JPH0828955A - Cogeneration system - Google Patents

Cogeneration system

Info

Publication number
JPH0828955A
JPH0828955A JP15856294A JP15856294A JPH0828955A JP H0828955 A JPH0828955 A JP H0828955A JP 15856294 A JP15856294 A JP 15856294A JP 15856294 A JP15856294 A JP 15856294A JP H0828955 A JPH0828955 A JP H0828955A
Authority
JP
Japan
Prior art keywords
hot water
temperature
water supply
line
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15856294A
Other languages
Japanese (ja)
Other versions
JP3594252B2 (en
Inventor
Hideyuki Sugiyama
秀行 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP15856294A priority Critical patent/JP3594252B2/en
Publication of JPH0828955A publication Critical patent/JPH0828955A/en
Application granted granted Critical
Publication of JP3594252B2 publication Critical patent/JP3594252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

PURPOSE:To improve an exhaust heat-recovering efficiency and to improve handling convenience. CONSTITUTION:Only an exhaust heat recovering heat exchanger 4 is assembled within a hot water storage tank 3 to increase a temperature difference between exhaust heat from a cogeneration side and a storage hot water temperature. Thus, its exhaust heat recovering efficiency is improved. Further, a water heater 15 is mounted at a hot water supply line 9 to a hot water supply cock 10, and driven only when the hot water demand set water temperature is lower than the storage hot water temperature to supply hot water heated to the desired hot water temperature. When the storage hot water temperature is the same as or higher than the desired water temperature, the hot water in the tank 3 is supplied directly to the cock 10 via a bypass line 17, and the a return line 11 is not returned to the tank 3, but returned to the heater 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスエンジンを含む内
燃機関で発電機を駆動し、電気を発生させると同時に、
内燃機関の冷却水および排気ガスのもつ高温熱エネルギ
ーを回収し、これを暖房や給湯に利用する所謂コージェ
ネレーションシステムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention drives an electric generator in an internal combustion engine including a gas engine to generate electricity and
The present invention relates to a so-called cogeneration system in which high-temperature heat energy of cooling water and exhaust gas of an internal combustion engine is recovered and used for heating and hot water supply.

【0002】[0002]

【従来の技術】従来のコージェネレーションシステムの
構成を図2に基づいて説明する。図2において、符号の
1はガスエンジンにより発電機を駆動して発電を行う発
電システム、2はガスエンジンの冷却水、排気ガス熱を
回収する排熱回収ライン、3は貯湯槽であって、前記排
熱回収ライン2はこの貯湯槽3内に組み込んだ排熱回収
用熱交換器4を経由して循環することにより、貯湯槽3
内の水に排熱を与える構成である。5は補助加熱用ボイ
ラーであって、この補助加熱用ボイラー5は、貯湯槽3
内の水温が設定値である約70℃以下の場合に、70℃
以上になるように貯湯槽3内の水温を水温センサ6によ
り検出して駆動し、補助熱交換器7により貯湯槽3内の
水温を上昇させるものである。8は貯湯槽3内に給水す
るための給水ラインである。9は貯湯槽3から給湯栓1
0…に対して給湯を行う給湯ライン、11は給湯ライン
9の端末9aに結ばれたリターンラインであって、この
リターンライン11を経由して貯湯槽3内の温水を保温
運転ポンプ12により循環させることにより、即給湯を
実現している。図中13はクーリングライン、14はク
ーリングタワーである。上記従来のガスコージェネレー
ションシステムは、エネルギーを70〜80%の高い効
率で使用することができるため、省エネルギーシステム
として近年特に普及している。
2. Description of the Related Art The structure of a conventional cogeneration system will be described with reference to FIG. In FIG. 2, reference numeral 1 is a power generation system that drives a generator by a gas engine to generate power, 2 is cooling water of the gas engine, exhaust heat recovery line that recovers exhaust gas heat, and 3 is a hot water tank. The exhaust heat recovery line 2 is circulated through the exhaust heat recovery heat exchanger 4 incorporated in the hot water storage tank 3 so that the hot water storage tank 3
It is a structure that gives waste heat to the water inside. 5 is an auxiliary heating boiler, and this auxiliary heating boiler 5 is a hot water storage tank 3
If the water temperature inside is below the set value of about 70 ° C, 70 ° C
As described above, the water temperature in the hot water storage tank 3 is detected and driven by the water temperature sensor 6, and the auxiliary heat exchanger 7 raises the water temperature in the hot water storage tank 3. Reference numeral 8 is a water supply line for supplying water into the hot water storage tank 3. 9 is hot water storage tank 3 to hot water tap 1
A hot water supply line for supplying hot water to 0 ... 11 is a return line connected to the terminal 9a of the hot water supply line 9, and hot water in the hot water storage tank 3 is circulated by the heat retention operation pump 12 via the return line 11. By doing so, instant hot water supply is realized. In the figure, 13 is a cooling line, and 14 is a cooling tower. The above-mentioned conventional gas cogeneration system is particularly popular in recent years as an energy saving system because it can use energy with a high efficiency of 70 to 80%.

【0003】[0003]

【発明が解決しようとする課題】しかし、補助加熱用ボ
イラーを用いる従来例においては、次のような欠点があ
る。 a.発電需要は比較的安定しているが、給湯需要は変動
が激しい。例えば、一時的に大きな給湯需要があった場
合は、貯湯槽3の温度が急激に下がり、補助加熱用ボイ
ラー5が駆動を始めるが、70℃まで昇温されない間に
給湯需要があった場合、希望する温度の温水が得られな
い。 b.常時安定した水温の給湯及び保温運転を実現するた
めに、補助加熱用ボイラー5は貯湯槽3内の水温を約7
0℃に確保している。このため、排熱回収用熱交換器4
で排熱回収する場合、排熱温度約90℃と約70℃との
間には約20℃の温度差しかなく、排熱回収効率が悪
い。又、貯湯槽3内の水温が80℃以上の場合は、排熱
は貯湯槽3側には廻らず、クーリングタワー14側に廻
り、ここで大気中に放棄している。このため、排熱を有
効に回収しきれていない場合が多い。 c.貯湯槽3の容量が大きいため、自然放熱ロスが大き
い。 d.補助加熱用ボイラー5は貯湯槽3内の水量全体を昇
温するため、補助加熱用燃料の消費が大きい。 e.給湯栓10…には、貯湯槽3内の温水が直接給湯さ
れるため、貯湯水温である約70℃以上の高温水を得る
ことはできない。 本発明の目的は、コージェネレーションシステムにおい
て、特に排熱回収効率の向上と使い勝手の向上を図るこ
とである。
However, the conventional example using the auxiliary heating boiler has the following drawbacks. a. The demand for power generation is relatively stable, but the demand for hot water supply is volatile. For example, when there is a large demand for hot water supply temporarily, the temperature of the hot water storage tank 3 drops sharply and the boiler 5 for auxiliary heating starts driving, but when there is a demand for hot water supply before the temperature is raised to 70 ° C, The desired temperature of hot water cannot be obtained. b. In order to realize stable hot water supply and warming operation at all times, the auxiliary heating boiler 5 keeps the water temperature in the hot water storage tank 3 at about 7
Secured at 0 ° C. Therefore, the heat exchanger 4 for exhaust heat recovery
When recovering the exhaust heat, the exhaust heat recovery efficiency is poor because there is no temperature difference of about 20 ° C. between the exhaust heat temperature of about 90 ° C. and about 70 ° C. Further, when the water temperature in the hot water storage tank 3 is 80 ° C. or higher, the exhaust heat does not go to the hot water storage tank 3 side but to the cooling tower 14 side, where it is abandoned to the atmosphere. Therefore, in many cases, exhaust heat cannot be effectively recovered. c. Since the capacity of the hot water storage tank 3 is large, natural heat dissipation loss is large. d. Since the auxiliary heating boiler 5 raises the entire amount of water in the hot water storage tank 3, the consumption of the auxiliary heating fuel is large. e. Since the hot water in the hot water storage tank 3 is directly supplied to the hot water tap 10, it is impossible to obtain high-temperature water having a hot water storage temperature of about 70 ° C. or higher. It is an object of the present invention to improve exhaust heat recovery efficiency and usability in a cogeneration system.

【0004】[0004]

【課題を解決するための手段】本発明に係るコージェネ
レーションシステムの構成は次のとおりである。 1.排熱回収用熱交換器を組み込んで成る貯湯手段、前
記貯湯手段に結ばれた給水ライン、前記貯湯手段内に貯
湯された温水を給湯栓に供給する給湯ライン、前記給湯
ラインから給湯栓に給湯される温水を加熱するために給
湯ラインに取り付けられた昇温手段、前記給湯ラインか
ら給湯栓に給湯される温水の温度を水温センサにより検
出し、この検出温度が設定値以下の場合に前記昇温手段
を駆動して、水温を設定温度に昇温する給湯温度制御手
段、前記給湯ラインにおいて、前記昇温手段をバイパス
するバイパスラインを設けると共に、給湯水温が設定値
以上の場合には当該バイパスラインを開放するダイレク
ト給湯手段、前記給湯ラインの端末と昇温手段の入側を
リターンラインにて結び、このリターンラインに取り付
けた保温運転ポンプを駆動して常時保温運転を行ってい
る保温運転手段、から成るコージェネレーションシステ
ム。 2.昇温手段として給湯側の水圧が一定値以下に低下し
た時に駆動を開始するガス湯沸器を用いて成る前記1記
載のコージェネレーションシステム。 3.昇温手段は、昇温温度設定自在であるところの前記
1又は2記載のコージェネレーションシステム。 4.貯湯槽に昇温手段及び保温運転手段付の給湯ライン
及びリターンラインを複数系統設けて成る前記1又は3
記載のコージェネレーションシステム。
The structure of the cogeneration system according to the present invention is as follows. 1. Hot water storage means incorporating a heat exchanger for recovering exhaust heat, a water supply line connected to the hot water storage means, a hot water supply line for supplying hot water stored in the hot water storage means to a hot water tap, and hot water supply from the hot water supply line to the hot water tap The temperature raising means attached to the hot water supply line for heating the hot water to be heated, the temperature of the hot water supplied to the hot water tap from the hot water supply line is detected by the water temperature sensor, and if the detected temperature is equal to or lower than the set value, the rising temperature is raised. Hot water supply temperature control means for driving the temperature means to raise the water temperature to a set temperature, a bypass line for bypassing the temperature raising means in the hot water supply line, and when the hot water supply water temperature is equal to or higher than a set value, the bypass A direct hot water supply means that opens the line, a terminal of the hot water supply line and the inlet side of the temperature raising means are connected by a return line, and a warming operation pump attached to this return line is installed. Maintenance operation means that a full-time maintenance operation by moving cogeneration system consisting of. 2. 2. The cogeneration system according to claim 1, wherein a gas water heater that starts driving when the water pressure on the hot water supply side drops below a certain value is used as the temperature raising means. 3. The temperature raising means is the cogeneration system according to the above 1 or 2, wherein the temperature raising temperature can be freely set. 4. 1 or 3 wherein a hot water storage tank is provided with a plurality of hot water supply lines and return lines each having a temperature raising means and a warming operation means
The described cogeneration system.

【0005】[0005]

【作用】貯湯手段には、給水ラインを経由して出湯に見
合う水量の給水が自動的に行われる。発電機を駆動する
内燃機関の排熱は、排熱回収ラインを経由して貯湯手段
内の排熱回収用交換器内に入り、ここで貯湯手段内の水
に熱を与えて再び内燃機関に戻る。この作用により、排
熱は貯湯手段内に貯えられた水で回収される。この結
果、貯湯手段内の水は昇温する。給湯需要があり、この
給湯需要設定水温が貯湯手段内の水温よりも高い場合に
は、昇温手段が駆動して給湯需要設定水温になるまで給
湯ライン内を流れる温水を加熱して、これを給湯する。
[Function] The hot water storage means is automatically supplied with the amount of water commensurate with the discharge of hot water through the water supply line. The exhaust heat of the internal combustion engine that drives the generator enters the exhaust heat recovery exchanger in the hot water storage means via the exhaust heat recovery line, where it gives heat to the water in the hot water storage means and returns to the internal combustion engine. Return. By this action, the exhaust heat is recovered by the water stored in the hot water storage means. As a result, the temperature of the water in the hot water storage means rises. If there is a demand for hot water supply, and the hot water supply demand set water temperature is higher than the water temperature in the hot water storage means, the temperature raising means is driven to heat the hot water flowing in the hot water supply line until the hot water supply demand set water temperature is reached. Supply hot water.

【0006】一方、貯湯手段から出湯される水温が給湯
需要設定水温と同一かこれよりも高い場合には、昇温手
段を経由せず、バイパスラインを経由してダイレクトに
給湯を行う。保温運転手段は、昇温手段により加熱した
温水を常時昇温手段→給湯ライン→保温運転ポンプ→給
湯ライン端末→リターンライン→昇温手段と循環させて
おくことにより、即給湯を実現している。又、昇温手段
にて昇温した温水を、貯湯槽に戻さないことにより、貯
湯槽に入る内燃機関側からの排熱回収量を多くとれ、昇
温手段の運転時間を短くできる。
On the other hand, when the water temperature discharged from the hot water storage means is equal to or higher than the hot water supply demand set water temperature, hot water is directly supplied via the bypass line without passing through the temperature raising means. The warming operation means realizes immediate hot water supply by circulating hot water heated by the temperature raising means in the order of constant temperature raising means → hot water supply line → warming operation pump → hot water supply line terminal → return line → temperature raising means. . Further, by not returning the hot water heated by the temperature raising means to the hot water storage tank, the amount of exhaust heat recovered from the internal combustion engine side entering the hot water storage tank can be increased and the operating time of the temperature raising means can be shortened.

【0007】[0007]

【実施例】図1に基づいて本発明の実施例を詳述する。
図1において、1はガスエンジンにより発電機を駆動し
て発電を行う発電システム、2はガスエンジンの冷却
水、排気ガス熱を回収する排熱回収ライン、3は貯湯手
段としての貯湯槽であって、前記排熱回収ライン2はこ
の貯湯槽3内に組み込まれた排熱回収用熱交換器4を経
由して貯湯槽3内の水に排熱を与える構成である。8は
貯湯槽3内に給水を行う給水ラインであって、この給水
ライン8には貯湯槽3内の水位を水位センサ8aにより
検出して、常時一定の水位に保持するように給水バルブ
8bを制御する給水制御手段が取り付けてある。但し、
この給水制御手段は、貯湯槽3内の水位が給湯により下
がった場合に、水道水圧で自動的に給水される方式とす
ることにより、無くすことができる。9は給湯ライン、
13はクーリングライン、14はクーリングタワーであ
る。
Embodiments of the present invention will be described in detail with reference to FIG.
In FIG. 1, 1 is a power generation system that drives a generator by a gas engine to generate electric power, 2 is cooling water of the gas engine, an exhaust heat recovery line that recovers exhaust gas heat, and 3 is a hot water tank as hot water storage means. The exhaust heat recovery line 2 is configured to give exhaust heat to the water in the hot water storage tank 3 via the exhaust heat recovery heat exchanger 4 incorporated in the hot water storage tank 3. Reference numeral 8 denotes a water supply line for supplying water into the hot water storage tank 3, and the water supply line 8 is provided with a water supply valve 8b so that the water level sensor 8a detects the water level in the hot water storage tank 3 and always maintains a constant water level. A water supply control means for controlling is attached. However,
This water supply control means can be eliminated by adopting a system of automatically supplying water by tap water pressure when the water level in the hot water storage tank 3 is lowered by hot water supply. 9 is a hot water supply line,
13 is a cooling line, and 14 is a cooling tower.

【0008】15は前記給湯ライン9に取り付けられた
昇温手段の一例としての出湯温度設定自在の先止め方式
のガス温水器(以下「昇温器」という)、16は昇温器
15の出口側の給湯ライン9bに取り付けられた水温検
出センサ、11は給湯ライン9bの端末9aと昇温器1
5の入側を結ぶリターンライン、12は昇温器15の出
側に取り付けられた保温運転ポンプである。17は昇温
器15の上流側において、給湯ライン9を分岐して三方
弁18により給湯ライン9bに結んだダイレクト給湯手
段としてのバイパスライン、19は貯湯槽3の出口の水
温を検出する水温検出センサーであって、この水温検出
センサ19がある設定水温以上を検出したときに三方弁
18をバイパスライン17側に切り換えて直接貯湯槽3
内の温水を給湯栓10…側に給湯することができる。
Reference numeral 15 denotes a gas water heater (hereinafter referred to as "heater") of a pre-stopping type, which can set a hot water outlet temperature as an example of temperature raising means attached to the hot water supply line 9, and 16 denotes an outlet of the heater 15. Water temperature detection sensor attached to the hot water supply line 9b on the side, 11 is a terminal 9a of the hot water supply line 9b and the temperature raising device 1
A return line connecting the inlet side of 5 and 12 is a heat retention operation pump attached to the outlet side of the temperature raising device 15. Reference numeral 17 is a bypass line as a direct hot water supply means which branches the hot water supply line 9 and is connected to the hot water supply line 9b by a three-way valve 18 on the upstream side of the heating device 15, and 19 is a water temperature detection for detecting the water temperature at the outlet of the hot water storage tank 3. When the water temperature detection sensor 19 detects a certain water temperature or higher, the three-way valve 18 is switched to the bypass line 17 side to directly connect the hot water storage tank 3
Hot water inside can be supplied to the hot-water tap 10.

【0009】上記実施例についての作用を次に説明す
る。貯湯槽3には給水ライン8を経由して、水位センサ
ー8a、給水バルブ8bにより、出湯に見合う水量の給
水が自動的に行われる。発電機を駆動するガスエンジン
からの排熱は、排熱回収ライン2を経由して貯湯槽3内
の排熱回収用交換器4内に入り、ここで貯湯槽3内の水
に熱を与えて再びガスエンジンに戻る。この作用により
排熱は貯湯槽3内に貯えられた水で回収される。この結
果、貯湯槽3内の水は昇温する。給湯需要があり、水温
検出センサー19で検出される水温が給湯需要設定水温
よりも低い場合には、昇温器15が駆動して給湯需要設
定水温になるまで給湯ライン9bからリターンライン1
1を流れる温水を加熱する。一方、水温検出センサー1
9で検出される貯湯槽3内の水温が給湯需要設定水温と
同一かこれよりも高い場合には、三方弁18を切り換え
てバイパスライン17を経由してダイレクトに給湯栓1
0…に対して給湯を行う。保温運転は、給湯需要がある
無しに拘らず、保温運転ポンプ12が駆動して昇温器1
5により昇温した温水を昇温器15→給湯ライン9b→
保温運転ポンプ12→給湯ライン端末9a→リターンラ
イン11→昇温器15と循環して、即給湯に備える。
The operation of the above embodiment will be described below. A water level sensor 8a and a water supply valve 8b automatically supply water to the hot-water storage tank 3 in an amount suitable for tapping hot water through a water supply line 8. Exhaust heat from the gas engine that drives the generator enters the exhaust heat recovery exchanger 4 in the hot water storage tank 3 via the exhaust heat recovery line 2 and gives heat to the water in the hot water storage tank 3 there. Then return to the gas engine again. By this action, the exhaust heat is recovered by the water stored in the hot water storage tank 3. As a result, the temperature of the water in the hot water storage tank 3 rises. When there is a hot water supply demand and the water temperature detected by the water temperature detection sensor 19 is lower than the hot water supply demand set water temperature, the warmer 15 is driven and the hot water supply line 9b to the return line 1 until the hot water supply demand set water temperature is reached.
Heat the warm water flowing through 1. On the other hand, water temperature detection sensor 1
When the water temperature in the hot water storage tank 3 detected at 9 is equal to or higher than the hot water supply demand set water temperature, the three-way valve 18 is switched and the hot water tap 1 is directly passed through the bypass line 17.
Hot water is supplied to 0. In the heat retention operation, the heat retention operation pump 12 is driven to operate the temperature raising device 1 regardless of whether there is a demand for hot water supply.
The warm water heated by 5 is heated by the heater 15 → hot water supply line 9b →
The warm-keeping pump 12 → hot water supply line terminal 9a → return line 11 → heater 15 circulates to prepare for hot water supply immediately.

【0010】[0010]

【発明の効果】本発明による効果は次のとおりである。 a.貯湯手段内には、排熱回収用熱交換器により昇温し
た温度の水だけを貯湯し、従来のように補助加熱用ボイ
ラーを用いて約70℃まで加熱しておく手段を排除する
と共に昇温手段にて加温された温水を従来のように貯湯
手段に戻さないように構成した。この結果、貯湯手段内
の水温は、排熱から回収された熱で決まり、又給湯需要
が多い場合、貯湯手段内の水温はどんどん下がるため、
排熱と水温との差が大きくなって内燃機関側からの排熱
の回収効率が向上する。この点を従来例と比較すると、
本発明の場合、12時間連続運転において、排熱は合計
約10時間回収されていたが、従来の補助加熱用ボイラ
ーを取り付けて貯湯槽内を約70℃に加熱するシステム
においては、クーリングタワーの駆動が約9時間で、排
熱回収運転は僅か3時間にすぎなかった。 b.昇温手段は、給湯需要設定水温に見合う昇温を行う
ため、従来のように貯湯槽内の水温が低いために需要設
定水温が得られないことがあると云った使い勝手の悪さ
がなくなる。 c.貯湯手段内には、従来のように約70℃の高温水が
貯湯されていないため、自然放熱ロスが少ない。 d.昇温手段により、給湯需要水量だけを昇温するた
め、効率的な水温加熱が可能である。 e.昇温手段に昇温温度制御自在なものを利用すること
により、約70℃以上の温水は得られなかった従来例に
比較して、80〜90℃の温水を得ることができる。 f.給湯ラインに昇温手段を設けたことにより、従来の
ように、貯湯槽の容量を大きく設定する必要がない。こ
の結果、貯湯槽の小型化が可能である。 g.昇温手段には、例えば小型の先止め式給湯器を用い
ることができる。 h.昇温手段を給湯栓に近い位置に設置することによ
り、貯湯槽まで配管していた従来例に比較して、リター
ンラインの配管距離を短くできる。
The effects of the present invention are as follows. a. In the hot water storage means, only the water having the temperature raised by the heat exchanger for recovering exhaust heat is stored, and the conventional means for heating up to about 70 ° C using the auxiliary heating boiler is eliminated and the temperature is raised. The warm water heated by the warming means is not returned to the hot water storage means as in the conventional case. As a result, the water temperature in the hot water storage means is determined by the heat recovered from the exhaust heat, and if there is a large demand for hot water supply, the water temperature in the hot water storage means will drop rapidly,
The difference between the exhaust heat and the water temperature becomes large, and the efficiency of recovering the exhaust heat from the internal combustion engine side improves. Comparing this point with the conventional example,
In the case of the present invention, the exhaust heat was collected for a total of about 10 hours in the 12-hour continuous operation. However, in the system for heating the inside of the hot water tank to about 70 ° C. by attaching the conventional auxiliary heating boiler, the cooling tower is driven. Was about 9 hours, and the exhaust heat recovery operation was only 3 hours. b. Since the temperature raising means raises the temperature corresponding to the hot water supply demand set water temperature, there is no inconvenience that the demand set water temperature may not be obtained because the water temperature in the hot water storage tank is low as in the conventional case. c. Unlike the conventional case, high temperature water of about 70 ° C. is not stored in the hot water storage means, so natural heat dissipation loss is small. d. Since the temperature raising means raises only the hot water supply demand water amount, efficient water temperature heating is possible. e. By using the temperature raising means capable of controlling the temperature raising temperature, it is possible to obtain hot water of 80 to 90 ° C. as compared with the conventional example in which hot water of about 70 ° C. or higher could not be obtained. f. Since the hot water supply line is provided with the temperature raising means, it is not necessary to set a large capacity of the hot water storage tank as in the conventional case. As a result, the hot water storage tank can be downsized. g. As the temperature raising means, for example, a small stop type water heater can be used. h. By installing the temperature raising means close to the hot water tap, the return line piping distance can be shortened as compared with the conventional example in which the hot water storage tank is piped.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施したコージェネレーションシステ
ムの実施例の説明図。
FIG. 1 is an explanatory diagram of an embodiment of a cogeneration system embodying the present invention.

【図2】従来のコージェネレーションシステムの説明
図。
FIG. 2 is an explanatory diagram of a conventional cogeneration system.

【符号の説明】[Explanation of symbols]

1 発電システム 2 排熱回収ライン 3 貯湯槽 4 排熱回収用熱交換器 5 補助加熱用ボイラー 6 水温センサー 7 補助熱交換器 8 給水ライン 8a 水位センサー 8b 給水バルブ 9 給湯ライン 9a 端末 9b 給湯ライン 10… 給湯栓 11 リターンライン 12 保温運転ポンプ 13 クーリングライン 14 クーリングタワー 15 昇温器 16 水温検出センサ 17 バイパスライン 18 三方弁 19 水温検出センサー 1 Power Generation System 2 Exhaust Heat Recovery Line 3 Hot Water Tank 4 Exhaust Heat Recovery Heat Exchanger 5 Auxiliary Heating Boiler 6 Water Temperature Sensor 7 Auxiliary Heat Exchanger 8 Water Supply Line 8a Water Level Sensor 8b Water Supply Valve 9 Hot Water Supply Line 9a Terminal 9b Hot Water Supply Line 10 … Hot water tap 11 Return line 12 Heat retention pump 13 Cooling line 14 Cooling tower 15 Heater 16 Water temperature detection sensor 17 Bypass line 18 Three-way valve 19 Water temperature detection sensor

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F24D 17/00 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location F24D 17/00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 排熱回収用熱交換器を組み込んで成る貯
湯手段、 前記貯湯手段に結ばれた給水ライン、 前記貯湯手段内に貯湯された温水を給湯栓に供給する給
湯ライン、 前記給湯ラインから給湯栓に給湯される温水を加熱する
ために給湯ラインに取り付けられた昇温手段、 前記給湯ラインから給湯栓に給湯される温水の温度を水
温センサにより検出し、この検出温度が設定値以下の場
合に前記昇温手段を駆動して、水温を設定温度に昇温す
る給湯温度制御手段、 前記給湯ラインにおいて、前記昇温手段をバイパスする
バイパスラインを設けると共に、給湯水温が設定値以上
の場合には当該バイパスラインを開放するダイレクト給
湯手段、 前記給湯ラインの端末と昇温手段の入側をリターンライ
ンにて結び、このリターンラインに取り付けた保温運転
ポンプを駆動して常時保温運転を行っている保温運転手
段、 から成るコージェネレーションシステム。
1. A hot water storage means incorporating a heat exchanger for recovering exhaust heat, a water supply line connected to the hot water storage means, a hot water supply line for supplying hot water stored in the hot water storage means to a hot water tap, and the hot water supply line A temperature raising means attached to the hot water supply line for heating the hot water supplied from the hot water supply tap to the hot water supply tap, the temperature of the hot water supplied to the hot water supply tap from the hot water supply line is detected by a water temperature sensor, and the detected temperature is below a set value. In the case of, the hot water supply temperature control means for driving the temperature raising means to raise the water temperature to a set temperature, the hot water supply line is provided with a bypass line bypassing the temperature raising means, and the hot water supply water temperature is equal to or higher than a set value. In this case, a direct hot water supply means for opening the bypass line, a terminal of the hot water supply line and an inlet side of the temperature raising means are connected by a return line and attached to this return line. Thermal insulation operation A cogeneration system consisting of a thermal insulation operation means that drives the pump to perform thermal insulation operation at all times.
【請求項2】 昇温手段として給湯側の水圧が一定値以
下に低下した時に駆動を開始するガス湯沸器を用いて成
る請求項1記載のコージェネレーションシステム。
2. The cogeneration system according to claim 1, wherein a gas water heater that starts driving when the water pressure on the hot water supply side drops below a certain value is used as the temperature raising means.
【請求項3】 昇温手段は、昇温温度設定自在であると
ころの請求項1又は2記載のコージェネレーションシス
テム。
3. The cogeneration system according to claim 1, wherein the temperature raising means is capable of freely setting the temperature raising temperature.
【請求項4】 貯湯槽に昇温手段及び保温運転手段付の
給湯ライン及びリターンラインを複数系統設けて成る請
求項1又は3記載のコージェネレーションシステム。
4. The cogeneration system according to claim 1, wherein the hot water storage tank is provided with a plurality of hot water supply lines and return lines each having a temperature raising means and a heat retention operation means.
JP15856294A 1994-07-11 1994-07-11 Cogeneration system Expired - Fee Related JP3594252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15856294A JP3594252B2 (en) 1994-07-11 1994-07-11 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15856294A JP3594252B2 (en) 1994-07-11 1994-07-11 Cogeneration system

Publications (2)

Publication Number Publication Date
JPH0828955A true JPH0828955A (en) 1996-02-02
JP3594252B2 JP3594252B2 (en) 2004-11-24

Family

ID=15674420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15856294A Expired - Fee Related JP3594252B2 (en) 1994-07-11 1994-07-11 Cogeneration system

Country Status (1)

Country Link
JP (1) JP3594252B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048652A1 (en) * 2001-12-03 2003-06-12 The Tokyo Electric Power Company, Incorporated Exhaust heat recovery system
JP2007113442A (en) * 2005-10-19 2007-05-10 Chugoku Electric Power Co Inc:The Waste heat recovery system using boil-off gas
JP2009204203A (en) * 2008-02-27 2009-09-10 Noritz Corp Cogeneration system
JP2010014286A (en) * 2008-07-01 2010-01-21 Keita Ogami Waste heat utilizing system for commercial kitchen
JP2013513085A (en) * 2009-12-11 2013-04-18 エスケーシー カンパニー リミテッド Waste heat recovery system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048652A1 (en) * 2001-12-03 2003-06-12 The Tokyo Electric Power Company, Incorporated Exhaust heat recovery system
US6938417B2 (en) 2001-12-03 2005-09-06 The Tokyo Electric Power Company, Incorporated Exhaust heat recovery system
CN1333159C (en) * 2001-12-03 2007-08-22 东京电力株式会社 Exhaust heat recovery system
JP2007113442A (en) * 2005-10-19 2007-05-10 Chugoku Electric Power Co Inc:The Waste heat recovery system using boil-off gas
JP4637716B2 (en) * 2005-10-19 2011-02-23 中国電力株式会社 Waste heat recovery system using boil-off gas
JP2009204203A (en) * 2008-02-27 2009-09-10 Noritz Corp Cogeneration system
JP2010014286A (en) * 2008-07-01 2010-01-21 Keita Ogami Waste heat utilizing system for commercial kitchen
JP2013513085A (en) * 2009-12-11 2013-04-18 エスケーシー カンパニー リミテッド Waste heat recovery system
US9574829B2 (en) 2009-12-11 2017-02-21 Skc Co., Ltd. System for recovering waste heat

Also Published As

Publication number Publication date
JP3594252B2 (en) 2004-11-24

Similar Documents

Publication Publication Date Title
US8037931B2 (en) Hybrid water heating system
JP2000205044A (en) Cogeneration system
CN101666519A (en) Solar heating device
CN108954468A (en) A kind of phase-change thermal storage peak valley heating system and its heating method
JP2004069197A (en) System using natural energy/underground heat together, and operating method thereof
CN110444786A (en) A kind of fuel cell low-temperature starting control method and device
CN202361611U (en) Gas heating water heater
KR101045005B1 (en) Solar heatimg complex apparatus
JP3594252B2 (en) Cogeneration system
KR200195488Y1 (en) Heating and hot water providing system by sun and discounted night electricity and gas boiler
KR200236306Y1 (en) Solar heat boiler system
CN209819874U (en) Marine fuel oil heating device
JP2996333B2 (en) Combined heat and power system
KR100435832B1 (en) Solar heat boiler system
KR100435831B1 (en) Solar heat boiler system
US20060059911A1 (en) Space heating and cooling system having a co-generator drive a geothermal connected heat pump
GB2486491A (en) Water heating system and a method of supplying hot water
CN105135511A (en) Solar-heating-plate-based heating system
JP2009127992A (en) Hot water supply apparatus, and operation method of hot water supply apparatus
CN2585133Y (en) Heat-storage type solar central water heating machine set
CN218410050U (en) Waste heat utilization type multi-heat-source step heating radiator heating and hot water system
JP4423440B2 (en) Heat recovery system
CN109681952A (en) Photovoltaic and photothermal mixing heat pump system
CN208887134U (en) A kind of bearing insulated water box of space energy water heater
CN211011989U (en) Multi-energy complementary heat exchange system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees