JPH02252949A - Engine exhaust heat recovery device - Google Patents

Engine exhaust heat recovery device

Info

Publication number
JPH02252949A
JPH02252949A JP63258162A JP25816288A JPH02252949A JP H02252949 A JPH02252949 A JP H02252949A JP 63258162 A JP63258162 A JP 63258162A JP 25816288 A JP25816288 A JP 25816288A JP H02252949 A JPH02252949 A JP H02252949A
Authority
JP
Japan
Prior art keywords
heat
heat recovery
engine
rate
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63258162A
Other languages
Japanese (ja)
Other versions
JPH0726594B2 (en
Inventor
Kazuhiko Ogura
小倉 和彦
Isamu Kubomoto
久保元 勇
Tomoaki Imamura
友昭 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63258162A priority Critical patent/JPH0726594B2/en
Publication of JPH02252949A publication Critical patent/JPH02252949A/en
Publication of JPH0726594B2 publication Critical patent/JPH0726594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To control temperature change of heat recovery liquid slight in spite of flow variation of the heat recovery liquid by connecting parallelly discharge side water passages of a heat exchanger for recovering engine exhaust heat to a radiator passage of a radiator, and by connecting respective water lines to an engine cooling water passage through a variably dividing valve. CONSTITUTION:An exhaust heat recovery device is constructed by connecting an exhaust heat intake passages 4 of a heat exchanger 3 for recovering exhaust heat in a serial circulation in order, a hot water passage 5, a discharge side water passage 7 for heat recovery of a heat exchanger 6 for recovering engine exhaust heat, and a cooling water passage, to an water jacket of an engine. Radiator passages 10 of a radiator 1 are parallelly connected to an water passage 7, and the water passage 7 and the radiator passages 10 are connected to an engine cooling water passage 11 including the water jacket 2 through a variably dividing valve 12 so as to be capable of being divided variably. The variably dividing valve 12 controls to increase the radiation side dividing rate of cooling water from the cooling water passage 11 to the radiator passages 10 according to the output of a flow meter 35 additionally provided on the way of an endothermic fluid passage 15 of the heat exchanger 6, for instance, when the decreasing rate of detection flow after heat recovery is less than a lower limit.

Description

【発明の詳細な説明】 本発明は、エンジン本体熱や排気熱などのエンジンから
の排出熱を回収する装置に関し、熱回収液の流量変化率
が大きく変動しても、熱回収液温の変化を小さく抑制で
きるものを提供する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for recovering exhaust heat from an engine such as engine body heat and exhaust heat, and the present invention relates to a device that recovers exhaust heat from an engine such as engine body heat and exhaust heat. We provide something that can suppress this to a small level.

〈従来技術〉 本発明の対象とするエンジンの排出熱回収装置の基本構
造は、第1図又は第3図に示すように、エンジンEのウ
ォータジャケット2に、排出熱回収用熱交換器3の排気
熱吸収路4・温水路5・エンジン排出熱回収用熱交換器
6の熱回収用放出側水路7・及び冷水路8を順に直列循
環状に連通連結して構成した形式のものである。
<Prior art> As shown in FIG. 1 or 3, the basic structure of the engine exhaust heat recovery device to which the present invention is applied is that a heat exchanger 3 for exhaust heat recovery is installed in the water jacket 2 of the engine E. The exhaust heat absorption path 4, the hot water path 5, the heat recovery discharge side water path 7 of the engine exhaust heat recovery heat exchanger 6, and the cold water path 8 are connected in series in a circulating manner.

この形式の従来技術としては、米国特許第422621
4号公報(第3図参照)に示すように、エンジンEと発
電機Gとを連動連結し、発電機Gで発電を行うとともに
、ウォータジャケット2で吸熱したエンジン本体熱と、
排気熱吸収路4で吸熱した排気熱とを、エンジン排出熱
回収用熱交換器6内で放熱して、同熱交換器6の熱回収
用吸熱側水路15からエンジンEの排出熱を回収するよ
うに構成したものがある。
As a prior art of this type, US Pat. No. 4,226,21
As shown in Publication No. 4 (see Fig. 3), the engine E and the generator G are interlocked and the generator G generates electricity, and the engine body heat absorbed by the water jacket 2,
The exhaust heat absorbed in the exhaust heat absorption path 4 is radiated in the engine exhaust heat recovery heat exchanger 6, and the exhaust heat of the engine E is recovered from the heat recovery side water channel 15 of the heat exchanger 6. There is something configured like this.

尚、符号50は、エンジンEの始動時に、冷却水路を温
水路5から直接的に冷水路8に短絡させて、早期にエン
ジンEを暖機できるようにするための切り換え用三方弁
である。
Reference numeral 50 designates a three-way switching valve that short-circuits the cooling waterway directly from the hot waterway 5 to the cold waterway 8 when the engine E is started, so that the engine E can be warmed up quickly.

〈発明が解決しようとする課題〉 しかしながら、上記従来技術では、季節的要因や人数的
要因などの外部要因によって、熱回収量を低減してエン
ジン排出熱回収用熱交換器6から出る熱回収量の流量を
大きく減少側に変化させた場合、エンジンEの排出熱は
少量の熱回収量に集中して吸熱されるので、熱回収量の
温度が急上昇して適正温度領域から高く外れてしまう虞
れがある。
<Problems to be Solved by the Invention> However, in the above-mentioned conventional technology, the amount of heat recovered is reduced due to external factors such as seasonal factors and number of people, and the amount of heat recovered from the engine exhaust heat recovery heat exchanger 6 is reduced. If the flow rate of is significantly decreased, the exhaust heat of engine E will be concentrated and absorbed in a small amount of heat recovery, so there is a risk that the temperature of the heat recovery amount will rise rapidly and deviate from the appropriate temperature range. There is.

また、逆に、熱回収量を増大してエンジン排出熱回収用
熱交換器6から出る熱回収量の流量を大きく増加側に変
化させた場合、エンジンEの排出熱は大量の熱回収量に
分散して吸熱されるので、熱回収量の温度が急低下して
適正温度領域から低く外れてしまう虞れがある。
Conversely, if the heat recovery amount is increased and the flow rate of the heat recovery amount coming out of the engine exhaust heat recovery heat exchanger 6 is greatly increased, the exhaust heat of the engine E will be increased to a large amount. Since heat is absorbed in a dispersed manner, there is a risk that the temperature of the amount of heat recovered will drop suddenly and fall out of the appropriate temperature range.

本発明は、熱交換器から出る熱回収液の流量変化率が正
・負のどちらに大きく変動した場合でも、熱回収液の温
度変化を小さく抑えることを技術的課題とする。
The technical problem of the present invention is to suppress the temperature change of the heat recovery liquid to a small value even when the rate of change in the flow rate of the heat recovery liquid exiting the heat exchanger fluctuates significantly in either the positive or negative direction.

〈課題を解決するための手段〉 上記課題を解消する手段を、実施例に対応する図面を用
いて以下に説明する。
<Means for Solving the Problems> Means for solving the above problems will be described below using drawings corresponding to embodiments.

即ち、本発明は、前記基本構造のエンジンの排出熱回収
装置において、 エンジン排出熱回収用熱交換器6の熱回収用放出側水路
7に放熱器lの放熱路10を並列状に接続し、 冷水路8・ウォータジャケット2・排気熱吸収路4・及
び温水路5から成るエンジン冷却水路11に対して、熱
回収用放出側水路7と放熱路10とを、可変分流弁12
で可変分流可能に接続し、エンジン排出熱回収用熱交換
器6の熱回収用吸熱側液路15に流量計35を付設して
、当該吸熱側液路15を通過する熱回収液の流量を流量
計35で検出可能にし、流量計35に分流率制御装置1
4を介して可変分流弁12を分流率制御可能に連携し、 流量計35の熱回収液の検出流量の変化率Qが負になり
、その流量減少率が放熱減少側下限値Q(L)以下にな
った場合に、分流率制御装置14が可変分流弁12を放
熱増量側に作動させて、エンジン冷却水路11から放熱
路10への冷却水の放熱側分流率を増加させるとともに
、熱回収用放出側水路7への冷却水の熱回収側分流率を
減少させ、流量計35の熱回収液の検出流量の変化率Q
が正になり、その流量増加率が放熱増加側上限値Q(H
)以上になった場合に、可変分流弁12を放熱′f$4
量側に作動させて、前記放熱側分流率を減少させるとと
もに、熱回収側分流率を増加させるように構成したこと
を特徴とするものである。
That is, the present invention provides an engine exhaust heat recovery device having the above-mentioned basic structure, in which the heat radiation path 10 of the radiator l is connected in parallel to the heat recovery discharge side water channel 7 of the engine exhaust heat recovery heat exchanger 6, An engine cooling waterway 11 consisting of a cold waterway 8, a water jacket 2, an exhaust heat absorption path 4, and a hot waterway 5 is connected to a heat recovery discharge side waterway 7 and a heat radiation path 10 using a variable flow divider valve 12.
A flow meter 35 is attached to the heat recovery side liquid path 15 of the heat exchanger 6 for engine exhaust heat recovery so that the flow rate of the heat recovery liquid passing through the heat recovery side liquid path 15 can be adjusted. It can be detected by the flow meter 35, and the flow rate control device 1 is installed in the flow meter 35.
4, the variable flow dividing valve 12 is linked to control the flow rate of the heat recovery liquid, and the rate of change Q of the detected flow rate of the heat recovery liquid by the flow meter 35 becomes negative, and the rate of decrease in the flow rate becomes the lower limit value Q(L) on the heat radiation reduction side. When the following conditions occur, the distribution ratio control device 14 operates the variable distribution valve 12 to the heat radiation increasing side to increase the heat radiation side distribution ratio of the cooling water from the engine cooling channel 11 to the heat radiation path 10, and also to recover heat. The rate of change in the flow rate Q of the heat recovery liquid detected by the flowmeter 35 is
becomes positive, and the rate of increase in flow rate becomes the upper limit value Q(H
), the variable flow divider valve 12 is set to release heat 'f$4.
The present invention is characterized in that it is configured to operate on the heat dissipation side to decrease the heat radiation side division ratio and to increase the heat recovery side division ratio.

〈作用〉 (1)エンジン排出熱回収用熱交換器6の吸熱側液路1
5を通過する熱回収液量が急激に減少した場合、即ち、 流量計35の検出流量減少率Q ≦放熱減少側下限値Q(L)の場合 (検出流量減少率Qの絶対値が放熱減少側下限値Q(L
)の絶対値以上に大きくなった場合)分流率制御装置1
4が可変分流弁12を放熱増量側に作動させて、エンジ
ン冷却水路11から放熱路10への冷却水の放熱側分流
率が増加するので、エンジン排出熱が放熱器1で冷却水
循環系外に放熱される割合が増え、エンジン排出熱回収
用熱交換器6に達するエンジン排出熱量自体が低減する
<Function> (1) Endothermic side liquid path 1 of heat exchanger 6 for engine exhaust heat recovery
When the amount of heat recovery liquid passing through 5 suddenly decreases, that is, when the detected flow rate decrease rate Q of the flow meter 35 ≦ lower limit value Q (L) on the heat radiation decrease side (the absolute value of the detected flow rate decrease rate Q is the heat radiation decrease Side lower limit value Q(L
) If the absolute value of ) becomes greater than the absolute value of
4 operates the variable diverter valve 12 to the heat radiation increasing side, and the heat radiation side division ratio of the cooling water from the engine cooling channel 11 to the heat radiation path 10 increases, so that the engine exhaust heat is transferred to the radiator 1 and outside the cooling water circulation system. The rate of heat radiated increases, and the amount of engine exhaust heat itself that reaches the heat exchanger 6 for engine exhaust heat recovery is reduced.

この結果、上記熱回収用吸熱側液路15を通過する熱回
収液量が急激に減少しても、これに見合って熱回収の対
象になるエンジン排出熱が減るので、熱回収液は温度上
昇を抑制され、適正温度範囲内に保持される。
As a result, even if the amount of heat recovery liquid passing through the heat recovery endothermic side liquid path 15 decreases rapidly, the engine exhaust heat that is the target of heat recovery decreases accordingly, so the temperature of the heat recovery liquid rises. temperature is suppressed and maintained within the appropriate temperature range.

(2)エンジン排出熱回収用熱交換器6の吸熱側液路1
5を通過する熱回収液量が急激に増加した場合、即ち、 放熱増加側上限値Q(H) ≦流量計35の検出流量増加率Qの場合分流率制御装置
14が可変分流弁12を放熱減量側に作動させて、エン
ジン冷却水路11がら放熱路10への冷却水の放熱側分
流率が減少するので、エンジン排出熱が放熱器1で冷却
水循環系外に放熱する割合が減り、エンジン排出熱回収
用熱交換器6に達するエンジン排出熱量自体が増加する
(2) Endothermic side liquid path 1 of heat exchanger 6 for engine exhaust heat recovery
When the amount of heat recovery liquid passing through the heat recovery liquid increases rapidly, that is, when the heat radiation increase side upper limit value Q (H) ≦ the detected flow rate increase rate Q of the flowmeter 35, the diversion rate control device 14 causes the variable diversion valve 12 to dissipate heat. By operating on the weight loss side, the heat radiation side division rate of the cooling water from the engine cooling waterway 11 to the heat radiation path 10 is reduced, so the proportion of engine exhaust heat radiated outside the cooling water circulation system by the radiator 1 is reduced, and the engine exhaust heat is The amount of engine exhaust heat itself that reaches the heat recovery heat exchanger 6 increases.

この結果、上記熱回収用吸熱側液路15を通過する熱回
収液量が急激に増加しても、これに見合って熱回収の対
象になるエンジン排出熱が増えるので、熱回収液は温度
低下を抑制され、適正温度範囲内に保持される。
As a result, even if the amount of heat recovery liquid passing through the heat recovery endothermic side liquid path 15 increases rapidly, the engine exhaust heat that is subject to heat recovery increases commensurately, so the temperature of the heat recovery liquid decreases. temperature is suppressed and maintained within the appropriate temperature range.

〈発明の効果〉 エンジン排出熱回収用熱交換器の吸熱側液路を出る熱回
収液の流量変化率が大きく変動しても、流量計に連携し
た可変分流弁の機能により、それに見合って当該熱交換
器に達するエンジン排出熱を変化させられるので、熱回
収液の温度変化を小さく抑えられる。
<Effects of the Invention> Even if the rate of change in the flow rate of the heat recovery liquid exiting the heat absorption side liquid path of the heat exchanger for engine exhaust heat recovery varies greatly, the function of the variable flow divider valve linked to the flowmeter allows the flow rate to be reduced commensurately. Since the engine exhaust heat that reaches the heat exchanger can be changed, changes in the temperature of the heat recovery liquid can be suppressed.

〈実施例〉 以下、本発明の実施例を図面に基づいて述べる。<Example> Hereinafter, embodiments of the present invention will be described based on the drawings.

第1図は熱併給エンジン発電装置の系統原理図、第2図
は同装置における熱回収水の流量変化率・ラジェータ側
冷却水分流率の関係図であって、当該熱併給エンジン発
電装置は、縦型ガスエンジンEと発電機Gとを前後方向
に連動連結して、発電を行うと同時に、エンジン本体熱
と排気熱とのエンジン排出熱を回収するように構成しで
ある。
Fig. 1 is a system principle diagram of a cogeneration engine power generation device, and Fig. 2 is a diagram showing the relationship between the rate of change in the flow rate of heat recovery water and the flow rate of cooling water on the radiator side in the same device. The vertical gas engine E and the generator G are interlocked and connected in the front-rear direction to generate electricity and at the same time recover engine exhaust heat including engine body heat and exhaust heat.

上記ガスエンジンEのシリンダブロック及びシリンダヘ
ッド内にウォータジャケット2を形成し、エンジンEの
排気路21に排出熱回収用熱交換器3及びマフラ20を
順番に取り付ける。
A water jacket 2 is formed in the cylinder block and cylinder head of the gas engine E, and a heat exchanger 3 for exhaust heat recovery and a muffler 20 are attached to the exhaust path 21 of the engine E in this order.

また、エンジンEにラジェータlを付設して、エンジン
排出熱を冷却水循環路系外に放熱可能に構成するととも
に、エンジン排出熱回収用熱交換器6を付設して、熱交
換器6の熱回収用放出側水路7でエンジン排出熱を放出
し、その熱回収用吸熱側水路15でその排出熱を回収し
、吸熱側水路15から取り出した給湯水を温水タンク2
・3に貯留して、給湯に利用するように構成される。
In addition, a radiator l is attached to the engine E so that engine exhaust heat can be radiated outside the cooling water circulation system, and a heat exchanger 6 for recovering engine exhaust heat is attached to recover the heat of the heat exchanger 6. Engine exhaust heat is released in the heat release side waterway 7, the exhaust heat is recovered in the heat absorption side waterway 15 for heat recovery, and the hot water taken out from the heat absorption side waterway 15 is transferred to the hot water tank 2.
・It is configured to be stored in 3 and used for hot water supply.

尚、符号24は制御装置であって、上記ラジェータ1の
冷却ファン25、後述の循環ポンプ22、ガス燃料導入
路の減圧弁などを制御している。
The reference numeral 24 denotes a control device that controls the cooling fan 25 of the radiator 1, the circulation pump 22 (to be described later), the pressure reducing valve of the gas fuel introduction path, and the like.

上記ウォータジャケット2に、排出熱回収用熱交換器3
の排気熱吸収路4と、熱交換済みの冷却水をエンジンE
から導出する温水路5と、熱交換前の冷却水をエンジン
Eに導入する冷水路8と、循環ポンプ22とを直列循環
状に連通連結し、温水路5と冷水路8との間に、上記ラ
ジェータ1を通る放熱路10と、エンジン排出熱回収用
熱交換器6の熱回収用放出側水路7とを並列状に連通ず
る。
A heat exchanger 3 for exhaust heat recovery is attached to the water jacket 2.
The exhaust heat absorption path 4 and the heat-exchanged cooling water are transferred to the engine E.
A hot waterway 5 led out from the engine, a cold waterway 8 that introduces the cooling water before heat exchange to the engine E, and a circulation pump 22 are connected in a serial circulation manner, and between the hot waterway 5 and the cold waterway 8, The heat radiation path 10 passing through the radiator 1 and the heat recovery discharge side water channel 7 of the engine exhaust heat recovery heat exchanger 6 are communicated in parallel.

但し、符号26はサーモスタット弁であって、渇水路5
から冷水路8に短絡状に分岐したバイパス路27の分岐
入口部に配置さ′れ、始動時には弁26をバイパス路2
7の側に切り替えて、エンジンEを出た冷却水を温水路
5から冷水路8に短絡的に流通させ、その放熱量を最小
に抑えて、早期に暖機できるように構成しである。
However, the reference numeral 26 is a thermostatic valve, and the drought channel 5
The valve 26 is disposed at the branch inlet of the bypass passage 27 which branches into the cold water channel 8 in a short-circuit manner.
7 side, the cooling water from the engine E is short-circuited from the hot water channel 5 to the cold water channel 8, and the amount of heat dissipated is minimized so that warm-up can be performed quickly.

一方、放熱路10と熱回収用放出側水路7とを上記温水
路5から二股状に分岐した部位に、三方弁から成る可変
分流弁12を介装し、上記エンジン排出熱回収用熱交換
器6の熱回収用吸熱側水路15に流量計35を付設し、
流量計35に分流率制御装置14を介して可変分流弁1
2を分流率制御可能に連携して、当該吸熱側水路15内
を通過する給湯水の水量が大きく変動しても、給湯水温
を一定範囲内に保持できるように構成される。
On the other hand, a variable flow dividing valve 12 consisting of a three-way valve is interposed at a portion where the heat radiation path 10 and the heat recovery discharge side waterway 7 are bifurcated from the hot waterway 5, and the heat exchanger for recovering engine exhaust heat is interposed. A flow meter 35 is attached to the heat absorption side water channel 15 for heat recovery in No. 6,
The variable flow divider valve 1 is connected to the flowmeter 35 via the flow rate control device 14.
2 are linked to control the diversion rate, so that even if the amount of hot water passing through the endothermic side waterway 15 fluctuates greatly, the temperature of hot water can be maintained within a certain range.

即ち、流量計35が検出した給湯水量の変死率Qのうち
、正方向の許容上限値(即ち、増加率の許容上限値)と
して放熱増加側上限値Q(H)を、また、負方向の許容
下限値(即ち、減少率の許容下限値)として放熱減少側
下限値Q(L)を、分流率制御装置14に夫々設定する
That is, among the change-death rate Q of the amount of hot water detected by the flow meter 35, the upper limit value Q(H) on the heat radiation increase side is used as the allowable upper limit value in the positive direction (that is, the allowable upper limit value of the rate of increase), and the upper limit value Q(H) on the heat radiation increasing side is A lower limit value Q(L) on the heat radiation reduction side is set as an allowable lower limit value (that is, an allowable lower limit value of the reduction rate) in the diversion rate control device 14, respectively.

そして、許容上限値Q(H)及び許容下限値Q’(L)
に対する温度センサ35による給湯水量の検出変化率Q
のレベルにより可変分流弁12を下記の(1)〜(3)
のように制御して、 ■温水路5→放熱路10 ■温水路5→熱交換器6の熱回収用放出側水路7の二つ
の流路への分流率を変化させ、放熱と熱回収の割合を変
えるように構成される。
Then, the allowable upper limit value Q(H) and the allowable lower limit value Q'(L)
Detected change rate Q of the amount of hot water supplied by the temperature sensor 35 relative to
The variable flow diverter valve 12 is operated according to the level of
Control is performed as follows: ■ Hot water channel 5 → Heat radiation path 10 ■ Hot water channel 5 → Heat exchanger 6 heat recovery discharge side water channel 7 The flow rate is changed to two flow paths, and heat radiation and heat recovery are controlled as follows. configured to vary the proportions.

但し、上記エンジン排出熱回収用熱交換器6の吸熱側水
路15には温度センサ30が付設され、給湯水の流量変
化率が正常範囲内に留どまっている場合には、当該温度
センサ30からの給湯水の水温情報に基づいて可変分流
弁12を制御するように構成され、 給湯水の流量変化率が異常に大きく変動した場合のみ、
上記流量計35からの流量変化率の情報に基づいて可変
分流弁12を割り込み制御するように構成される。
However, a temperature sensor 30 is attached to the heat absorption side waterway 15 of the engine exhaust heat recovery heat exchanger 6, and when the rate of change in the flow rate of hot water remains within the normal range, the temperature sensor 30 The variable flow dividing valve 12 is controlled based on the water temperature information of the hot water supply from
The variable flow dividing valve 12 is configured to be controlled in an interrupt manner based on the information on the flow rate change rate from the flow meter 35.

(1)検出流量変化率Q≦放熱減少側下限値Q(L)の
場合 (即ち、熱交換器6からの給湯水の流量減少率が異常に
大きくなった場合) 第2図に示すように、分流率制御装置14の指令を受け
た可変分流弁120作用により、検出流量減少率Qが大
きくなるほど、冷却水の放熱路10への放熱側分流率を
初期値a%から増加させ、熱回収用放出側水路15への
熱回収側分流率を減少させる。
(1) When the detected flow rate change rate Q≦lower limit value Q(L) on the heat radiation reduction side (that is, when the flow rate decrease of hot water supply from the heat exchanger 6 becomes abnormally large) As shown in Fig. 2 As the detected flow rate reduction rate Q becomes larger, the variable flow diverter valve 120 operates in response to a command from the flow rate control device 14 to increase the heat radiation side flow rate of cooling water to the heat radiation path 10 from the initial value a%, thereby increasing heat recovery. The heat recovery side diversion rate to the water discharge side waterway 15 is reduced.

従って、給湯水量の減少率が大きくなると、温水路5→
放熱路10への冷却水の分流率が大きくなって放熱割合
が増し、熱交換器6に達するエンジン排出熱の割合が低
下するので、少量の給湯水は、その量に見合った少ない
エンジン排出熱を吸熱して、給湯水温の上昇は速やかに
抑制される。
Therefore, when the rate of decrease in the amount of hot water supply increases, the hot water channel 5 →
The diversion rate of cooling water to the heat radiation path 10 increases, the heat radiation rate increases, and the rate of engine exhaust heat that reaches the heat exchanger 6 decreases, so a small amount of hot water can be used with a small amount of engine exhaust heat commensurate with the amount. By absorbing heat, the rise in hot water temperature is quickly suppressed.

(2)放熱増加側上限値Q(H)≦検出流量変化率Qの
場合 (即ち、熱交換器6からの給湯水の流量増加率が異常に
大きくなった場合) 第2図に示すように、分流率制御装置14の指令を受け
た可変分流弁12の作用により、検出流量増加率Qが大
きくなるほど、冷却水の放熱路10への放熱側分流率を
初期値a%から減少させ、熱回収用放出側水路15への
熱回収側分流率を増加させる。
(2) When heat radiation increase side upper limit value Q(H)≦Detected flow rate change rate Q (that is, when the flow rate increase of hot water supply water from the heat exchanger 6 becomes abnormally large) As shown in Fig. 2 By the action of the variable diverter valve 12 receiving a command from the diverter ratio control device 14, as the detected flow rate increase rate Q increases, the heat radiation side diverter ratio of the cooling water to the heat radiation path 10 is decreased from the initial value a%, and the heat The heat recovery side diversion rate to the recovery discharge side waterway 15 is increased.

従って、給湯水量の増加率が太き(なると、温水路5→
放熱路10への冷却水の分流率が小さくなって放熱割合
が減り、熱交換器6に達するエンジン排出熱の割合が増
加するので、大量の給湯水は、その量に見合った多いエ
ンジン排出熱を吸熱して、給湯水温の下降は速やかに抑
制される。
Therefore, the rate of increase in the amount of hot water supply increases (if the hot water channel 5→
The diversion rate of cooling water to the heat radiation path 10 becomes smaller, the heat radiation rate decreases, and the proportion of engine exhaust heat that reaches the heat exchanger 6 increases. By absorbing heat, the drop in hot water temperature is quickly suppressed.

(3)放熱減少側下限値Q(L) く検出流量変化率Q く放熱増加側上限値Q(H)の場合 (給湯水流の変化率Qが正常範囲内にある場合)上述し
たように、流量計35からの流量変化率Qの情報に基づ
く割り込み制御が解除されて、温度センサ30からの給
湯水温に基づいて可変分流弁12が制御される。
(3) When the lower limit value on the heat radiation decreasing side Q(L) is the detected flow rate change rate Q and the upper limit value Q(H) on the heat radiation increasing side (when the rate of change Q of hot water supply water flow is within the normal range), as described above, The interrupt control based on the information on the flow rate change rate Q from the flow meter 35 is canceled, and the variable flow dividing valve 12 is controlled based on the hot water temperature from the temperature sensor 30.

これは、給湯水量が穏やかに変化している場合、或いは
変化しない場合でも、エンジン発電機自体の負荷が変わ
ってエンジン排出熱が変化し、その結果、給湯水の温度
が上下するので、この給湯水温の変化を小さ(抑える必
要があるからである。
This is because even if the amount of hot water supply changes slowly or does not change, the load on the engine generator itself changes and the engine exhaust heat changes, resulting in a rise or fall in the temperature of the hot water supply. This is because it is necessary to keep changes in water temperature small.

即ち、上記分流率制御装置14によって放熱制御用温度
・領域が設定され、この温度領域の下限を放熱開始温度
T *(L’)とし、その上限を放熱率が100%にな
る温度T、(H)として、この温度領域Aに対する温度
センサ30の給湯水検出温度T、のレベルにより可変分
流弁12を下記の(a)〜(c)のように制御して、 ■温水路5→放熱路10 ■温水路5→熱交換器6の熱回収用放出側水路7の二つ
の流路への分流率を変化させ、放熱と熱回収の割合を変
えるように構成される。
That is, the temperature/region for heat radiation control is set by the diversion rate control device 14, the lower limit of this temperature range is set as the heat radiation start temperature T*(L'), and the upper limit is set as the temperature T at which the heat radiation rate becomes 100%, ( As H), the variable flow diverter valve 12 is controlled as shown in (a) to (c) below according to the level of the hot water supply temperature T detected by the temperature sensor 30 for this temperature range A, and the hot water channel 5 → heat radiation path is 10 ■It is configured to change the division ratio of the hot water channel 5 to the heat recovery discharge side water channel 7 of the heat exchanger 6 into two channels, thereby changing the ratio of heat radiation and heat recovery.

但し、当然ながらT 、(L )< T 、(H)であ
っそ、実際的には、熱回収用吸熱側水路15がらの給湯
水温は80℃前後に保つのが良好であるので、当該温度
を中心に±3°Cをとって、T、(L)は770Cに、
T2(H)は83℃に各々設定される。
However, as a matter of course, T, (L) < T, (H), and in practice, it is best to maintain the hot water supply temperature of the heat recovery endothermic side waterway 15 at around 80°C, so the temperature Taking ±3°C around , T, (L) is 770C,
T2(H) is each set at 83°C.

(a)検出温度T、<放熱開始温度’rz(L)の場合
(即ち、給湯水温が異常に低下した場合)分流率制御装
置14により、可変分流弁12は放熱路10への分流率
が0%で、熱回収用放出側水路7への分流率が100%
になるように制御され、 エンジン排出熱を吸熱したエンジンh 動水It、温水
路5から可変分流弁12を経て全て熱交換器6の熱放出
側水路7に流れて、冷却水に蓄熱されたエンジン排出熱
を熱回収用吸熱側水路15で熱回収する。
(a) When the detected temperature T is less than the heat radiation start temperature 'rz (L) (that is, when the hot water temperature has abnormally decreased), the distribution rate control device 14 causes the variable distribution valve 12 to control the distribution rate to the heat radiation path 10. 0%, the diversion rate to the heat recovery discharge side waterway 7 is 100%.
The engine h, which absorbs the engine exhaust heat, flows from the warm water channel 5 through the variable diverter valve 12 to the heat release side water channel 7 of the heat exchanger 6, where the heat is stored in the cooling water. The exhaust heat from the engine is recovered by the heat-recovery endothermic water channel 15.

そして、熱交換器6で熱を回収された後の冷却水は、冷
水路8を通って循環ポンプ22によりエンジンEのウォ
ータジャケット2に還流し、再びエンジンEの排出熱を
吸熱する。
After the heat has been recovered by the heat exchanger 6, the cooling water passes through the cold water channel 8, returns to the water jacket 2 of the engine E by the circulation pump 22, and absorbs the exhaust heat of the engine E again.

(b)放熱開始温度Tffi(L)≦ 検出温度T、≦全部放出温度’rz(tr)の場合(即
ち、温水温が正常温度領域にある場合)分流率制御装置
14により、可変分流弁12は次のように分流率制御さ
れる。
(b) When heat radiation start temperature Tffi (L) ≦ detected temperature T, ≦ total release temperature 'rz (tr) (that is, when the hot water temperature is in the normal temperature range), the variable flow dividing valve 12 is controlled by the flow rate control device 14. The diversion rate is controlled as follows.

■検出温度T、が高くなるほど、放熱路lOへの放熱側
分流率を増加させ、熱回収用放出側水路15への熱回収
側分流率を減少させる。
(2) As the detected temperature T becomes higher, the heat radiation side diversion rate to the heat radiation path IO is increased, and the heat recovery side diversion rate to the heat recovery discharge side waterway 15 is decreased.

■検出温度T、が低くなるほど、放熱路10への放熱側
分流率を減少させ、熱回収用放出側水路15への熱回収
側分流率を増加させる。
(2) As the detected temperature T becomes lower, the heat radiation side diversion rate to the heat radiation path 10 is decreased, and the heat recovery side diversion rate to the heat recovery discharge side waterway 15 is increased.

従って、検出温度T、が高くなるほど、温水路5→放熱
路10への冷却水の分流割合が増えて、冷却水の放熱効
率が高くなり、温水路5の温水温度は速やかに低下する
Therefore, as the detected temperature T becomes higher, the proportion of cooling water diverted from the hot water channel 5 to the heat radiation path 10 increases, the heat radiation efficiency of the cooling water increases, and the hot water temperature of the hot water channel 5 quickly decreases.

この結果、熱交換器6の熱回収用吸熱側水路15から出
る給湯水の温度も速やかに下がって適温に調整される。
As a result, the temperature of the hot water coming out of the heat recovery endothermic side water channel 15 of the heat exchanger 6 is also quickly lowered and adjusted to an appropriate temperature.

また、逆に、検出温度T、が低くなるほど、温水路5→
熱回収用放出側水路7への冷却水の分流割合が増えて、
冷却水の放熱効率が低くなり′、温水路5の温水温度は
速やかに上昇する。
Conversely, the lower the detected temperature T, the warm water channel 5→
The proportion of cooling water diverted to the heat recovery discharge side waterway 7 increases,
The heat dissipation efficiency of the cooling water becomes low, and the temperature of the hot water in the hot water channel 5 quickly rises.

この結果、熱交換器6の熱回収用吸熱側水路15から出
る給湯水の温度も速やかに上がって適温に調整される。
As a result, the temperature of the hot water coming out of the heat recovery endothermic water channel 15 of the heat exchanger 6 also rises quickly and is adjusted to an appropriate temperature.

(c)全部放出温度T、(H)<検出温度T、の場合(
即ち、温水温が異常に上昇した場合)分流率制御装置1
4により、可変分流弁12は放熱路10への分流率が1
00%で、熱回収用放出側水路7への分流率が0%にな
るように制御され、 エンジンEから流出した冷却水は、温水路5から可変分
流弁12を経て全て放熱路1oに流れ込み、冷却水に蓄
熱されたエンジン排出熱を’/ スfム系外に速やかに
放熱する。
(c) In the case of total release temperature T, (H) < detection temperature T, (
In other words, if the hot water temperature rises abnormally) the flow rate control device 1
4, the variable diverter valve 12 has a diverter ratio of 1 to the heat radiation path 10.
00%, the diversion rate to the heat recovery discharge side waterway 7 is controlled to be 0%, and all the cooling water flowing out from the engine E flows from the hot waterway 5 through the variable diversion valve 12 to the heat radiation path 1o. , the engine exhaust heat stored in the cooling water is quickly radiated outside the SFM system.

この結果、熱回収用放出側水路7の冷却水温は低下し、
これから熱回収する吸熱側水路15の給湯水温も低下す
る。
As a result, the cooling water temperature of the heat recovery discharge side waterway 7 decreases,
The temperature of the hot water supplied to the endothermic side waterway 15 from which heat will be recovered also decreases.

他方、上記温水路5に温度センサ13を付設し、当該温
度センサ13を分流率制御装置14を介して可変分流弁
12に連動することにより、温水路5を通過する温水が
異常上昇した場合に、前記流量計35からの流量変化率
Qの情報並びに温度センサ30からの給湯水温T、の情
報に最優先して、当該温度センサ13からの温排水温T
、の情報が分流率制御装置14を介して可変分流弁12
を割り込み制御して、エンジンEの過熱を防止するよう
に構成しである。
On the other hand, by attaching a temperature sensor 13 to the hot water channel 5 and interlocking the temperature sensor 13 with the variable flow dividing valve 12 via the flow dividing ratio control device 14, it is possible to control the temperature when the hot water passing through the hot water channel 5 rises abnormally. , the hot water temperature T from the temperature sensor 13 is given top priority over the information on the flow rate change Q from the flow meter 35 and the hot water temperature T from the temperature sensor 30.
, is transmitted to the variable flow divider valve 12 via the flow rate control device 14.
It is configured to perform interrupt control to prevent the engine E from overheating.

即ち、分流率制御装置14に上限温度TI(H)を設定
し、温度センサ13で検出されたエンジンEの温排水温
T、が、当該上限温度T、(H)に対していかなるレベ
ルにあるかにより、以下の(イ)〜(ロ)の制御を行う
That is, an upper limit temperature TI (H) is set in the flow rate control device 14, and at what level the hot water discharge temperature T of the engine E detected by the temperature sensor 13 is with respect to the upper limit temperature T, (H). Depending on the situation, the following controls (a) to (b) are performed.

(イ)検出温度T、<上限温度TI(H)の場合(即ち
、エンジン温排水が正常温度領域にある場合)上記温度
センサ30からの給湯水検出温度T。
(a) Detected temperature T, in the case of <upper limit temperature TI (H) (that is, when the engine heated waste water is in the normal temperature range), the detected temperature T of hot water from the temperature sensor 30.

の情報に基づいて、可変分流弁12の分流率制御が前記
(a)〜(c)のように分流率制御装置14によって行
われる。
Based on the information, the flow division ratio control of the variable flow division valve 12 is performed by the flow division ratio control device 14 as described in (a) to (c) above.

(ロ)上限温度T、(H)≦検出温度T、の場合(即ち
、エンジン温排水が異常上昇した場合′)前述のように
、温度センサ13からの情報が、上記流量計35及び温
度センサ30からの情報に優先して働き、放熱路10に
流れる冷却水の分流率を100%とし、熱交換器6の熱
回収用放出側水路7への分流率を0%とするように可変
分流弁12を分流率制御し、温水路5を流れる温水の全
てを放熱器1の側に流して、冷却水循環システムの系外
への放熱割合を最大にし、早期にエンジンEからの温排
水を冷却して、エンジンEの過熱を防止する。
(b) In the case of upper limit temperature T, (H)≦detected temperature T (that is, when engine heated waste water has abnormally increased) As mentioned above, information from the temperature sensor 13 is transmitted to the flow meter 35 and the temperature sensor. 30, and sets the division ratio of cooling water flowing into the heat radiation path 10 to 100%, and the division ratio to the heat recovery discharge side water channel 7 of the heat exchanger 6 to 0%. The valve 12 is controlled to divert all of the hot water flowing through the hot water channel 5 to the radiator 1 side, maximizing the rate of heat radiation to the outside of the cooling water circulation system, and quickly cooling the hot waste water from the engine E. This prevents engine E from overheating.

尚、本制御においては、ハンチングを避けるために、温
水温が上限温度TI(H)をかなり下回る温度に下降す
るまで、放熱側分流率を100%に継続する。
In this control, in order to avoid hunting, the heat dissipation side distribution ratio is maintained at 100% until the hot water temperature falls to a temperature considerably lower than the upper limit temperature TI(H).

また、上記温度センサ13は、温水路5・冷水路8・ウ
ォータジャケット2及び排気熱吸収路4から成る冷却水
路11のうちの、いずれに設けても良いが、エンジンE
の過熱を迅速に防止するには、温水路5の温水温度を測
定するのが好ましい。
Further, the temperature sensor 13 may be provided in any of the cooling channels 11 consisting of the hot channel 5, the cold channel 8, the water jacket 2, and the exhaust heat absorption channel 4.
In order to quickly prevent overheating, it is preferable to measure the temperature of the hot water in the hot water channel 5.

以上のように、本発明は、流量計をエンジン排出熱回収
用熱交換器の吸熱側液路に付設し、当該液路を通過する
熱回収液の流量変化率が大きく変動した場合に、制御装
置を介して温度センサに連携した可変分流弁の作用によ
り、エンジン排出熱を吸熱した冷却水を放熱器の放熱路
と熱交換器の熱回収用水路とに所定分流率で振り分ける
ことを特徴とするので、 エンジンEはエンジン発電機に限らず、エンジンコンプ
レッサ、エンジンウエルダなどの他のエンジン作業機、
或いは、エンジン単独でも差し支えない。
As described above, the present invention attaches a flow meter to the heat absorption side liquid path of a heat exchanger for engine exhaust heat recovery, and when the rate of change in the flow rate of the heat recovery liquid passing through the liquid path changes greatly, The cooling water that has absorbed engine exhaust heat is distributed to the heat radiation path of the radiator and the heat recovery waterway of the heat exchanger at a predetermined distribution rate by the action of a variable distribution valve linked to a temperature sensor through a device. Therefore, Engine E is not limited to engine generators, but also other engine working machines such as engine compressors, engine welders, etc.
Alternatively, the engine alone may be used.

上記可変分流弁12は、上記実施例のような三方弁に限
らず、例えば第3図に示すように、温水路5から分岐し
た放熱路10と熱回収用放出側水路7とに通常の二方向
型調量弁12aを各々付設し、これらを一つの分流率制
御装置14に連携するように構成しても差し支えない。
The variable flow dividing valve 12 is not limited to the three-way valve as in the above embodiment, but is, for example, as shown in FIG. There is no problem even if the directional metering valves 12a are respectively attached and configured to cooperate with one flow division rate control device 14.

また、上記放熱器1は、ラジェータに限らず、コンデン
サやホッパでも良い。
Further, the heat radiator 1 is not limited to a radiator, but may be a condenser or a hopper.

上記エンジン排出熱回収用熱交換器の吸熱側水路を流れ
る熱回収液は、上記実施例のように水に限らず、オイル
などでも差し支えない。
The heat recovery liquid flowing through the heat absorption side waterway of the engine exhaust heat recovery heat exchanger is not limited to water as in the above embodiments, but may also be oil or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の実施例を示すエンジンの排出熱回収装
置の原理系統図、第2図は熱回収液の流量変化率・放熱
路への分流率の関係図、第3図は可変分流弁の他の実施
態様を示す要部系統図、第4図は従来技術を示す第1図
相当図である。 ■・・・放熱器、2・・・ウォータジャケット、3・・
・排出熱回収用熱交換器、4・・・排気熱吸収路、5・
・・温水路、6・・・エンジン排出熱回収用熱交換器、
7・・・6の熱回収用放出側水路、8・・・冷水路、1
o・・・放熱路、12・・・可変分流弁、14・・・分
流率制御装置、15・・・6の熱回収用吸熱側液路、3
5・・・流量計、E・・・エンジン、Q・・・検出流量
変化率、Q(L)・・・放熱減少側下限値、Q(H)・
・・放熱増加側上限値。 特許出願人  久保田鉄工株式会社 第 図
Fig. 1 is a principle system diagram of an engine exhaust heat recovery device showing an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between the flow rate change rate of the heat recovery liquid and the diversion rate to the heat radiation path, and Fig. 3 is a variable diversion diagram. FIG. 4, which is a system diagram of main parts showing another embodiment of the valve, is a diagram corresponding to FIG. 1 showing the prior art. ■...Radiator, 2...Water jacket, 3...
・Heat exchanger for exhaust heat recovery, 4...Exhaust heat absorption path, 5.
・・Hot water channel, 6.・Heat exchanger for engine exhaust heat recovery,
7...6 heat recovery discharge side waterway, 8...cold waterway, 1
o... Heat radiation path, 12... Variable diverting valve, 14... Dividing rate control device, 15... Endothermic side liquid path for heat recovery of 6, 3
5...Flowmeter, E...Engine, Q...Detected flow rate change rate, Q(L)...Lower limit value on heat radiation reduction side, Q(H)・
... Upper limit value on the heat radiation increase side. Patent applicant: Kubota Iron Works Co., Ltd.

Claims (1)

【特許請求の範囲】 1、エンジンEのウォータジャケット2に、排気熱吸収
用熱交換器3の排気熱吸収路4・温水路5・エンジン排
出熱回収用熱交換器6の熱回収用放出側水路7・及び冷
水路8を順に直列循環状に連通連結して構成したエンジ
ンの排出熱回収装置において、 エンジン排出熱回収用熱交換器6の熱回収用放出側水路
7に放熱器1の放熱路10を並列状に接続し、 冷水路8・ウォータジャケット2・排気熱吸収路4・及
び温水路5から成るエンジン冷却水路11に対して、熱
回収用放出側水路7と放熱路10とを、可変分流弁12
で可変分流可能に接続し、 エンジン排出熱回収用熱交換器6の熱回収用吸熱側液路
15に流量計35を付設して、当該吸熱側液路15を通
過する熱回収液の流量を流量計35で検出可能にし、流
量計35に分流率制御装置14を介して可変分流弁12
を分流率制御可能に連携し、 流量計35の熱回収液の検出流量の変化率Qが負になり
、その流量減少率が放熱減少側下限値Q(L)以下にな
った場合に、分流率制御装置14が可変分流弁12を放
熱増量側に作動させて、エンジン冷却水路11から放熱
路10への冷却水の放熱側分流率を増加させるとともに
、熱回収用放出側水路7への冷却水の熱回収側分流率を
減少させ、 流量計35の熱回収液の検出流量の変化率Qが正になり
、その流量増加率が放熱増加側上限値Q(H)以上にな
った場合に、可変分流弁12を放熱減量側に作動させて
、前記放熱側分流率を減少させるとともに、熱回収側分
流率を増加させるように構成したことを特徴とするエン
ジンの排出熱回収装置
[Claims] 1. The water jacket 2 of the engine E includes the exhaust heat absorption path 4 of the exhaust heat absorption heat exchanger 3, the hot water channel 5, and the heat recovery discharge side of the engine exhaust heat recovery heat exchanger 6. In an engine exhaust heat recovery device configured by serially connecting a water channel 7 and a cold water channel 8 in a serial circulation manner, the heat dissipation of the radiator 1 is carried out in the heat recovery discharge side water channel 7 of the heat exchanger 6 for engine exhaust heat recovery. The heat recovery discharge side waterway 7 and the heat radiation path 10 are connected in parallel to the engine cooling waterway 11 consisting of the cold waterway 8, the water jacket 2, the exhaust heat absorption path 4, and the hot waterway 5. , variable flow divider valve 12
A flow meter 35 is attached to the endothermic side liquid path 15 for heat recovery of the engine exhaust heat recovery heat exchanger 6, and the flow rate of the heat recovery liquid passing through the endothermic side liquid path 15 is adjusted. The variable flow divider valve 12 is connected to the flow meter 35 via the flow rate control device 14.
When the rate of change Q of the flow rate detected by the flowmeter 35 of the heat recovery liquid becomes negative and the rate of decrease in the flow rate becomes equal to or less than the lower limit value Q(L) on the heat radiation reduction side, the flow rate is controlled. The rate control device 14 operates the variable flow divider valve 12 to the heat radiation increasing side to increase the heat radiation side flow rate of cooling water from the engine cooling waterway 11 to the heat radiation path 10, and to increase the cooling water flow rate to the heat recovery release waterway 7. When the heat recovery side diversion rate of water is decreased, the rate of change Q of the flow rate detected by the flowmeter 35 of the heat recovery liquid becomes positive, and the rate of increase in flow rate exceeds the upper limit value Q (H) on the heat radiation increase side. An exhaust heat recovery device for an engine, characterized in that the variable flow dividing valve 12 is operated to the heat radiation loss side to decrease the heat radiation side flow rate and increase the heat recovery side flow rate.
JP63258162A 1988-10-12 1988-10-12 Engine exhaust heat recovery device Expired - Lifetime JPH0726594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63258162A JPH0726594B2 (en) 1988-10-12 1988-10-12 Engine exhaust heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63258162A JPH0726594B2 (en) 1988-10-12 1988-10-12 Engine exhaust heat recovery device

Publications (2)

Publication Number Publication Date
JPH02252949A true JPH02252949A (en) 1990-10-11
JPH0726594B2 JPH0726594B2 (en) 1995-03-29

Family

ID=17316396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63258162A Expired - Lifetime JPH0726594B2 (en) 1988-10-12 1988-10-12 Engine exhaust heat recovery device

Country Status (1)

Country Link
JP (1) JPH0726594B2 (en)

Also Published As

Publication number Publication date
JPH0726594B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
CN101302958B (en) Cooling device of internal combustion engine
JP4069893B2 (en) Thermoelectric generator
CN109383729A (en) Marine main engine jacket water heat energy utilization system
JPS629053B2 (en)
JP2016205751A (en) Cogeneration system and heating equipment
JPH02252949A (en) Engine exhaust heat recovery device
KR20200122361A (en) Drive unit with integrated ORC
JPH02104954A (en) Device for recovering exhaust heat of engine
JPH02104953A (en) Device for recovering exhaust heat of engine
JP3631521B2 (en) Cogeneration system cooling water circuit equipment
JPH02104957A (en) Device for recovering exhaust heat of engine
JP3788354B2 (en) Engine exhaust heat recovery device
JPS6051589A (en) Fresh water preparing apparatus due to utilization of high temperature waste heat
JP7114502B2 (en) fuel cell system
JP2575514Y2 (en) Automatic transmission
JPH0738654Y2 (en) Waste heat recovery device for water-cooled engine
JPS6339768B2 (en)
JPH01155020A (en) Exhaust heat recovering device for engine
CN111894721B (en) Engine cooling system
JP7204593B2 (en) Method of operating Rankine cycle system and waste heat recovery device
JPS61237820A (en) Coolant temperature controller for panel radiator
JPH0157269B2 (en)
JP2822081B2 (en) Power and heat output devices for cogeneration equipment
JPH01163407A (en) Circulating system for cooling water for bearing oil
JPH04334705A (en) Co-generation system