperature raising means and a heat retaining operation means.
JP15856294A 1994-07-11 1994-07-11 Cogeneration system Expired - Fee Related JP3594252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15856294A JP3594252B2 (en) 1994-07-11 1994-07-11 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15856294A JP3594252B2 (en) 1994-07-11 1994-07-11 Cogeneration system

Publications (2)

Publication Number Publication Date
JPH0828955A JPH0828955A (en) 1996-02-02
JP3594252B2 true JP3594252B2 (en) 2004-11-24

Family

ID=15674420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15856294A Expired - Fee Related JP3594252B2 (en) 1994-07-11 1994-07-11 Cogeneration system

Country Status (1)

Country Link
JP (1) JP3594252B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6938417B2 (en) 2001-12-03 2005-09-06 The Tokyo Electric Power Company, Incorporated Exhaust heat recovery system
JP4637716B2 (en) * 2005-10-19 2011-02-23 中国電力株式会社 Waste heat recovery system using boil-off gas
JP2009204203A (en) * 2008-02-27 2009-09-10 Noritz Corp Cogeneration system
JP5362267B2 (en) * 2008-07-01 2013-12-11 慶太 大上 Waste heat utilization system for commercial kitchen
KR101172422B1 (en) * 2009-12-11 2012-08-08 에스케이씨 주식회사 Waste Heat Recovery System

Also Published As

Publication number Publication date
JPH0828955A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
US6450283B1 (en) Waste heat conversion system
JP2000205044A (en) Cogeneration system
JP2004069197A (en) System using natural energy/underground heat together, and operating method thereof
CN110444786A (en) A kind of fuel cell low-temperature starting control method and device
JP3594252B2 (en) Cogeneration system
KR200236306Y1 (en) Solar heat boiler system
JP5660363B2 (en) Cogeneration system
KR100364662B1 (en) heating and hot water providing system by sun and discounted night electricity and gas boiler
KR101518381B1 (en) Co-generation and Control method of the same
JP2005265249A (en) Hot-water supply/air conditioning system
JP4552387B2 (en) Fuel cell cogeneration system
JP2001248905A (en) Home cogeneration system
CN205349533U (en) Gas steam combination system
JP2996333B2 (en) Combined heat and power system
CN209819874U (en) Marine fuel oil heating device
GB2486491A (en) Water heating system and a method of supplying hot water
JPS598641B2 (en) heat cycle equipment
JP4423440B2 (en) Heat recovery system
JP4382513B2 (en) Combined thermoelectric device and thermoelectric ratio control method for its output
CN109681952A (en) Photovoltaic and photothermal mixing heat pump system
JP2004053151A (en) Hot water supply device
JPS60236A (en) Room cooling, heating and hot-water supplying device utilizing internal-combustion engine
CN211011989U (en) Multi-energy complementary heat exchange system
CN212746649U (en) Multi-energy combined heating system
JPH018920Y2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees