JPH0726594B2 - Engine exhaust heat recovery device - Google Patents

Engine exhaust heat recovery device

Info

Publication number
JPH0726594B2
JPH0726594B2 JP63258162A JP25816288A JPH0726594B2 JP H0726594 B2 JPH0726594 B2 JP H0726594B2 JP 63258162 A JP63258162 A JP 63258162A JP 25816288 A JP25816288 A JP 25816288A JP H0726594 B2 JPH0726594 B2 JP H0726594B2
Authority
JP
Japan
Prior art keywords
heat
heat recovery
rate
engine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63258162A
Other languages
Japanese (ja)
Other versions
JPH02252949A (en
Inventor
和彦 小倉
勇 久保元
友昭 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63258162A priority Critical patent/JPH0726594B2/en
Publication of JPH02252949A publication Critical patent/JPH02252949A/en
Publication of JPH0726594B2 publication Critical patent/JPH0726594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 本発明は、エンジン本体機や排気熱などのエンジンから
の排出熱を回収する装置に関し、熱回収液の液量変化率
が大きく変動しても、熱回収液温の変化を小さく抑制で
きるものを提供する。
The present invention relates to a device for recovering exhaust heat from an engine such as an engine main body or exhaust heat, and even if the liquid recovery rate of the heat recovery liquid fluctuates greatly, The thing which can suppress a change small is provided.

<従来技術> 本発明の対象とするエンジンの排出熱回収装置の基本構
造は、第1図又は第3図に示すように、エンジンEのウ
ォータジャケット2に、排気熱吸収用熱交換器3の排気
熱吸収路4・温水路5・エンジン排出熱回収用熱交換器
6の熱回収用放出側水路7・及び冷水路8を順に直列循
環状に連通連結して構成した形式のものである。
<Prior Art> The basic structure of an exhaust heat recovery system for an engine to which the present invention is applied is, as shown in FIG. 1 or 3, a water jacket 2 of an engine E and an exhaust heat absorbing heat exchanger 3 of an engine E. The exhaust heat absorption channel 4, the hot water channel 5, the heat recovery discharge side water channel 7 of the engine exhaust heat recovery heat exchanger 6, and the cold water channel 8 are connected in series in a serial circulation manner.

この形式の従来技術としては、米国特許第4226214号公
報(第4図参照)に示すように、エンジンEと発電機G
とを連動連結し、発電機Gで発電を行うとともに、ウォ
ータジャケット2で吸熱したエンジン本体熱と、排気熱
吸収路4で吸熱した排気熱とを、エンジン排出熱回収用
熱交換器6内で放熱して、同熱交換器6の熱回収用吸熱
側水路15からエンジンEの排出熱を回収するように構成
したものである。
As a conventional technique of this type, as shown in US Pat. No. 4,226,214 (see FIG. 4), an engine E and a generator G are used.
In the engine exhaust heat recovery heat exchanger 6, the engine main body heat absorbed in the water jacket 2 and the exhaust heat absorbed in the exhaust heat absorption path 4 are generated in the heat exchanger 6 while the power generator G generates electricity. The heat is dissipated and the exhaust heat of the engine E is recovered from the heat absorption side water passage 15 of the heat exchanger 6.

尚、符号50は、エンジEの始動時に、冷却水路を温水路
5から直接的に冷水路8に短絡させて、早期にエンジン
Eを暖機できるようにするための切り換え用三方弁であ
る。
Reference numeral 50 is a three-way valve for switching that allows the engine E to be warmed up early by short-circuiting the cooling water passage from the hot water passage 5 directly to the cold water passage 8 when the engine E is started.

<発明が解決しようとする課題> しかしながら、上記従来技術では、季節的要因や人数的
要因などの外部要因によって、熱回収量を低減してエン
ジン排出熱回収用熱交換器6から出る熱回収湯の流量を
大きく減少側に変化させた場合、エンジンEの排出熱は
少量の熱回収湯に集中して吸熱されるので、熱回収湯の
温度が急上昇して適正温度領域から高く外れてしまう虞
れがある。
<Problems to be Solved by the Invention> However, in the above-mentioned conventional technique, the heat recovery hot water discharged from the engine exhaust heat recovery heat exchanger 6 is reduced by reducing the heat recovery amount due to external factors such as seasonal factors and personnel factors. If the flow rate of the heat recovery hot water is largely decreased, the exhaust heat of the engine E is concentrated and absorbed in a small amount of the heat recovery hot water, so that the temperature of the heat recovery hot water may rise rapidly and deviate from the appropriate temperature range to a high temperature. There is

また、逆に、熱回収量を増大してエンジン排出熱回収用
熱交換器6から出る熱回収湯の流量を大きく増加側に変
化させた場合、エンジンEの排出熱は大量の熱回収湯に
分散して吸熱されるので、熱回収湯の温度が急低下して
適正温度領域から低く外れてしまう虞れがある。
Conversely, when the heat recovery amount is increased and the flow rate of the heat recovery hot water discharged from the engine exhaust heat recovery heat exchanger 6 is changed to a large increase side, the exhaust heat of the engine E becomes a large amount of heat recovery hot water. Since heat is dispersed and absorbed, there is a risk that the temperature of the heat recovery hot water will suddenly drop and fall outside the proper temperature range.

本発明は、熱交換器から出る熱回収液の流量変化率が正
・負のどちらに大きく変動した場合でも、熱回収液の温
度変化を小さく抑えることを技術的課題とする。
An object of the present invention is to suppress the temperature change of the heat recovery liquid to be small irrespective of whether the rate of change of the flow rate of the heat recovery liquid discharged from the heat exchanger largely fluctuates, positive or negative.

<課題を解決するための手段> 上記課題を解消する手段を、実施例に対応する図面を用
いて以下に説明する。
<Means for Solving the Problems> Means for solving the above problems will be described below with reference to the drawings corresponding to the embodiments.

即ち、本発明は、前記基本構造のエンジンの排出熱回収
装置において、 エンジン排出熱回収用熱交換器6の熱回収用放出側水路
7に放熱器1の放熱路10を並列状に接続し、 冷水路8・ウォータジャケット2・排気熱吸収路4・及
び温水路5から成るエンジン冷却水路11に対して、熱回
収用放出側水路7と放熱路10とを、可変分流弁12で可変
分流可能に接続し、 エンジン排出熱回収用熱交換器6の熱回収用吸熱側液路
15に温度センサ30を設けて、熱回収用吸熱側液路15を通
過する熱回収液の液温を検出可能にし、温度センサ30に
分流率制御装置14を介して可変分流弁12を分流率制御可
能に連携し、 温度センサ30での検出温度に応じて分流率制御装置14が
可変分流弁12を作動させて、エンジン冷却水路11から放
熱路10への冷却水と熱回収用放出側水路7への冷却水と
の分流率を制御して、熱回収液の液温を所定の温度範囲
内に調整可能に構成し、 熱回収用吸熱側液路15に流量計35を設けて、熱回収用吸
熱側液路15を通過する熱回収液の流量を検出可能にし、
流量計35に分流率制御装置14を介して可変分流弁12を分
流率制御可能に連携し、 流量計35の熱回収液の検出流量の変化率Qが負になり、
その流量減少率が放熱減少側下限値Q(L)以下になっ
た場合には、分流率制御装置14が温度センサ30での検出
温度に関係なく可変分流弁12を放熱増量側に作動させ
て、エンジン冷却水路11から放熱路10への冷却水の放熱
側分流率を増加させるとともに、熱回収用放出側水路7
への冷却水の熱回収側分流率を減少させ、 流量計35の熱回収液の検出流量の変化率Qが正になり、
その流量増加率が放熱増加側上限値Q(H)以上になっ
た場合には、分流率制御装置14が温度センサ30での検出
温度に関係なく可変分流弁12を放熱減量側に作動させ
て、放熱側分流率を減少させるとともに、熱回収側分流
率を増加させるように構成したことを特徴とするもので
ある。
That is, according to the present invention, in the engine exhaust heat recovery device having the basic structure, the heat recovery discharge side water passage 7 of the engine exhaust heat recovery heat exchanger 6 is connected in parallel to the heat dissipation passage 10 of the radiator 1, A variable diversion valve 12 can diverge the heat recovery discharge side water passage 7 and the heat radiation passage 10 from the engine cooling water passage 11 including the cold water passage 8, the water jacket 2, the exhaust heat absorption passage 4, and the hot water passage 5. Connected to the heat exchanger 6 for heat recovery from the engine exhaust heat
15 is provided with a temperature sensor 30 to enable detection of the liquid temperature of the heat recovery liquid passing through the heat recovery side heat absorption side liquid path 15, and the variable flow dividing valve 12 is provided to the temperature sensor 30 via the flow dividing ratio control device 14. In cooperation with controllable control, the diversion rate control device 14 actuates the variable diversion valve 12 according to the temperature detected by the temperature sensor 30 so that the cooling water from the engine cooling water passage 11 to the heat radiation passage 10 and the heat recovery discharge water passage By controlling the diversion rate with the cooling water to 7, it is possible to adjust the liquid temperature of the heat recovery liquid within a predetermined temperature range. The flow rate of the heat recovery liquid passing through the recovery heat absorption side liquid passage 15 can be detected,
The variable flow dividing valve 12 is linked to the flowmeter 35 via the flow dividing rate control device 14 so that the flow dividing rate can be controlled, and the change rate Q of the detected flow rate of the heat recovery liquid of the flowmeter 35 becomes negative,
When the flow rate reduction rate becomes equal to or lower than the lower limit value Q (L) on the heat radiation reduction side, the flow dividing rate control device 14 operates the variable flow dividing valve 12 to the heat radiation increasing side regardless of the temperature detected by the temperature sensor 30. , The radiating side diversion rate of the cooling water from the engine cooling water channel 11 to the radiating channel 10 is increased, and the heat collecting discharge side water channel 7 is provided.
The heat recovery side diversion rate of the cooling water to the flow rate is decreased, and the rate of change Q of the detected flow rate of the heat recovery liquid of the flow meter 35 becomes positive,
When the flow rate increase rate becomes equal to or higher than the heat radiation increasing side upper limit value Q (H), the flow dividing rate control device 14 operates the variable flow dividing valve 12 to the heat radiation reducing side regardless of the temperature detected by the temperature sensor 30. The heat radiating side diversion rate is reduced and the heat recovery side diversion rate is increased.

<作用> 温度センサ30が、エンジン排出熱回収用熱交換器6の熱
回収用吸熱側液路15を通過する熱回収液の液温を検出す
る。この検出温度に応じて分流率制御装置14が可変分流
弁12を作動させて、エンジン冷却水路11から放熱路10へ
の冷却水と熱回収用放出側水路7への冷却水との分流率
を制御し、これによって熱回収用吸熱側液路15の熱回収
液の液温が所定の温度範囲(適正温度範囲)内に調整さ
れる。
<Operation> The temperature sensor 30 detects the liquid temperature of the heat recovery liquid passing through the heat recovery heat absorption side liquid passage 15 of the engine exhaust heat recovery heat exchanger 6. The diversion rate control device 14 actuates the variable diversion valve 12 in accordance with the detected temperature to change the diversion rate of the cooling water from the engine cooling water passage 11 to the heat radiation passage 10 and the cooling water to the heat recovery discharge side water passage 7. By controlling, the liquid temperature of the heat recovery liquid in the heat recovery side heat absorption side liquid passage 15 is adjusted within a predetermined temperature range (appropriate temperature range).

一方、 (1)エンジン排出熱回収用熱交換器6の吸熱側液路15
を通過する熱回収液量が急激に減少した場合、即ち、 流量計35の検出流量減少率Q ≦放熱減少側下限値Q(L)の場合 (検出流量減少率Qの絶対値が放熱減少側下限値Q
(L)の絶対値以上に大きくなった場合) 分流率制御装置14が温度センサ30での検出温度に関係な
く可変分流弁12を放熱増量側に作動させて、エンジン冷
却水路11から放熱路10への冷却水の放熱側分流率が増加
するので、エンジン排出熱が放熱器1で冷却水循環系外
に放熱される割合が増え、エンジン排出熱回収用熱交換
器6に達するエンジン排出熱量自体が低減する。
On the other hand, (1) the heat absorption side liquid passage 15 of the engine exhaust heat recovery heat exchanger 6
If the amount of heat recovery liquid that passes through is rapidly decreased, that is, if the detected flow rate decrease rate Q of the flowmeter 35 ≤ heat radiation reduction side lower limit value Q (L) (the absolute value of the detected flow rate reduction rate Q is the heat radiation reduction side Lower limit value Q
(When it becomes larger than the absolute value of (L)) Regardless of the temperature detected by the temperature sensor 30, the diversion rate control device 14 operates the variable diversion valve 12 to the heat radiation increasing side, and the engine cooling water passage 11 to the heat radiation passage 10 Since the heat dissipation side diversion rate of the cooling water to the engine increases, the ratio of the engine exhaust heat radiated to the outside of the cooling water circulation system by the radiator 1 increases, and the engine exhaust heat amount itself reaching the engine exhaust heat recovery heat exchanger 6 increases. Reduce.

この結果、上記熱回収用吸熱側液路15を通過する熱回収
液量が急激に減少しても、これに見合った熱回収の対象
になるエンジン排出熱量が迅速に減る。
As a result, even if the amount of the heat recovery liquid passing through the heat recovery side heat absorption side liquid passage 15 sharply decreases, the amount of heat exhausted from the engine, which is the target of the heat recovery corresponding to this, rapidly decreases.

つまり、エンジン排出熱回収用熱交換器6の熱回収用吸
熱側液路15を通過する熱回収液量が減少すると、その熱
交換器6に達したエンジン排出熱量が少量の熱回収液で
吸熱されるため、その熱回収液の温度が上昇する。
That is, when the amount of the heat recovery liquid passing through the heat recovery heat absorption side liquid passage 15 of the engine exhaust heat recovery heat exchanger 6 decreases, the engine exhaust heat amount reaching the heat exchanger 6 absorbs heat with a small amount of the heat recovery liquid. Therefore, the temperature of the heat recovery liquid rises.

ところで、例えば、温度センサ30での温度検出のみでエ
ンジン冷却水路11から放熱路10への冷却水と熱回収用放
出側水路7への冷却水との分流率を制御するように構成
すると、上述の減少した熱回収率が、上記熱交換器6を
通って熱交換されることで温度上昇した後、温度センサ
30に達しないと、その熱回収液の温度上昇に応じた上記
冷却水の放熱側分流率の増加が行われないことになる。
By the way, for example, if it is configured to control the diversion rate of the cooling water from the engine cooling water passage 11 to the heat radiation passage 10 and the cooling water to the heat recovery discharge side water passage 7 only by detecting the temperature with the temperature sensor 30, The reduced heat recovery rate of the temperature sensor is increased by the heat exchange through the heat exchanger 6, and then the temperature sensor
If it does not reach 30, the radiating flow side diversion rate of the cooling water will not be increased according to the temperature rise of the heat recovery liquid.

即ち、熱回収用吸熱側液路15を通過する熱回収液量が減
少してから冷却水の放熱側分流率が増加するまでの応答
遅れがある。このため、この応答遅れの間に熱回収液の
温度が上昇して適正温度範囲から外れるおそれがある。
That is, there is a response delay from the decrease of the amount of the heat recovery liquid passing through the heat recovery heat absorption side liquid path 15 to the increase of the cooling water radiating side diversion rate. For this reason, there is a possibility that the temperature of the heat recovery liquid rises during this response delay and deviates from the proper temperature range.

これに対し、本願発明では、流量計35によって熱回収用
吸熱側液路15を通過する熱回収液量の減少が検出される
と、この熱回収液量の減少に伴って熱回収液の温度が上
昇するとみなして、温度センサ30での検出温度に関係な
く冷却水の放熱側分流率を増加させて上記熱交換器6へ
のエンジン排出熱量を減らるので、熱回収液は温度上昇
を抑制され、適正温度範囲内に保持される。
On the other hand, in the present invention, when the decrease in the amount of the heat recovery liquid passing through the heat recovery endothermic side liquid passage 15 is detected by the flow meter 35, the temperature of the heat recovery liquid is reduced with the decrease in the amount of the heat recovery liquid. Is considered to increase, the heat-dissipation liquid suppresses the temperature rise because the heat-dissipation-side diversion rate of the cooling water is increased and the engine exhaust heat quantity to the heat exchanger 6 is reduced regardless of the temperature detected by the temperature sensor 30. And maintained within the proper temperature range.

(2)エンジン排出熱回収用熱交換器6の吸熱側液路15
を通過する熱回収液量が急激に増加した場合、即ち、 放熱増加側上限値Q(H) ≦流量計35の検出流量増加率Qの場合 分流率制御装置14が温度センサ30での検出温度に関係な
く可変分流12を放熱減量側に作動させて、エンジン冷却
水路11から放熱路10への冷却水の放熱側分流率が減少す
るので、エンジン排出熱が放熱器1で冷却水循環系外に
放熱する割合が減り、エンジン排出熱回収用熱交換器6
に達するエンジン排出熱量自体が増加する。
(2) Heat absorption side liquid passage 15 of heat exchanger 6 for recovering engine exhaust heat
When the amount of the heat recovery liquid passing through the chamber rapidly increases, that is, when the heat radiation increasing side upper limit value Q (H) ≤ the detected flow rate increase rate Q of the flow meter 35, the diversion rate control device 14 detects the temperature detected by the temperature sensor 30. Irrespective of the above, the variable shunt 12 is operated toward the heat radiation reducing side, and the heat radiation side diversion rate of the cooling water from the engine cooling water passage 11 to the heat radiation passage 10 is reduced, so the engine exhaust heat is dissipated outside the cooling water circulation system by the radiator 1. The rate of heat dissipation is reduced, and the engine heat recovery heat exchanger 6
The amount of heat exhausted from the engine itself reaches

この結果、上記熱回収用吸熱側液路15を通過する熱回収
液量が急激に増加しても、これに見合って熱回収の対象
になるエンジン排出熱が迅速に増える。
As a result, even if the amount of the heat recovery liquid passing through the heat recovery heat absorption side liquid passage 15 suddenly increases, the engine exhaust heat to be the target of the heat recovery rapidly increases correspondingly.

つまり、上述の熱回収装置の減少の場合と同様に、例え
ば、温度センサ30での温度検出のみで冷却水の分流率を
制御するように構成した場合、熱回収液量増加から冷却
水の放熱側分流率の減少までの応答遅れの間に熱回収液
の温度が低下して適正温度範囲から外れるおそれがあ
る。
That is, as in the case of reducing the heat recovery device described above, for example, when the cooling water diversion rate is controlled only by the temperature detection by the temperature sensor 30, the heat recovery liquid amount increases and the cooling water radiates. During the response delay until the side diversion rate decreases, the temperature of the heat recovery liquid may drop and fall out of the proper temperature range.

これに対し、本願発明では、流量計35によって熱回収液
量の増加が検出されると熱回収液の温度が低下するとみ
なして、温度センサ30での検出温度に関係なく冷却水の
放熱側分流率を減少させて上記熱交換器6へのエンジン
排出熱量を増やすので、熱回収液は温度低下を抑制さ
れ、適正温度範囲内に保持される。
On the other hand, in the present invention, when the increase in the amount of the heat recovery liquid is detected by the flow meter 35, the temperature of the heat recovery liquid is considered to decrease, and the cooling water radiating side diversion is performed regardless of the temperature detected by the temperature sensor 30. Since the rate is decreased to increase the amount of heat exhausted from the engine to the heat exchanger 6, the temperature of the heat recovery liquid is suppressed from decreasing and is maintained within the proper temperature range.

<発明の効果> 熱回収液が温度センサの検出温度に応じて所定の温度範
囲(適正温度範囲)内に調整されているときに、熱回収
液の流量変化率が大きく変動すると、エンジン冷却水路
から放熱路への冷却水と熱回収用放出側水路への冷却水
とが温度センサでの検出温度に関係なく上記流量変動に
見合った分流率に制御されるので、上記流量変動に伴う
熱回収液の温度変動に対して応答遅れを生じることなく
上記分流率の制御を迅速に行うことができる。これによ
り、熱回収液の温度変化を小さく抑えて、熱回収液の温
度を適正温度範囲内に確実に保つことができる <実施例> 以下、本発明の実施例を図面に基づいて述べる。
<Effects of the Invention> When the heat recovery liquid is adjusted within the predetermined temperature range (appropriate temperature range) according to the temperature detected by the temperature sensor, if the flow rate change rate of the heat recovery liquid fluctuates significantly, the engine cooling water channel Since the cooling water from the heat sink to the radiating passage and the cooling water to the discharge side water passage for heat recovery are controlled to a diversion rate that matches the above flow rate fluctuations regardless of the temperature detected by the temperature sensor, heat recovery accompanying the above flow rate fluctuations is controlled. The diversion rate can be quickly controlled without causing a response delay with respect to the temperature change of the liquid. As a result, the temperature change of the heat recovery liquid can be suppressed to be small and the temperature of the heat recovery liquid can be reliably maintained within the appropriate temperature range. <Example> Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は熱併給エンジン発電装置の系統原理図、第2図
は同装置における熱回収水の流量変化率・ラジエータ側
冷却水分流率の関係図であって、当該熱併給エンジン発
電装置は、縦型ガスエンジンEと発電機Gとを前後方向
に連動連結して、発電を行うと同時に、エンジン本体熱
と排気熱とのエンジン排出熱を回収するように構成して
ある。
FIG. 1 is a system principle diagram of a cogeneration engine generator, and FIG. 2 is a relationship diagram of a flow rate change rate of heat recovery water and a radiator-side cooling water flow rate in the cogeneration engine generator. The vertical gas engine E and the generator G are interlockingly connected in the front-rear direction to generate electric power, and at the same time, to recover the engine exhaust heat of the heat of the engine body and the exhaust heat.

上記ガスエンジンEのシリンダブロック及びシリンダヘ
ッド内にウォータジャケット2を形成し、エンジンEの
排気路21に排気熱吸収用熱交換器3及びマフラ20を順番
に取り付ける。
The water jacket 2 is formed in the cylinder block and cylinder head of the gas engine E, and the exhaust heat absorbing heat exchanger 3 and the muffler 20 are attached to the exhaust passage 21 of the engine E in order.

また、エンジンEにラジエータ1を付設して、エンジン
排出熱を冷却水循環路系外に放熱可能に構成するととも
に、エンジン排出熱回収用熱交換器6を付設して、熱交
換器6の熱回収用放出側水路7でエンジン排出熱を放出
し、その熱回収用吸熱側水路15でその排出熱を回収し、
吸熱側水路15から取り出した給湯水を温水タンク23に貯
留して、給湯に利用するように構成される。
Further, a radiator 1 is attached to the engine E so that engine exhaust heat can be radiated to the outside of the cooling water circulation system, and an engine exhaust heat recovery heat exchanger 6 is attached to recover the heat of the heat exchanger 6. The engine exhaust heat is released in the heat release side water channel 7, and the exhaust heat is recovered in the heat absorbing side water channel 15
The hot water supplied from the heat absorption side water passage 15 is stored in the hot water tank 23 and used for hot water supply.

尚、符号24は制御装置であって、上記ラジエータ1の冷
却ファン25、後述の循環ポンプ22、ガス燃料導入路の減
圧弁などを制御している。
Incidentally, reference numeral 24 is a control device, which controls the cooling fan 25 of the radiator 1, a circulation pump 22, which will be described later, a pressure reducing valve in the gas fuel introduction path, and the like.

上記ウォータジャケット2に、排気熱吸収用熱交換器3
の排気熱吸収路4と、熱交換済みの冷却水をエンジンE
から導出する温水路5と、熱交換前の冷却水をエンジン
Eに導入する冷水路8と、循環ポンプ22とを直列循環状
に連通連結し、温水路5と冷水路8との間に、上記ラジ
エータ1を通る放熱路10と、エンジン排出熱回収用熱交
換器6の熱回収用放出水路7とを並列状に連通する。
The water jacket 2 has a heat exchanger 3 for absorbing exhaust heat.
Exhaust heat absorption path 4 and the cooling water that has undergone heat exchange
The hot water passage 5 derived from the cooling water passage 8, the cold water passage 8 for introducing the cooling water before heat exchange into the engine E, and the circulation pump 22 are connected in series and connected in series, and between the hot water passage 5 and the cold water passage 8, The heat dissipation path 10 passing through the radiator 1 and the heat recovery discharge water path 7 of the engine exhaust heat recovery heat exchanger 6 are connected in parallel.

但し、符号26はサーモスタット弁であって、温水路5か
ら冷水路8に短絡状に分岐したバイパス路27の分岐入口
部に配置され、始動時には弁26をバイパス路27の側に切
り替えて、エンジンEを出た冷却水を温水路5から冷水
路8に短絡的に流通させ、その放熱量を最小に抑えて、
早期に暖機できるように構成してある。
However, reference numeral 26 is a thermostat valve, which is arranged at a branch inlet portion of a bypass passage 27 branched from the hot water passage 5 to the cold water passage 8 in a short-circuited manner. The cooling water exiting E is circulated in a short circuit from the hot water passage 5 to the cold water passage 8 to minimize the amount of heat radiation,
It is structured so that it can be warmed up early.

一方、放熱路10と熱回収用放出側水路7とを上記温水路
5から二股状に分岐した部位に、三方弁から成る可変分
流弁12を介装し、上記エンジン排出熱回収用熱交換器6
の熱回収用吸熱側水路15に軽量計35を付設し、流量計35
に分流率制御装置14を介して可変分流弁12を分流率制御
可能に連携して、当該吸熱側水路15内を通過する給湯水
の水量が大きく変動しても、給湯水温を一定範囲内に保
持できるように構成される。
On the other hand, the heat radiating passage 10 and the heat recovery discharge side water passage 7 are bifurcated from the hot water passage 5, and a variable shunt valve 12 composed of a three-way valve is provided at the bifurcated portion of the hot water passage 5. 6
A light gauge 35 is attached to the heat absorption side water passage 15 of the
In cooperation with the variable diversion valve 12 via the diversion rate control device 14 so that the diversion rate can be controlled, even if the amount of hot water passing through the heat absorption side water passage 15 largely changes, the hot water temperature is kept within a certain range. It is configured to be able to hold.

即ち、流量計35が検出した給湯水量の変化率Qのうち、
正方向の許容上限値(即ち、増加率の許容上限値)とし
て放熱増加側上限値Q(H)を、また、負方向の許容下
限値(即ち、減少率の許容下限値)として放熱減少側下
限値Q(L)を、分流率制御装置14に夫々設定する。
That is, of the change rate Q of the hot water supply amount detected by the flow meter 35,
Heat dissipation increasing side upper limit value Q (H) as a positive direction allowable upper limit value (that is, increase rate allowable upper limit value), and heat dissipation decreasing side as a negative direction allowable lower limit value (that is, decrease rate allowable lower limit value) The lower limit value Q (L) is set in the diversion rate control device 14, respectively.

そして、許容下限値Q(H)及び許容下限値Q(L)に
対する温度センサ35による給湯水量の検出変化率Qのレ
ベルにより可変分流弁12を下記の(1)〜(3)のよう
に制御して、 温水路5→放熱路10 温水路5→熱交換器6の熱回収用放出側水路7の二つ
の流路への分流率を変化させ、放熱と熱回収の割合を変
えるように構成される。
Then, the variable shunt valve 12 is controlled as in the following (1) to (3) according to the level of the detection change rate Q of the hot water supply amount by the temperature sensor 35 with respect to the allowable lower limit value Q (H) and the allowable lower limit value Q (L). Then, the hot water passage 5 → the heat radiation passage 10 The hot water passage 5 → The heat distribution discharge side water passage 7 of the heat exchanger 6 is changed in the flow dividing ratio to the two passages to change the ratio of heat radiation and heat collection. To be done.

但し、上記エンジン排出熱回収用熱交換器6の吸熱側水
路15には温度センサ30が付設され、給湯水の流量変化率
が正常範囲内に留どまっている場合には、当該温度セン
サ30からの給湯水の水温情報に基づいて可変分流弁12を
制御するように構成され、 給湯水の流量変化率が異常に大きく変動した場合のみ、
上記流量計35からの流量変化率の情報に基づいて可変分
流弁12を割り込み制御するように構成される。
However, a temperature sensor 30 is attached to the heat absorption side water passage 15 of the engine exhaust heat recovery heat exchanger 6, and when the rate of change in the flow rate of the hot water supply remains within the normal range, the temperature sensor 30 It is configured to control the variable shunt valve 12 based on the hot water temperature information from the hot water supply, and only when the rate of change in the flow rate of the hot water is abnormally large.
The variable diversion valve 12 is configured to be interrupted based on the flow rate change rate information from the flow meter 35.

(1)検出流量変化率Q≦放熱減少側下限Q(L)の場
合 (即ち、熱交換器6からの給湯水の流量減少率が異常に
大きくなった場合) 第2図に示すように、分流率制御装置14の指令を受けた
可変分流弁12の作用により、検出流量減少率Qが大きく
なるほど、冷却水の放熱路10への放熱側分流率を初期値
a%から増加させ、熱回収用放出側水路15への熱回収側
分流率を減少させる。
(1) When the detected flow rate change rate Q ≦ heat radiation decrease lower limit Q (L) (that is, when the flow rate decrease rate of the hot water from the heat exchanger 6 becomes abnormally large) As shown in FIG. Due to the action of the variable flow dividing valve 12 in response to the instruction of the flow dividing rate control device 14, as the detected flow rate decrease rate Q increases, the heat radiating side flow dividing rate of the cooling water to the heat radiating path 10 is increased from the initial value a% to recover the heat. The heat recovery side diversion rate to the discharge side water channel 15 is reduced.

従って、給湯水量の減少率が大きくなると、温水路5→
放熱路10への冷却水が分流率が大きくなって放熱割合が
増し、熱交換器6に達するエンジン排出熱の割合が低下
するので、少量の給湯水は、その量に見合った少ないエ
ンジン排出熱を吸熱して、給湯水温の上昇は速やかに抑
制される。
Therefore, if the rate of decrease in the amount of hot water supplied increases,
Since the flow rate of the cooling water to the heat radiation path 10 increases and the heat radiation rate increases, the rate of the engine exhaust heat reaching the heat exchanger 6 decreases, so a small amount of hot water supply is a small amount of engine exhaust heat commensurate with the amount. The heat of water is absorbed and the rise in the temperature of the hot water supply is quickly suppressed.

(2)放熱増加側上限値Q(H)≦検出流量変化率Qの
場合 (即ち、熱交換器6からの給湯水の流量増加率が異常に
大きくなった場合) 第2図に示すように、分流率制御装置14の指令を受けた
可変分流弁12の作用により、検出流量増加率Qが大きく
なるほど、冷却水の放熱路10への放熱側分流率を初期値
a%から減少させ、熱回収用放出側水路15への熱回収側
分流率を増加させる。
(2) When the upper limit value Q (H) on the heat radiation increasing side ≦ the detected flow rate change rate Q (that is, when the flow rate increase rate of the hot water from the heat exchanger 6 becomes abnormally large), as shown in FIG. As the detected flow rate increase rate Q increases due to the action of the variable flow dividing valve 12 in response to the command from the flow dividing rate control device 14, the flow radiating side flow dividing rate of the cooling water to the heat radiating path 10 is decreased from the initial value a%, and The heat recovery side diversion rate to the recovery discharge side water channel 15 is increased.

従って、給湯水量の増加率が大きくなると、温水路5→
放熱路10への冷却水の分流率が小さくなって放熱割合が
減り、熱交換器6に達するエンジン排出熱の割合が増加
するので、大量の給湯水は、その量に見合った多いエン
ジン排出熱を吸熱して、給湯水温の下降は速やかに抑制
される。
Therefore, when the rate of increase in the amount of hot water supplied increases, the warm water channel 5 →
The diversion rate of the cooling water to the heat radiation path 10 is reduced, the heat radiation rate is reduced, and the rate of engine exhaust heat reaching the heat exchanger 6 is increased. Therefore, a large amount of hot water is equivalent to the amount of engine exhaust heat. The heat of water is absorbed and the decrease in the hot water supply water temperature is quickly suppressed.

(3)放熱減少側下限値Q(L)<検出流量変化率Q<
放熱増加側上限値Q(H)の場合 (給湯水流の変化率Qが正常範囲内にある場合) 上述したように、流量計35からの流量変化率Qの情報に
基づく割り込み制御が解除されて、温度センサ30からの
給湯水温に基づいて可変分流弁12が制御される。
(3) Lower limit value Q (L) for heat radiation reduction side <Detected flow rate change rate Q <
In the case of the heat radiation increasing side upper limit value Q (H) (when the change rate Q of the hot water supply flow is within the normal range) As described above, the interrupt control based on the information of the flow rate change rate Q from the flow meter 35 is canceled. The variable shunt valve 12 is controlled based on the hot water supply temperature from the temperature sensor 30.

これは、給湯水量が穏やかに変化している場合、或いは
変化しない場合でも、エンジン発電機自体の負荷が変わ
ってエンジン排出熱が変化し、その結果、給湯水の温度
が上下するので、この給湯水温の変化を小さく抑える必
要があるからである。
This is because even if the amount of hot water supply changes gently or does not change, the load on the engine generator itself changes and the engine exhaust heat changes, and as a result, the temperature of the hot water supply rises and falls. This is because it is necessary to keep the change in water temperature small.

即ち、上記分流率制御装置14によって放熱制御用温度領
域が設定され、この温度領域の下限を放熱開始温度T
2(L)とし、その上限を放熱率が100%になる温度T
2(H)として、この温度領域Aに対する温度センサ30
の給湯水検出温度T2のレベルにより可変分流弁12を下記
の(a)〜(c)のように制御して、 温水路5→放熱路10 温水路5→熱交換器6の熱回収用放出側水路7の二つ
の流路への分流率を変化させ、放熱と熱回収の割合を変
えるように構成される。
That is, the heat dissipation control temperature range is set by the diversion rate control device 14, and the lower limit of this temperature range is set to the heat dissipation start temperature T.
2 (L), the upper limit of which is the temperature T at which the heat dissipation rate becomes 100%
2 (H), the temperature sensor 30 for this temperature range A
The variable shunt valve 12 is controlled as shown in (a) to (c) below according to the level of the detected hot water supply temperature T 2 of the hot water supply path 5 → heat radiation path 10 hot water path 5 → for heat recovery of the heat exchanger 6. It is configured to change the diversion rate to the two channels of the discharge side water channel 7 to change the ratio of heat radiation and heat recovery.

但し、当然ながらT2(L)<T2(H)であって、実際的
には、熱回収用吸熱側水路15からの給湯水温は80℃前後
に保つのが良好であるので、当該温度を中心に±3℃を
とって、T2(L)は77℃に、T2(H)は83℃に各々設定
される。
However, as a matter of course, T 2 (L) <T 2 (H), and in practice, it is good to keep the hot water supply water temperature from the heat recovery side end channel 15 around 80 ° C. Centering at ± 3 ° C, T 2 (L) is set to 77 ° C and T 2 (H) is set to 83 ° C.

(a)検出温度T2<放熱開始温度T2(L)の場合 (即ち、給湯水温が異常に低下した場合) 分流率制御装置14により、可変分流弁12は放熱路10への
分流率が0%で、熱回収用放出側水路7への分流率が10
0%になるように制御され、 エンジン排出熱を吸熱したエンジン冷却水は、温水路5
から可変分流弁12を経て全て熱交換器6の熱放出側水路
7に流れて、冷却水に蓄熱されたエンジン排出熱を熱回
収用吸熱側水路15で熱回収する。
(A) When the detected temperature T 2 <heat radiation start temperature T 2 (L) (that is, when the hot water supply temperature is abnormally decreased) The variable flow dividing valve 12 controls the variable flow dividing valve 12 so that the flow dividing rate to the heat radiating path 10 is small. At 0%, the diversion rate to the heat recovery discharge side water channel 7 is 10%.
The engine cooling water, which has been controlled to be 0% and has absorbed the engine exhaust heat, is cooled by the hot water passage 5.
To the heat release side water passage 7 of the heat exchanger 6 through the variable flow dividing valve 12, and the engine exhaust heat accumulated in the cooling water is recovered in the heat recovery endothermic water passage 15.

そして、熱交換器6で熱を回収された後の冷却水は、冷
水路8を通って循環ポンプ22によりエンジンEのウォー
タジャケット2に還流し、再びエンジンEの排出熱を吸
熱する。
Then, the cooling water after the heat is recovered by the heat exchanger 6 is returned to the water jacket 2 of the engine E by the circulation pump 22 through the cold water passage 8 and absorbs the exhaust heat of the engine E again.

(b)放熱開始温度T2(L)≦検出温度T2≦全部放出温
度T2(H)の場合 (即ち、温水温が正常温度領域にある場合) 分流率制御装置14により、可変分流弁12は次のように分
流率制御される。
(B) When heat radiation start temperature T 2 (L) ≤ detection temperature T 2 ≤ total discharge temperature T 2 (H) (that is, when the hot water temperature is in the normal temperature range) 12 is shunt controlled as follows.

検出温度T2が高くなるほど、放熱路10への放熱側分流
率を増加させ、熱回収用放出側水路15への熱回収側分流
率を減少させる。
As the detected temperature T 2 increases, the heat radiation side diversion rate to the heat radiation path 10 increases and the heat recovery side diversion rate to the heat recovery discharge side water channel 15 decreases.

検出温度T2が低くなるほど、放熱路10への放熱側分流
率を減少させ、熱回収用放出側水路15への熱回収側分流
率を増加させる。
As the detected temperature T 2 becomes lower, the heat radiation side diversion rate to the heat radiation path 10 is decreased, and the heat recovery side diversion rate to the heat recovery discharge side water channel 15 is increased.

従って、検出温度T2が高くなるほど、温水路5→放熱路
10への冷却水の分流割合が増えて、冷却水の放熱効率が
高くなり、温水路5の温水温度は速やかに低下する。
Therefore, as the detected temperature T 2 increases, the warm water channel 5 → the heat radiation channel
The split ratio of the cooling water to 10 is increased, the heat dissipation efficiency of the cooling water is increased, and the hot water temperature of the hot water passage 5 is rapidly lowered.

この結果、熱交換器6の熱回収用吸熱側水路15から出る
給湯水の温度も速やかに下がって適温に調整される。
As a result, the temperature of the hot water supplied from the heat recovery side heat absorption side water passage 15 of the heat exchanger 6 is also rapidly lowered and adjusted to an appropriate temperature.

また、逆に、検出温度T2が低くなるほど、温水路5→熱
回収用放出側水路7への冷却水の分流割合が増えて、冷
却水の放熱効率が低くなり、温水路5の温水温度は速や
かに上昇する。
On the contrary, as the detected temperature T 2 decreases, the proportion of the cooling water diverted from the hot water passage 5 to the heat recovery discharge side water passage 7 increases, and the heat dissipation efficiency of the cooling water decreases, and the hot water temperature of the hot water passage 5 decreases. Rises quickly.

この結果、熱交換器6の熱回収用吸熱側水路15から出る
給湯水の温度も速やかに上がって適温に調整される。
As a result, the temperature of the hot water supplied from the heat recovery side heat absorption side water passage 15 of the heat exchanger 6 also rises rapidly and is adjusted to an appropriate temperature.

(c)全部放出温度T2(H)<検出温度T2の場合 (即ち、温水温が異常に上昇した場合) 分流率制御装置14により、可変分流弁12は放熱炉10への
分流率が100%で、熱回収用放出側水路7への分流率が
0%になるように制御され、 エンジンEから流出した冷却水は、温水路5から可変分
流弁12を経て全て放熱路10に流れ込み、冷却水に蓄熱さ
れたエンジン排出熱をシステム系外に速やかに放熱す
る。
(C) When the total discharge temperature T 2 (H) <the detection temperature T 2 (that is, when the hot water temperature rises abnormally) The variable flow dividing valve 12 causes the variable flow dividing valve 12 to change the flow dividing rate to the radiating furnace 10. At 100%, the diversion rate to the heat recovery discharge side water passage 7 is controlled to be 0%, and the cooling water flowing out from the engine E all flows into the heat radiation passage 10 from the hot water passage 5 through the variable diversion valve 12. Quickly dissipate engine exhaust heat stored in cooling water to the outside of the system.

この結果、熱回収用放出側水路7の冷却水温は低下し、
これから熱回収する吸熱側水路15の給湯水温も低下す
る。
As a result, the cooling water temperature of the heat recovery discharge side water channel 7 decreases,
The hot water supply water temperature of the heat absorption side water passage 15 from which heat is to be recovered also decreases.

他方、上記温水路5に温度センサ13を付設し、当該温度
センサ13を分流率制御装置14を介して可変分流弁12に連
動することにより、温水路5を通過する温水が異常上昇
した場合に、前記流量計35からの流量変化率Qの情報並
びに温度センサ30からの給湯水温T2の情報に最優先し
て、当該温度センサ13からの温排水温T1の情報が分流率
制御装置14を介して可変分流弁12を割り込み制御して、
エンジンEの過熱を防止するように構成してある。
On the other hand, when the temperature sensor 13 is attached to the hot water passage 5 and the temperature sensor 13 is linked to the variable diversion valve 12 via the diversion rate control device 14, when the hot water passing through the hot water passage 5 rises abnormally. The flow rate change rate Q information from the flow meter 35 and the hot water supply water temperature T 2 information from the temperature sensor 30 are given the highest priority, and the hot drainage temperature T 1 information from the temperature sensor 13 is given to the diversion rate control device 14. Interrupt control of the variable shunt valve 12 via
The engine E is configured to prevent overheating.

即ち、分流率制御装置14に上限温度T1(H)を設定し、
温度センサ13で検出されたエンジンEの温排水温T1が、
当該上限温度T1(H)に対していかなるレベルにあるか
により、以下の(イ)〜(ロ)の制御を行う。
That is, the upper limit temperature T 1 (H) is set in the diversion rate control device 14,
The hot drainage temperature T 1 of the engine E detected by the temperature sensor 13 is
The following controls (a) to (b) are performed depending on the level of the upper limit temperature T 1 (H).

(イ)検出温度T1<上限温度T1(H)の場合 (即ち、エンジン温排水が正常温度領域にある場合) 上記温度センサ30からの給湯水検出温度T2の情報に基づ
いて、可変分流弁12の分流率制御が前記(a)〜(c)
のように分流率制御装置14によって行われる。
(A) When the detected temperature T 1 <the upper limit temperature T 1 (H) (that is, when the engine hot drainage is in the normal temperature range), it is variable based on the information of the hot water supply detection temperature T 2 from the temperature sensor 30. The diversion rate control of the diversion valve 12 is the above (a) to (c).
Is performed by the diversion rate controller 14.

(ロ)上限温度T1(H)≦検出温度T1の場合 (即ち、エンジン温排水が異常上昇した場合) 前述のように、温度センサ13からの情報が、上記流量計
35及び温度センサ30からの情報に優先して働き、放熱路
10に流れる冷却水の分流率を100%として、熱交換器6
の熱回収用放出側水路7への分流率を0%とするように
可変分流弁12を分流率制御し、温水路5を流れる温水の
全てを放熱器1の側に流して、冷却水循環システムの系
外への放熱割合を最大にし、早期にエンジンEからの温
排水を冷却して、エンジンEの過熱を防止する。
(B) When the upper limit temperature T 1 (H) is equal to or lower than the detection temperature T 1 (that is, when the engine hot drainage is abnormally increased) As described above, the information from the temperature sensor 13 is the above flow meter.
35 works by prioritizing the information from the temperature sensor 30 and the heat radiation path.
Assuming that the flow rate of the cooling water flowing through 10 is 100%, the heat exchanger 6
Of the heat recovery discharge side water passage 7 is controlled so that the flow dividing ratio is 0%, and all the hot water flowing through the hot water passage 5 is caused to flow to the radiator 1 side, thereby the cooling water circulation system. The rate of heat radiation to the outside of the system is maximized, and the warm waste water from the engine E is cooled early to prevent the engine E from overheating.

尚、本制御においては、ハンチングを避けるために、温
水温が上限温度T1(H)をかなり下回る温度に下降する
まで、放熱側分流率を100%に継続する。
In this control, in order to avoid hunting, the heat radiating side diversion rate is kept at 100% until the temperature of the hot water drops to a temperature far below the upper limit temperature T 1 (H).

また、上記温度センサ13は、温水路5・冷水路8・ウォ
ータジャケット2及び排気熱吸収路4から成る冷却水路
11のうちの、いずれに設けても良いが、エンジンEの過
熱を迅速に防止するには、温水路5の温水温度を測定す
るのが好ましい。
Further, the temperature sensor 13 is a cooling water channel including a hot water channel 5, a cold water channel 8, a water jacket 2 and an exhaust heat absorption channel 4.
Although it may be provided in any of 11, it is preferable to measure the hot water temperature of the hot water passage 5 in order to quickly prevent the engine E from overheating.

以上のように、本発明は、流量計をエンジン排出熱回収
用熱交換器の吸熱側液路に付設し、当該流路を低下する
熱回収液の流量変化率が大きく変動した場合に、制御装
置を介して温度センサに連携した可変分流弁の作用によ
り、エンジン排出熱を吸熱した冷却水を放熱器の放熱路
と熱交換器の熱回収用水路とに所定分流率で振り分ける
ことを特徴とするので、 エンジンEはエンジン発電機に限らず、エンジンコンプ
レッサ、エンジンウエルダなどの他のエンジン作業機、
或いは、エンジン単独でも差し支えない。
As described above, the present invention provides a flow meter attached to the heat absorption side liquid passage of the engine exhaust heat recovery heat exchanger, and controls when the flow rate change rate of the heat recovery liquid that lowers the flow passage greatly changes. It is characterized in that the cooling water that has absorbed the engine exhaust heat is distributed to the heat radiation channel of the radiator and the heat recovery channel of the heat exchanger at a predetermined diversion rate by the action of the variable flow diversion valve linked to the temperature sensor via the device. Therefore, the engine E is not limited to the engine generator, but other engine working machines such as an engine compressor and an engine welder,
Alternatively, the engine alone can be used.

上記可変分流弁12は、上記実施例のような三方弁に限ら
ず、例えば第3図に示すように、温水路5から分岐した
放熱路10と熱回収用放出側水路7とに通常の二方向型調
量弁12aを各々付設し、これらを一つの分流率制御装置1
4に連携するように構成しても差し支えない。
The variable flow dividing valve 12 is not limited to the three-way valve as in the above-described embodiment, and as shown in FIG. 3, for example, a common two-way valve is provided for the heat radiation passage 10 branched from the warm water passage 5 and the heat recovery discharge side water passage 7. Directional metering valves 12a are attached respectively, and these are combined into one flow rate controller 1
It can be configured to work with 4.

また、上記放熱器1は、ラジエータに限らず、コンデン
サやホッパでも良い。
Further, the radiator 1 is not limited to the radiator and may be a condenser or a hopper.

上記エンジン排出熱回収用熱交換器の吸熱側水路を流れ
る熱回収液は、上記実施例のように水に限らず、オイル
などでも差し支えない。
The heat recovery liquid flowing through the water path on the heat absorption side of the engine exhaust heat recovery heat exchanger is not limited to water as in the above embodiment, and may be oil or the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の実施例を示すエンジンの排出熱回収装
置の原理系統図、第2図は熱回収液の流量変化率・放熱
路への分流率の関係図、第3図は可変分流弁の他の実施
態様を示す要部系統図、第4図は従来技術を示す第1図
相当図である。 1……放熱器、2……ウォータジャケット、3……排気
熱吸収用熱交換器、4……排気熱吸収路、5……温水
路、6……エンジン排出熱回収用熱交換器、7……6の
熱回収用放出側水路、8……冷水路、10……放熱路、12
……可変分流弁、14……分流率制御装置、15……6の熱
回収用吸熱側液路、30……温度センサ、35……流量計、
E……エンジン、Q……検出流量変化率、Q(L)……
放熱減少側下限値、Q(H)……放熱増加側上限値。
FIG. 1 is a principle system diagram of an engine exhaust heat recovery system showing an embodiment of the present invention, FIG. 2 is a relationship diagram of a flow rate change rate of heat recovery liquid and a diversion rate to a heat radiation path, and FIG. 3 is a variable diversion. FIG. 4 is a system diagram of an essential part showing another embodiment of the valve, and FIG. 4 is a view corresponding to FIG. 1 showing a conventional technique. 1 ... Radiator, 2 ... Water jacket, 3 ... Exhaust heat absorption heat exchanger, 4 ... Exhaust heat absorption path, 5 ... Warm water path, 6 ... Engine exhaust heat recovery heat exchanger, 7 ...... 6 Discharge side waterway for heat recovery, 8 …… Cold waterway, 10 …… Radiation path, 12
...... Variable flow divider valve, 14 ...... Diversion rate control device, 15 ...... 6 Heat absorption side fluid path for heat recovery, 30 ...... Temperature sensor, 35 ...... Flowmeter,
E …… Engine, Q …… Detected flow rate change rate, Q (L) ……
Heat radiation decrease side lower limit value, Q (H) ... Heat radiation increase side upper limit value.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】エンジン(E)のウォータジャケット
(2)に、排気熱吸収用熱交換器(3)の排気熱吸収路
(4)・温水路(5)・エンジン排出熱回収用熱交換器
(6)の熱回収用放出側水路(7)・及び冷水路(8)
を順に直列循環状に連通連結して構成したエンジンの排
出熱回収装置において、 上記エンジン排出熱回収用熱交換器(6)の熱回収用放
出側水路(7)に放熱器(1)の放熱路(10)を並列状
に接続し、 上記冷却路(8)・上記ウォータジャケット(2)・上
記排気熱吸収路(4)・及び上記温水路(5)から成る
エンジン冷却水路(11)に対して、上記熱回収用放出側
水路(7)と上記放熱路(10)とを可変分流弁(12)で
可変分流可能に接続し、 上記エンジン排出熱回収用熱交換器(6)の熱回収用吸
熱側液路(15)に温度センサ(30)を設けて、上記熱回
収用吸熱側液路(15)を通過する熱回収液の液温を検出
可能にし、上記温度センサ(30)に分流率制御装置(1
4)を介して上記可変分流弁(12)を分流率制御可能に
連携し、 上記温度センサ(30)での検出温度に応じて上記分流率
制御装置(14)が上記可変分流弁(12)を作動させて、
上記エンジン冷却水路(11)から上記放熱路(10)への
冷却水と上記熱回収用放出側水路(7)への冷却水との
分流率を制御して、上記熱回収液の液温を所定の温度範
囲内に調整可能に構成し、 上記熱回収用吸熱側液路(15)に流量計(35)を設け
て、上記熱回収用吸熱側液路(15)を通過する熱回収液
の流量を検出可能にし、上記流量計(35)に分流率制御
装置(14)を介して上記可変分流弁(12)を分流率制御
可能に連携し、 上記流量計(35)の熱回収液の検出流量の変化率Qが負
になり、その流量減少率が放熱減少側下限値Q(L)以
下になった場合には、上記分流率制御装置(14)が上記
温度センサ(30)での検出温度に関係なく上記可変分流
弁(12)を放熱増量側に作動させて、上記エンジン冷却
水路(11)から上記放熱路(10)への冷却水の放熱側分
流率を増加させるとともに、上記熱回収用放出側水路
(7)への冷却水の熱回収側分流率を減少させ、 上記流量計(35)の熱回収液の検出流量の変化率Qが正
になり、その流量増加率が放熱増加側上限値Q(H)以
上になった場合には、上記分流率制御装置(14)が上記
温度センサ(30)での検出温度に関係なく上記可変分流
弁(12)を放熱減量側に作動させて、上記放熱側分流率
を減少させるとともに、上記熱回収側分流率を増加させ
るように構成したことを特徴とするエンジンの排出熱回
収装置。
1. A water jacket (2) of an engine (E), an exhaust heat absorption path (4), a hot water path (5), and an engine exhaust heat recovery heat exchanger of an exhaust heat absorption heat exchanger (3). Discharge side waterway (7) and cold waterway (8) for heat recovery of (6)
In an exhaust heat recovery system for an engine, which is configured by sequentially connecting in series circulation manner, the heat of the radiator (1) is radiated to the heat recovery discharge side water channel (7) of the engine exhaust heat recovery heat exchanger (6). The channels (10) are connected in parallel to each other to the engine cooling water channel (11) including the cooling channel (8), the water jacket (2), the exhaust heat absorption channel (4), and the hot water channel (5). On the other hand, the heat recovery discharge side water channel (7) and the heat radiation channel (10) are variably connected by a variable flow diverter valve (12), and the heat of the engine exhaust heat recovery heat exchanger (6) is A temperature sensor (30) is provided in the heat recovery side liquid passage (15) so that the liquid temperature of the heat recovery liquid passing through the heat recovery side liquid passage (15) can be detected, and the temperature sensor (30). Shunt controller (1
4) via the variable diversion valve (12) so that the diversion rate can be controlled, and the diversion rate control device (14) controls the variable diversion valve (12) according to the temperature detected by the temperature sensor (30). To activate
By controlling the diversion rate of the cooling water from the engine cooling water channel (11) to the heat radiation channel (10) and the cooling water to the heat recovery discharge side channel (7), the liquid temperature of the heat recovery liquid is controlled. A heat recovery liquid configured to be adjustable within a predetermined temperature range, provided with a flow meter (35) in the heat recovery endothermic side liquid passage (15), and passing through the heat recovery endothermic side liquid passage (15). Of the heat recovery liquid of the flow meter (35) by linking the variable flow dividing valve (12) to the flow meter (35) via the flow dividing rate control device (14) so that the flow rate of the flow meter (35) can be detected. When the rate of change Q in the detected flow rate of becomes negative and the rate of decrease in the flow rate becomes equal to or lower than the lower limit value Q (L) on the heat radiation reduction side, the diversion rate control device (14) operates the temperature sensor (30). Irrespective of the detected temperature of the engine, the variable flow diverter valve (12) is actuated to the heat radiation increasing side to cool the engine cooling water passage (11) to the heat radiation passage (10). The heat recovery side diversion rate of the heat recovery side is increased and the heat recovery side diversion rate of the cooling water to the heat recovery discharge side water channel (7) is decreased to change the rate of change of the detected flow rate of the heat recovery liquid of the flow meter (35). When Q becomes positive and the flow rate increase rate becomes equal to or higher than the heat radiation increase side upper limit value Q (H), the diversion rate control device (14) regardless of the temperature detected by the temperature sensor (30). An exhaust heat recovery device for an engine, characterized in that the variable flow diverter valve (12) is operated toward the heat radiation reducing side to reduce the heat radiating side diversion rate and increase the heat recovery side diversion rate. .
JP63258162A 1988-10-12 1988-10-12 Engine exhaust heat recovery device Expired - Lifetime JPH0726594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63258162A JPH0726594B2 (en) 1988-10-12 1988-10-12 Engine exhaust heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63258162A JPH0726594B2 (en) 1988-10-12 1988-10-12 Engine exhaust heat recovery device

Publications (2)

Publication Number Publication Date
JPH02252949A JPH02252949A (en) 1990-10-11
JPH0726594B2 true JPH0726594B2 (en) 1995-03-29

Family

ID=17316396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63258162A Expired - Lifetime JPH0726594B2 (en) 1988-10-12 1988-10-12 Engine exhaust heat recovery device

Country Status (1)

Country Link
JP (1) JPH0726594B2 (en)

Also Published As

Publication number Publication date
JPH02252949A (en) 1990-10-11

Similar Documents

Publication Publication Date Title
US6955141B2 (en) Engine cooling system
JPS629053B2 (en)
CN105633484A (en) Battery temperature managing system of electrombile
JP2016205751A (en) Cogeneration system and heating equipment
JP4208792B2 (en) Cogeneration system
JPH0726594B2 (en) Engine exhaust heat recovery device
KR20200122361A (en) Drive unit with integrated ORC
JPH02104954A (en) Device for recovering exhaust heat of engine
JPH01155020A (en) Exhaust heat recovering device for engine
JPH02104953A (en) Device for recovering exhaust heat of engine
US4771739A (en) Cooling system for an internal combustion engine
JPH02104957A (en) Device for recovering exhaust heat of engine
JP2691372B2 (en) Engine exhaust heat recovery device for engine work equipment
JPH109054A (en) Exhaust heat recovery system
JPH0742856B2 (en) Exhaust heat recovery device for water-cooled engine
JPH0768891B2 (en) Cogeneration system
JPH05248707A (en) Heat recoverying device with parallel heat exchanger
JPS601020A (en) Bus heater
JPH0157269B2 (en)
JPS6262197A (en) Waste heat recovery device for electric equipment
JPH0726593B2 (en) Exhaust heat recovery device for engine
JPH0738654Y2 (en) Waste heat recovery device for water-cooled engine
JPS60248944A (en) Hot water supplying device
JPS6059817B2 (en) Generator stator primary cooling water control device
JPS6316014B2 (en)