JP3836526B2 - Hot water system - Google Patents

Hot water system Download PDF

Info

Publication number
JP3836526B2
JP3836526B2 JP28415095A JP28415095A JP3836526B2 JP 3836526 B2 JP3836526 B2 JP 3836526B2 JP 28415095 A JP28415095 A JP 28415095A JP 28415095 A JP28415095 A JP 28415095A JP 3836526 B2 JP3836526 B2 JP 3836526B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
heated
temperature
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28415095A
Other languages
Japanese (ja)
Other versions
JPH09126483A (en
Inventor
道弘 清水
健一 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Industrial Co Ltd
Original Assignee
Takagi Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Industrial Co Ltd filed Critical Takagi Industrial Co Ltd
Priority to JP28415095A priority Critical patent/JP3836526B2/en
Publication of JPH09126483A publication Critical patent/JPH09126483A/en
Application granted granted Critical
Publication of JP3836526B2 publication Critical patent/JP3836526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ホテル、病院、公共施設などで用いられる大型の給湯システムに関する。
【0002】
【従来の技術】
従来の給湯装置としてはボイラーが一般的であり、ボイラーで加熱した湯水を循環ポンプで各給湯設備に循環させ、例えば各給湯設備に設けた蛇口から出湯するように構成していた。
【0003】
ところで、ホテル、病院、公共施設などで用いるボイラーは大型のものが必要であるが、大型のボイラーは出湯する湯水の温度が安定せず、また燃料使用量を多くなるという欠点を有している。
【0004】
そこで、このような問題を解決するために、温度制御のしやすい容量の小さな給湯装置を複数台並設し、各給湯装置に湯水を循環しながら加熱供給するように構成した給湯システムが提案されている(特開平4−39537号参照)。
【0005】
【発明が解決しようとする課題】
しかしながら、前記した給湯システムの場合、設定温度まで湯水を加熱して燃焼を停止している給湯装置の熱交換器にも常時循環湯水が流れており、非燃焼時にこの熱交換器から循環湯水の熱が外部へ逃がされてしまい、熱効率が悪く、湯水の温度低下が早いという欠点があった。このため、従来の給湯システムでは、給湯装置の燃焼と消火が頻繁に繰り返され、燃料使用量が大きくなるとともに装置の傷みも早いという問題があった。
【0006】
本発明は、上記のような問題を解決するためになされたもので、熱効率を改善して燃料使用量を低減するとともに装置の寿命を延ばし、長期間にわたって安定した湯水の供給を行なうことが給湯システムを提供することを目的とする。
【0007】
上記課題を解決するため、請求項1に係る本発明の給湯システムは、複数台の給湯装置を備える給湯システムであって、前記給湯装置から出湯される温度調整された加熱上水を合流させて循環ポンプにより循環させ、出湯中の前記給湯装置に還流させるとともに、蛇口の分岐箇所に前記加熱上水を供給する加熱上水循環経路と、前記加熱上水循環経路に前記分岐箇所及び前記循環ポンプを跨がって形成され、還流する前記加熱上水を前記給湯装置の出湯口側に戻すバイパス管と、前記加熱上水の温度に応じて前記バイパス管に流す前記加熱上水の流量を調節し、前記加熱上水の温度が高い場合に前記バイパス管に流す流量を増大させ、前記加熱上水の温度が低い場合に前記バイパス管に流す流量を減少させる流量調節弁と、前記流量調整弁と前記給湯装置の入水口との間の前記加熱上水循環経路に接続され、前記加熱上水循環経路に上水を供給する上水供給管と、前記給湯装置毎に設置され、運転する前記給湯装置に前記加熱上水を通水させる通水弁と、前記蛇口の分岐箇所からの出湯又は前記バイパス管に流れる流量の増大により前記加熱上水循環経路に前記上水供給管からの上水供給が増大し、前記給湯装置の出湯温度が設定温度より低下した場合に、前記通水弁を開いて前記給湯装置の運転台数を増加させ、前記給湯装置に循環する前記加熱上水の温度が高い場合には前記通水弁を閉じて前記給湯装置の運転台数を減少させる制御部とを備える構成である。
【0008】
このような構成とした場合、加熱上水の出湯流量に応じて給湯装置の運転台数が変わるので、余分の給湯装置が無駄に燃焼されるようなことがなくなり、燃料使用量を低減することができる。
【0009】
また、循環経路を一巡して還流してくる加熱上水の温度が給湯装置で再加熱する必要がない程に高温の場合には、循環経路を還流する加熱上水のほとんどがバイパス管を通じてバイパスされるため、加熱上水が給湯装置へ還流されることがほとんどなくなる。このため、従来のように還流する高温の加熱上水の熱が給湯装置の熱交換器から外部へ放熱されるようなことがなくなり、循環する加熱上水の湯温低下を防止することができる。
【0010】
上記課題を解決するため、請求項2に係る本発明は、上記給湯システムにおいて、前記流量調節弁は、前記加熱上水の温度を検知して伸縮するサーモワックスエレメントと、このサーモワックスエレメントの伸縮により開度が調整される弁体とを備える構成である。
【0011】
このような構成とした場合、流路調整弁の弁開度を加熱上水の温度に応じて可変制御するための特別の制御手段や回路がまったく不要となり、装置をより簡潔に構成することができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。
図1に、本発明に係る給湯システムの一例を示す。なお、この図1の例は、3台の給湯装置201〜203を併設した場合の一例を示すものである。
【0013】
図において、第1給湯装置201は、熱交換器207と、この熱交換器207を加熱するためのバーナ211とを備えている。熱交換器207の入水端は入水量センサ206、入水温センサ205を介して入水管204に接続され、熱交換器207の出湯端は出湯温センサ208、通水弁209を介して出湯管210に接続されている。また、バーナ211には燃料元弁212、燃料比例弁213を介して燃料が供給されている。
【0014】
第2給湯装置202および第3給湯装置203も、前記第1給湯装置201とまったく同様の構成になる。なお、この図1の例では、3台の給湯装置を併設したが、併設台数は使用する最大上水量に応じて決定されるものである。
【0015】
各給湯装置201〜203の入水管204はそれぞれ給水管224に接続されており、この給水管224、上水供給管223、逆止弁222、給水ポンプ221を通じて上水が供給される。
【0016】
一方、各給湯装置201〜203の出湯管210はそれぞれ給湯管226に接続されており、前記給湯管226、還流管215、循環ポンプ217、回収管220、給水管224の経路によって加熱上水が一巡して還流する循環経路が構成されている。
【0017】
給水ポンプ221は、受水槽などに貯溜された上水を所定の圧力で前記循環経路に供給するもので、前記循環経路内の加熱上水が蛇口227などから外部に取り出されたときなどに生じる圧力低下に応じて適切な量の上水を前記循環経路に補給するものである。また、前記循環経路には逆止弁214,225を設け、逆流を防止している。
【0018】
219は回収管220と還流管215を結ぶバイパス管であり、その分岐点には回収管220側に還流する流量とバイパス管219側に分流する流量を調節する流路調整弁218が設けられている。
【0019】
なお、各給湯装置単体には所定温度まで加熱して出湯することのできる最大有効出湯量があり、給湯システム全体として必要な最大出湯量を満足させるに足る台数の給湯装置が併設される。例えば、給湯装置単体の最大有効出湯量が10リットル/分であり、給湯システム全体としての必要な最大出湯量が30リットル/分であれば、給湯装置は図示したように3台併設されることになる。
【0020】
また、循環ポンプ217にて循環させる上水の循環流量は、3台の給湯装置201〜203が一斉に燃焼を繰り返してその燃料使用量が増大することを防止するために、通常3台の給湯装置のうちの1台または2台が動作する程度の流量で循環させる。この循環する加熱上水は循環経路内を循環するのみであるため、放熱による損失を補う程度に加熱されればよい。
【0021】
また、蛇口227などから外部に上水が出湯された場合は、循環経路内の圧力損失が開放されて流量規制が解除されるので、外部への出湯量に応じて新しい上水が給水ポンプ221によって補給され、さらにこの時の出湯流量に見合う台数の給湯装置が動作される。
【0022】
図2は、前記給湯システム200の電気回路のブロック図である。
主制御装置300は装置全体の動作を制御するもので、各給湯装置201〜203の制御部301〜303と、外部リモコン装置304が接続されている。主制御装置300は、各制御部301〜303から送られてくる温度,水量などの検出データを受け取り、各制御部301〜303に動作指令を与える。各制御部301〜303は、この動作指令に基づき、それぞれの給湯装置の通水弁209、燃料元弁212、燃料比例弁213などに駆動指令を与える。
【0023】
図3は、前記主制御装置300および外部リモコン装置304の詳細なブロック図である。
主制御装置300には、CPU310、インターフェース用のI/O装置311、データや各種情報を一時記憶するためのRAM312、全体の動作を制御する制御プログラムや各種制御データが格納されたROM313、故障警告データなどを格納するためのEEPROM314が設けられている。さらに、I/O装置311には、各制御部301〜303との間でデータの送受を行なう送受信装置315〜317、外部リモコン装置304との間で通信を行なうための送受信回路318が接続されている。
【0024】
外部リモコン装置304には、CPU320、I/O装置321、RAM322、CPU320を動作させるためのプログラムが格納されているROM323が設けられている。さらにI/O装置321には、運転スイッチ327のための起動回路324、上水の温度を設定する温度設定スイッチ328のための温度設定回路325、設定温度、各種故障警報などの情報を報知する表示装置329を駆動するための表示回路326が接続されている。
【0025】
図4は、給湯装置201(202,203)の制御部301(302,303)の詳細なブロック図である。制御部301(302,303)には、CPU330、I/O装置331、CPU330に接続されたA/D変換器332,333、データや各種情報を一時記憶するためのRAM334、動作を制御する制御プログラムや各種制御データが格納されたROM335が設けられている。A/D変換器332,333には、入水管204から熱交換器207に流入する上水の温度を検出する入水温センサ205と、熱交換器207から出湯管210に出湯される加熱後の上水の温度を検出するための出湯温センサ208が接続されている。
【0026】
I/O装置331には、通水弁209を駆動する通水弁駆動回路336、燃料元弁212を駆動する燃料元弁駆動回路337、燃料比例弁213を駆動する燃料比例弁駆動回路338、入水量センサ206で検出した熱交換器207への流量信号を制御に適した波形信号に変換する波形整形回路339、主制御装置300との間でデータの送受を行なう送受信回路340が接続されている。
【0027】
次に、前記構成になる給湯システム200の動作について詳細に説明する。
まず、主制御装置300は、第1給湯装置201に動作指令を出す。第1給湯装置201の制御部301は、この動作指令によって通水弁209を開かせる。すると給水管224、入水管204を通って上水が熱交換器207に入水され、出湯管210より出水される。この上水の流入を入水量センサ206にて検出し、バーナ211の点火動作に移行するとともに、検出した入水量を主制御装置300に送信する。
【0028】
主制御装置300は、第1給湯装置201から送られてくる入水量を基に動作させるべき給湯装置の台数を演算する。例えば、給湯装置1台の最大有効出湯量が10リットル/分で入水量が30リットル/分の場合には、3台の給湯装置を駆動する必要があると判断し、第2給湯装置202、第3給湯装置203にも運転指令を送信する。これにより、第2給湯装置202と第3給湯装置203も運転を開始する。
【0029】
主制御装置300から設定温度が各給湯装置の制御部301〜303に送信され、各制御部はその設定温度をRAM334に格納し、それぞれにて検出される入水温度、入水量、出湯温度と記憶された設定温度とを基にそれぞれのバーナ211に供給する燃料量を演算し、各燃料比例弁213の開度を調整して上水を加熱する。設定温度まで加熱された各給湯装置の上水は、それぞれ出湯管210より出湯し、給湯管226、還流管215、循環ポンプ217、回収管220の循環経路を通って一巡し、再び各給湯装置に還流される。
【0030】
さて、循環上水が設定温度にまで昇温すると、各給湯装置201〜203は燃焼を停止して待機状態になるが、循環ポンプ217による循環量はほぼ一定に保たれているため、主制御装置300は各給湯装置の制御部301〜303に対して通水弁209を開くように命令を出し続けている。このため、設定温度まで昇温した上水は必ず各熱交換器207を通過して循環することになるが、この熱交換器を通過することにより逆に上水の熱が多量に外部に放出されてしまい、上水の温度は短時間のうちに低下してしまう。
【0031】
この結果、各バーナ211は点火と停止を頻繁に繰り返し、加熱のための燃料消費量が多大になってしまうとともに、湯水が常に熱交換器を通るため、熱交換器に腐食などが発生しやすくなる。そこで、本発明では循環経路にバイパス管219と流路調整弁218を設け、循環する上水の温度に応じて循環する上水を還流管215側へバイパスするように構成している。
【0032】
前記流路調整弁218は、図5に示すように、熱によって膨張・収縮するワックスを封入したサーモワックスエレメント350と、このサーモワックスエレメント350を内蔵した感熱部351と、押圧バネ355とを備え、感熱部351の外周には分流量を調整するための2つの弁体353,354が形成されている。そして、例えば前記サーモワックスエレメント350として55℃〜75℃の範囲で膨張・収縮するものを用い、給湯装置の設定温度を65℃に設定し、感熱部351にて感熱する温度が65℃を越えてくると感熱部351が上方へ移動し、65℃よりも低下してくると感熱部351が下方へ移動するように、調整ネジ356を調整する。
【0033】
弁内を通過する上水によって感熱部351が温められると、サーモワックスエレメント350が膨張してその先端の突き出しピン352が調整ねじ356を押し、押圧バネ355に抗して感熱部351を上方へ押し上げる。一方、上水の温度が低下すると、サーモワックスエレメント350が収縮してその突き出しピン352が引っ込み、押圧バネ355によって感熱部351を下方へ押し下げる。
【0034】
したがって、上水の温度が上昇すれば、弁体354側が開いてA方向の流量が増え、上水の温度が低下すれば、弁体353側が開いてB方向への流量が増える。さらに、すべての給湯装置201〜203の燃焼が停止される程度まで上水の温度が高い場合には、循環される上水のほとんどが流路調整弁218でバイパスされ、回収管220側の流量が減少する。このため、高温時には上水の熱が熱交換器207から外部へ逃がされるようなことがなくなり、せっかく加熱した上水の温度が急激に低下するというようなことがなくなる。
【0035】
前記の点についてさらに詳しく説明すると、給湯装置201〜203で加熱されて上水の温度が上昇すると、前記流路調整弁218の作用によって給湯装置201〜203に還流される上水量が減少する。主制御装置300は、各給湯装置の入水量センサ206からの合計流量を演算し、合計入水量が10リットル/分未満まで低下したら、第2および第3給湯装置202,203の通水弁209を閉じて第2および第3給湯装置202,203を停止させ、第1給湯装置201だけで加熱する。
【0036】
そして、第1給湯装置201には循環する上水の温度と水量を入水温センサ205と入水量センサ206で常時検出させるために、上水の温度が設定温度に達してその燃焼を停止させる場合でも、通水弁209は閉止しないで開けたままにしておく。
【0037】
やがて循環する上水の温度が低下してくると、流路調整弁218はB方向への還流量を増大させる。第1給湯装置201の入水量センサ206で検出される水量が10リットル/分以上になると、第2給湯装置202が動作される。さらに、外部への出湯などによって出湯量が増え、第1および第2給湯装置201,202にて検出される合計水量が20リットル/分以上に増加したら、第3給湯装置203も動作させる。このようにして、燃料消費量を可能な限り少なくしながら、上水を効率的に加熱することができる。
【0038】
【発明の効果】
以上説明したように、請求項1記載の発明によるときは、複数台の給湯装置と、該各給湯装置から出湯される温度調整された加熱上水を合流して、蛇口の分岐箇所を介して循環ポンプで循環させて再び各給湯装置へ還流する加熱上水循環経路と、前記循環経路の前記蛇口の分岐箇所を一巡して還流してくる加熱上水を前記給湯装置の出湯口側へバイパスするバイパス管と、該バイパス管への加熱上水の分岐流量を可変制御する流路調整弁と、前記各給湯装置の入水口と前記流路調整弁との間に接続された上水供給管とを備え、前記循環経路への加熱上水の出湯流量に応じて前記給湯装置の運転台数を変えるとともに、前記循環経路を一巡して還流してくる加熱上水の温度が高い時は前記バイパス管への分岐流量を増加し、前記循環経路を一巡して還流してくる加熱上水の温度が低い時は前記バイパス管への分岐流量を低減するようにしたので、加熱上水の出湯流量に応じて給湯装置の運転台数を変えることができ、余分の給湯装置が無駄に燃焼されるようなことがなくなる。このため、燃料使用量を低減することができる。
【0039】
また、循環経路を一巡して還流してくる加熱上水の温度が再加熱する必要がない程に高温の場合には、循環経路を還流する加熱上水のほとんどがバイパス管を通じてバイパスされるため、加熱上水が給湯装置へ還流されることがほとんどなくなり、従来のように還流する高温の加熱上水の熱が給湯装置の熱交換器から外部へ放熱されるようなことがなくなる。このため、循環する加熱上水の湯温低下が防止され、熱効率を改善して燃料使用量を低減することができるとともに装置の寿命を延ばすことができ、長期間にわたって安定した湯水の供給を行なうことができる。
【0040】
さらに、請求項2記載の発明によるときは、前記流路調整弁がサーモワックスエレメントを用いた感熱型の弁からなるので、流路調整弁の弁開度を加熱上水の温度に応じて可変制御するための特別の制御手段や回路がまったく不要となる。このため、装置をより簡潔に構成することができ、低コスト化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る給湯システムの一例を示す図である。
【図2】給湯システムの電気回路のブロック図である。
【図3】主制御装置300および外部リモコン装置304の詳細なブロック図である。
【図4】給湯装置201(202,203)の制御部301(301,302)の詳細なブロック図である。
【図5】流路調整弁218の構造を示す断面図である。
【符号の説明】
200 給湯システム
201〜203 給湯装置
204 入
205 入水温センサ
206 入水量センサ
207 熱交換器
208 出湯温センサ
209 通水弁
210 出湯管
211 バーナ
215 還流管
217 循環ポンプ
218 流路調整弁
219 バイパス管
220 回収管
221 給水ポンプ
223 上水供給管
224 給水管
226 給湯管
227 蛇口
300 主制御装置
301、302、303 給湯装置制御部
304 外部リモコン装置
350 サーモワックスエレメント
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a large hot water supply system used in hotels, hospitals, public facilities, and the like.
[0002]
[Prior art]
As a conventional hot water supply apparatus, a boiler is generally used, and hot water heated by the boiler is circulated to each hot water supply facility by a circulation pump, and for example, hot water is discharged from a faucet provided in each hot water supply facility.
[0003]
By the way, large boilers are required for hotels, hospitals, public facilities, etc., but large boilers have the disadvantages that the temperature of the hot water discharged is not stable and the amount of fuel used is increased. .
[0004]
In order to solve such problems, a hot water supply system has been proposed in which a plurality of small-sized hot water supply devices that are easy to control the temperature are arranged in parallel, and the hot water is circulated and supplied to each hot water supply device. (See JP-A-4-39537).
[0005]
[Problems to be solved by the invention]
However, in the case of the hot water supply system described above, the circulating hot water always flows through the heat exchanger of the hot water supply apparatus that stops the combustion by heating the hot water to the set temperature. There was a drawback that heat was released to the outside, the heat efficiency was poor, and the temperature of the hot water dropped quickly. For this reason, in the conventional hot water supply system, combustion and extinguishing of the hot water supply device are frequently repeated, and there is a problem that the amount of fuel used increases and the damage to the device is quick.
[0006]
The present invention has been made to solve the above-described problems, and it is possible to improve the thermal efficiency, reduce the amount of fuel used, extend the life of the apparatus, and provide a stable supply of hot water over a long period of time. The purpose is to provide a system.
[0007]
To solve the above problems, the hot water supply system of the present invention according to claim 1 is a hot water supply system comprising a plurality of the water heater, are merged heating tap water whose temperature is adjusted is tapped from the hot water supply device Circulating with a circulation pump, recirculate to the hot water supply device in the hot water, and supply the heated clean water circulation path for supplying the heated clean water to the branch location of the faucet , straddling the branched location and the circulation pump across the heated clean water circulation route A bypass pipe that returns the heated clean water that is formed and recirculated to the outlet side of the hot water supply device, and adjusts the flow rate of the heated clean water that flows to the bypass pipe according to the temperature of the heated clean water, the allowed temperature of the heating clean water increases the flow rate flowing in the bypass pipe is higher, the flow control valve to reduce the flow rate to be supplied to the bypass pipe when the temperature of the heating water supply is low, and the flow rate adjusting valve Is connected to the heating clean water circulation path between the water inlet port of the serial water heater, the heating water supply circulation path water supply pipe for supplying tap water to the installed in each water heater, the hot water supply device for driving Supply of water from the water supply pipe to the heating water circulation path increases due to an increase in the flow rate of water flowing out from the branching point of the faucet or the bypass pipe and the bypass pipe. When the hot water temperature of the hot water supply device is lower than a set temperature, the water supply valve is opened to increase the number of operating hot water supply devices, and the temperature of the heated hot water circulating to the hot water supply device is high. And a controller that closes the water flow valve and reduces the number of operating hot water supply devices.
[0008]
In such a configuration, the number of operating hot water supply devices changes according to the amount of hot water discharged from the heated water, so that unnecessary hot water supply devices are not burned and the amount of fuel used can be reduced. it can.
[0009]
In addition, when the temperature of heated water that circulates through the circulation path is so high that it is not necessary to reheat the hot water supply device, most of the heated water that circulates through the circulation path is bypassed through the bypass pipe. Therefore, the heated water is hardly returned to the hot water supply device. For this reason, the heat of the hot heated water that circulates as in the conventional case is not radiated to the outside from the heat exchanger of the hot water supply apparatus, and the hot water temperature that circulates can be prevented from lowering. .
[0010]
In order to solve the above-mentioned problem, the present invention according to claim 2 is the hot water supply system according to the present invention, wherein the flow rate control valve detects a temperature of the heated clean water and expands and contracts, and expansion and contraction of the thermo wax element. It is the structure provided with the valve body by which an opening degree is adjusted by.
[0011]
In such a configuration, there is no need for any special control means or circuit for variably controlling the valve opening degree of the flow path adjustment valve according to the temperature of the heated water, and the apparatus can be configured more simply. it can.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an example of a hot water supply system according to the present invention. In addition, the example of this FIG. 1 shows an example at the time of providing the three hot-water supply apparatuses 201-203.
[0013]
In the figure, the first hot water supply apparatus 201 includes a heat exchanger 207 and a burner 211 for heating the heat exchanger 207. The inlet end of the heat exchanger 207 is connected to the inlet pipe 204 via the incoming water amount sensor 206 and the incoming water temperature sensor 205, and the outlet end of the heat exchanger 207 is the outlet pipe 210 via the outlet water temperature sensor 208 and the water flow valve 209. It is connected to the. In addition, fuel is supplied to the burner 211 via a fuel main valve 212 and a fuel proportional valve 213.
[0014]
The second hot water supply device 202 and the third hot water supply device 203 have the same configuration as the first hot water supply device 201. In addition, in the example of this FIG. 1, although the three hot-water supply apparatuses were installed side by side, the number of installation is determined according to the maximum amount of water to be used.
[0015]
The water intake pipes 204 of the hot water supply apparatuses 201 to 203 are respectively connected to the water supply pipe 224, and clean water is supplied through the water supply pipe 224, the water supply pipe 223, the check valve 222, and the water supply pump 221.
[0016]
On the other hand, the hot water pipes 210 of the hot water supply apparatuses 201 to 203 are respectively connected to the hot water supply pipe 226, and heated hot water is supplied through the paths of the hot water supply pipe 226, the reflux pipe 215, the circulation pump 217, the recovery pipe 220, and the water supply pipe 224. A circulation path that recirculates in one cycle is configured.
[0017]
The water supply pump 221 supplies clean water stored in a water receiving tank or the like to the circulation path at a predetermined pressure, and is generated when heated clean water in the circulation path is taken out from a faucet 227 or the like. An appropriate amount of clean water is replenished to the circulation path according to the pressure drop. Further, check valves 214 and 225 are provided in the circulation path to prevent backflow.
[0018]
Reference numeral 219 denotes a bypass pipe connecting the recovery pipe 220 and the reflux pipe 215, and a flow path adjusting valve 218 for adjusting the flow rate of reflux to the recovery pipe 220 side and the flow volume of the shunt to the bypass pipe 219 side is provided at the branch point. Yes.
[0019]
Each hot water supply device has a maximum effective amount of hot water that can be heated to a predetermined temperature and discharged, and a number of hot water supply devices sufficient to satisfy the maximum amount of hot water required for the entire hot water supply system are provided. For example, if the maximum effective hot water discharge amount of a single hot water supply device is 10 liters / minute and the required maximum hot water discharge amount for the entire hot water supply system is 30 liters / minute, three hot water supply devices are provided as shown. become.
[0020]
In addition, the circulation flow rate of the clean water circulated by the circulation pump 217 is usually three hot water supplies in order to prevent the three hot water supply apparatuses 201 to 203 from simultaneously burning and increasing the amount of fuel used. Circulate at a flow rate that allows one or two of the devices to operate. Since this circulating heated water only circulates in the circulation path, it may be heated to the extent that it compensates for the loss due to heat dissipation.
[0021]
When tap water is discharged from the faucet 227 or the like, the pressure loss in the circulation path is released and the flow rate restriction is released, so that new tap water is supplied to the water supply pump 221 in accordance with the amount of hot water discharged to the outside. Then, a number of hot water supply apparatuses corresponding to the hot water flow rate at this time are operated.
[0022]
FIG. 2 is a block diagram of an electric circuit of the hot water supply system 200.
Main control device 300 controls the operation of the entire device, and is connected to control units 301 to 303 of hot water supply devices 201 to 203 and external remote control device 304. The main control device 300 receives detection data such as the temperature and the amount of water sent from the control units 301 to 303, and gives an operation command to the control units 301 to 303. Based on this operation command, each control unit 301 to 303 gives a drive command to the water flow valve 209, the fuel main valve 212, the fuel proportional valve 213, and the like of each hot water supply device.
[0023]
FIG. 3 is a detailed block diagram of the main controller 300 and the external remote controller 304.
The main control device 300 includes a CPU 310, an I / O device 311 for interface, a RAM 312 for temporarily storing data and various information, a ROM 313 storing a control program and various control data for controlling the entire operation, and a failure warning. An EEPROM 314 for storing data and the like is provided. Further, the I / O device 311 is connected with transmission / reception devices 315 to 317 for transmitting / receiving data to / from each of the control units 301 to 303 and a transmission / reception circuit 318 for performing communication with the external remote control device 304. ing.
[0024]
The external remote control device 304 is provided with a CPU 320, an I / O device 321, a RAM 322, and a ROM 323 in which a program for operating the CPU 320 is stored. Further, the I / O device 321 is notified of information such as a start circuit 324 for the operation switch 327, a temperature setting circuit 325 for the temperature setting switch 328 for setting the temperature of the clean water, a set temperature, various failure alarms, and the like. A display circuit 326 for driving the display device 329 is connected.
[0025]
FIG. 4 is a detailed block diagram of the control unit 301 (302, 303) of the hot water supply apparatus 201 (202, 203). The control unit 301 (302, 303) controls the CPU 330, the I / O device 331, the A / D converters 332, 333 connected to the CPU 330 , the RAM 334 for temporarily storing data and various information, and the operation. A ROM 335 storing a control program and various control data is provided. The A / D converters 332 and 333 include an incoming water temperature sensor 205 that detects the temperature of clean water flowing into the heat exchanger 207 from the incoming water pipe 204, and a heated water that is discharged from the heat exchanger 207 to the hot water outlet pipe 210. A hot water temperature sensor 208 for detecting the temperature of the clean water is connected.
[0026]
The I / O device 331 includes a water valve driving circuit 336 for driving the water valve 209, a fuel main valve driving circuit 337 for driving the fuel main valve 212, a fuel proportional valve driving circuit 338 for driving the fuel proportional valve 213, A waveform shaping circuit 339 for converting a flow rate signal to the heat exchanger 207 detected by the incoming water sensor 206 into a waveform signal suitable for control, and a transmission / reception circuit 340 for transmitting / receiving data to / from the main controller 300 are connected. Yes.
[0027]
Next, the operation of the hot water supply system 200 configured as described above will be described in detail.
First, main controller 300 issues an operation command to first hot water supply apparatus 201. The control part 301 of the 1st hot water supply apparatus 201 opens the water flow valve 209 by this operation command. Then, the clean water enters the heat exchanger 207 through the water supply pipe 224 and the water inlet pipe 204 and is discharged from the hot water outlet pipe 210. This inflow of clean water is detected by the incoming water amount sensor 206, and the operation proceeds to the ignition operation of the burner 211, and the detected incoming water amount is transmitted to the main controller 300.
[0028]
Main controller 300 calculates the number of hot water supply devices to be operated based on the amount of incoming water sent from first hot water supply device 201. For example, when the maximum effective hot water discharge amount of one hot water supply device is 10 liters / minute and the incoming water amount is 30 liters / minute, it is determined that it is necessary to drive three hot water supply devices, and the second hot water supply device 202, An operation command is also transmitted to the third hot water supply device 203. Thereby, the 2nd hot-water supply apparatus 202 and the 3rd hot-water supply apparatus 203 also start operation.
[0029]
A set temperature is transmitted from the main control device 300 to the control units 301 to 303 of each hot water supply device, and each control unit stores the set temperature in the RAM 334 and stores the detected incoming water temperature, incoming water amount, outgoing hot water temperature and the like. Based on the set temperature, the amount of fuel supplied to each burner 211 is calculated, and the opening of each fuel proportional valve 213 is adjusted to heat the clean water. The hot water of each hot water supply apparatus heated to the set temperature is discharged from the hot water supply pipe 210, makes a round through the circulation path of the hot water supply pipe 226, the reflux pipe 215, the circulation pump 217, and the recovery pipe 220, and again each hot water supply apparatus. To reflux.
[0030]
Now, when the circulating water is heated to the set temperature, each of the hot water supply apparatuses 201 to 203 stops combustion and enters a standby state. However, since the circulation amount by the circulation pump 217 is kept substantially constant, the main control is performed. The device 300 continues to issue commands to open the water flow valve 209 to the control units 301 to 303 of each hot water supply device. For this reason, the water that has been heated to the set temperature circulates through each heat exchanger 207, but by passing through this heat exchanger, a large amount of heat from the water is released to the outside. As a result, the temperature of clean water drops within a short time.
[0031]
As a result, each burner 211 is repeatedly ignited and stopped frequently, fuel consumption for heating increases, and hot water always passes through the heat exchanger, so that corrosion or the like is likely to occur in the heat exchanger. Become. Therefore, in the present invention, the bypass pipe 219 and the flow path adjustment valve 218 are provided in the circulation path so that the circulated upper water is bypassed to the reflux pipe 215 side according to the temperature of the circulated upper water.
[0032]
As shown in FIG. 5, the flow path adjusting valve 218 includes a thermo wax element 350 in which wax that expands and contracts by heat is sealed, a heat-sensitive portion 351 in which the thermo wax element 350 is built, and a pressing spring 355. Two valve bodies 353 and 354 for adjusting the partial flow rate are formed on the outer periphery of the heat sensitive part 351. For example, the thermo-wax element 350 that expands and contracts in the range of 55 ° C. to 75 ° C. is used. Then, the adjustment screw 356 is adjusted so that the thermal part 351 moves upward, and when the temperature is lower than 65 ° C., the thermal part 351 moves downward.
[0033]
When the heat sensitive part 351 is warmed by the clean water passing through the valve, the thermowax element 350 expands, and the protruding pin 352 at the tip pushes the adjusting screw 356, and the heat sensitive part 351 is moved upward against the pressing spring 355. Push up. On the other hand, when the temperature of the clean water decreases, the thermo wax element 350 contracts and the protruding pin 352 retracts, and the heat-sensitive portion 351 is pushed downward by the pressing spring 355.
[0034]
Accordingly, if the temperature of the clean water rises, the valve body 354 side opens and the flow rate in the A direction increases, and if the temperature of the clean water decreases, the valve body 353 side opens and the flow rate in the B direction increases. Furthermore, when the temperature of the clean water is high enough to stop the combustion of all the hot water supply apparatuses 201 to 203, most of the circulated clean water is bypassed by the flow path adjustment valve 218, and the flow rate on the recovery pipe 220 side. Decrease. For this reason, at the time of high temperature, the heat of the clean water is not released from the heat exchanger 207 to the outside, and the temperature of the heated clean water is not suddenly decreased.
[0035]
The above point will be described in more detail. When the temperature of the hot water rises due to heating by the hot water supply devices 201 to 203, the amount of the hot water returned to the hot water supply devices 201 to 203 is reduced by the action of the flow path adjustment valve 218. The main control unit 300 calculates the total flow rate of the incoming water sensor 206 of the water heater, when the total incoming water amount is reduced to less than 10 liters / minute, the second and third water heater 202, 203 of the water flow valve 209 Is closed, the second and third hot water supply devices 202 and 203 are stopped, and only the first hot water supply device 201 is heated.
[0036]
In the first hot water supply apparatus 201, in order to constantly detect the temperature and amount of the circulated fresh water with the incoming water temperature sensor 205 and the incoming water amount sensor 206, the temperature of the upper water reaches the set temperature and the combustion is stopped. However, the water valve 209 is left open without closing.
[0037]
When the temperature of the circulated water decreases over time, the flow path adjustment valve 218 increases the amount of reflux in the B direction. When the amount of water detected by the incoming water amount sensor 206 of the first hot water supply apparatus 201 becomes 10 liters / minute or more, the second hot water supply apparatus 202 is operated. Further, when the amount of hot water discharged increases due to the external hot water discharge and the total water amount detected by the first and second hot water supply devices 201 and 202 increases to 20 liters / minute or more, the third hot water supply device 203 is also operated. In this way, clean water can be efficiently heated while minimizing fuel consumption.
[0038]
【The invention's effect】
As described above, when the invention according to claim 1 is used, a plurality of hot water supply devices and temperature-controlled heating water discharged from each of the hot water supply devices are merged, and the faucet branches are connected. a heating water supply circulation path again returned to the respective water heater is circulated in the circulation pump, a heating water supply coming to reflux for one round branch portion of the faucet of the circulation route to the outflow side of the water heater A bypass pipe for bypassing, a flow path adjustment valve for variably controlling the branch flow rate of heated water to the bypass pipe, and a water supply supply connected between the water inlet of each hot water supply device and the flow path adjustment valve And the number of the hot water supply devices to be operated according to the flow rate of the heated hot water discharged to the circulation path, and when the temperature of the heated fresh water recirculating through the circulation path is high, Increasing the branch flow rate to the bypass pipe, making a round of the circulation path Since the branch flow rate to the bypass pipe is reduced when the temperature of the heated clean water that is refluxed is low, the number of hot water supply devices can be changed according to the flow rate of the heated hot water. The hot water heater is not burned wastefully. For this reason, the amount of fuel used can be reduced.
[0039]
In addition, when the temperature of the heated water that circulates through the circulation path is so high that it is not necessary to reheat, most of the heated water that circulates through the circulation path is bypassed through the bypass pipe. The heated hot water is hardly recirculated to the hot water supply device, and the heat of the heated hot water that recirculates as in the conventional case is not radiated from the heat exchanger of the hot water supply device to the outside. For this reason, a decrease in the hot water temperature of the heated heated water that circulates can be prevented, the thermal efficiency can be improved, the amount of fuel used can be reduced, the life of the apparatus can be extended, and the hot water can be stably supplied over a long period of time. be able to.
[0040]
Further, according to the invention of claim 2, since the flow path adjustment valve comprises a heat-sensitive valve using a thermo wax element, the valve opening degree of the flow path adjustment valve is variable according to the temperature of the heated water. No special control means or circuit for controlling is required. For this reason, an apparatus can be comprised more simply and cost reduction can be achieved.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a hot water supply system according to the present invention.
FIG. 2 is a block diagram of an electric circuit of a hot water supply system.
3 is a detailed block diagram of main controller 300 and external remote controller 304. FIG.
FIG. 4 is a detailed block diagram of a control unit 301 (301, 302) of a hot water supply apparatus 201 (202, 203).
5 is a cross-sectional view showing the structure of a flow path adjustment valve 218. FIG.
[Explanation of symbols]
200 hot water system 201-203 the water heater 204 input water pipe 205 inlet water temperature sensor 206 input water sensor 207 heat exchanger 208 hot water temperature sensor 209 Tsusuiben 210 hot water pipe 211 burner 215 return pipe 217 circulation pump 218 flow path control valve 219 bypasses Pipe 220 Recovery pipe 221 Water supply pump 223 Water supply pipe 224 Water supply pipe 226 Hot water supply pipe 227 Faucet 300 Main controller 301, 302, 303 Hot water supply controller 304 External remote controller 350 Thermo wax element

Claims (2)

複数台の給湯装置を備える給湯システムであって、
前記給湯装置から出湯される温度調整された加熱上水を合流させて循環ポンプにより循環させ、出湯中の前記給湯装置に還流させるとともに、蛇口の分岐箇所に前記加熱上水を供給する加熱上水循環経路と、
前記加熱上水循環経路に前記分岐箇所及び前記循環ポンプを跨がって形成され、還流する前記加熱上水を前記給湯装置の出湯口側に戻すバイパス管と、
前記加熱上水の温度に応じて前記バイパス管に流す前記加熱上水の流量を調節し、前記加熱上水の温度が高い場合に前記バイパス管に流す流量を増大させ、前記加熱上水の温度が低い場合に前記バイパス管に流す流量を減少させる流量調節弁と、
前記流量調整弁と前記給湯装置の入水口との間の前記加熱上水循環経路に接続され、前記加熱上水循環経路に上水を供給する上水供給管と、
前記給湯装置毎に設置され、運転する前記給湯装置に前記加熱上水を通水させる通水弁と、
前記蛇口の分岐箇所からの出湯又は前記バイパス管に流れる流量の増大により前記加熱上水循環経路に前記上水供給管からの上水供給が増大し、前記給湯装置の出湯温度が設定温度より低下した場合に、前記通水弁を開いて前記給湯装置の運転台数を増加させ、前記給湯装置に循環する前記加熱上水の温度が高い場合には前記通水弁を閉じて前記給湯装置の運転台数を減少させる制御部と、
を備えることを特徴とする給湯システム。
A hot water supply system including a plurality of hot water supply devices ,
Heated hot water circulation in which the temperature-adjusted heated hot water discharged from the hot water supply device is joined and circulated by a circulation pump, and returned to the hot water supply device in the hot water, and the heated hot water is supplied to the branching point of the faucet Route,
A bypass pipe that is formed across the branch location and the circulation pump in the heating water circulation path and returns the heated water to be returned to the outlet of the hot water supply device;
Adjusting the flow rate of the heated clean water flowing to the bypass pipe according to the temperature of the heated clean water, and increasing the flow rate flowing to the bypass pipe when the heated clean water temperature is high, the temperature of the heated clean water A flow control valve for reducing the flow rate of the bypass pipe when the flow rate is low ;
A water supply pipe connected to the heating water circulation path between the flow rate adjusting valve and the water inlet of the hot water supply device, and supplying water to the heating water circulation path ;
A water flow valve that is installed for each hot water supply device and allows the heated hot water to flow through the hot water supply device to be operated;
The hot water supply from the hot water supply pipe to the heated hot water circulation path is increased by the increase in the flow rate of the hot water from the branch point of the faucet or the bypass pipe, and the hot water temperature of the hot water supply apparatus is lower than the set temperature. If the temperature of the heated hot water circulating to the hot water supply device is high, the water supply valve is closed and the hot water supply device operating number is increased. A control unit for reducing
Hot water supply system, characterized in that it comprises a.
請求項1記載の給湯システムにおいて、
前記流量調節弁は、前記加熱上水の温度を検知して伸縮するサーモワックスエレメントと、このサーモワックスエレメントの伸縮により開度が調整される弁体とを備えることを特徴とする給湯システム。
The hot water supply system according to claim 1,
The flow control valve, hot water supply system that, comprising a thermo-wax element that expands and contracts by detecting the temperature of the heating water supply, a valve body opening is adjusted by the expansion and contraction of the thermo-wax element .
JP28415095A 1995-10-31 1995-10-31 Hot water system Expired - Fee Related JP3836526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28415095A JP3836526B2 (en) 1995-10-31 1995-10-31 Hot water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28415095A JP3836526B2 (en) 1995-10-31 1995-10-31 Hot water system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005301972A Division JP3962753B2 (en) 2005-10-17 2005-10-17 Hot water system

Publications (2)

Publication Number Publication Date
JPH09126483A JPH09126483A (en) 1997-05-16
JP3836526B2 true JP3836526B2 (en) 2006-10-25

Family

ID=17674831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28415095A Expired - Fee Related JP3836526B2 (en) 1995-10-31 1995-10-31 Hot water system

Country Status (1)

Country Link
JP (1) JP3836526B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574592B2 (en) * 2006-05-24 2010-11-04 リンナイ株式会社 Linked hot water system
JP5167907B2 (en) * 2008-03-31 2013-03-21 株式会社ノーリツ Hot water system
JP6881202B2 (en) * 2017-09-29 2021-06-02 三浦工業株式会社 Unit control device

Also Published As

Publication number Publication date
JPH09126483A (en) 1997-05-16

Similar Documents

Publication Publication Date Title
JP3997353B2 (en) Water heater
EP2159495A1 (en) A controller for a temperature control system
US10824178B2 (en) Heating and hot water supply apparatus and control method thereof
US12025322B2 (en) Integrated recirculation pump for non-condensing water heater
JP5944614B2 (en) Heat source equipment
JP3836526B2 (en) Hot water system
KR100543254B1 (en) Hydraulic assembly for hot water and sanitary water
JP3962753B2 (en) Hot water system
JP5516138B2 (en) Hot water system
US20220205682A1 (en) Smart circulation control instantaneous-heating storage heat exchanger
JP5505129B2 (en) Hot water system
JP6771343B2 (en) Heat supply system
JP5667856B2 (en) Water heater
JP4215661B2 (en) Heat pump water heater / heater
JP2000329401A5 (en)
JP4148909B2 (en) Heat pump water heater / heater
US20060153550A1 (en) Semi-instantaneous water heater system
JP4400407B2 (en) Water heater
JPH0132913B2 (en)
JP4715438B2 (en) Water heater
JP2529520B2 (en) Hot water supply system
JPH11281150A (en) Hot water heater with reheating of bathtub water
JPH02225944A (en) Instantaneous hot-water heater
JP3822721B2 (en) One can two water bath hot water heater
JP2861521B2 (en) Operation control method of bath kettle with water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees