JP5944614B2 - Heat source equipment - Google Patents

Heat source equipment Download PDF

Info

Publication number
JP5944614B2
JP5944614B2 JP2009138430A JP2009138430A JP5944614B2 JP 5944614 B2 JP5944614 B2 JP 5944614B2 JP 2009138430 A JP2009138430 A JP 2009138430A JP 2009138430 A JP2009138430 A JP 2009138430A JP 5944614 B2 JP5944614 B2 JP 5944614B2
Authority
JP
Japan
Prior art keywords
heat
hot water
temperature
heat medium
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009138430A
Other languages
Japanese (ja)
Other versions
JP2010286137A (en
Inventor
貴幸 小池
貴幸 小池
浩正 渡邉
浩正 渡邉
公彦 池田
公彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purpose Co Ltd
Original Assignee
Purpose Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purpose Co Ltd filed Critical Purpose Co Ltd
Priority to JP2009138430A priority Critical patent/JP5944614B2/en
Publication of JP2010286137A publication Critical patent/JP2010286137A/en
Application granted granted Critical
Publication of JP5944614B2 publication Critical patent/JP5944614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、温水等の熱媒を溜めるタンク側で熱交換する熱源装置に関し、例えば、太陽熱源を利用する熱源装置に関する。
The present invention relates to a heat source apparatus for heat exchange tank for storing the heat medium of the warm water, for example, relates to a heat source equipment utilizing solar heat source.

室内暖房等の各種暖房に用いられる熱源装置には燃料ガスや灯油等の燃焼熱に加え、熱源に太陽熱が利用される。熱源装置に太陽熱を用いることは自然エネルギを利用するので、熱エネルギの効率的な利用が図られ、炭酸ガスを排出することがない等、有益である。   In addition to combustion heat such as fuel gas and kerosene, solar heat is used as a heat source in heat source devices used for various types of heating such as indoor heating. Use of solar heat for the heat source device uses natural energy, so that the heat energy can be used efficiently and carbon dioxide gas is not discharged.

この熱源装置に関し、太陽熱給湯暖房装置として上水が供給される貯湯槽に第1及び第2の熱交換器が設置され、第1の熱交換器に太陽熱集熱器で集熱した熱媒を循環させて熱交換し、第2の熱交換器にボイラで加熱した温水の熱を熱交換することが知られている(特許文献1)。この太陽熱給湯暖房装置では、貯湯槽内の上水の加熱に太陽熱が利用され、加熱した上水が温水として供給される。また、ボイラで加熱した温水は暖房や浴槽追焚きに利用される。   With regard to this heat source device, first and second heat exchangers are installed in a hot water storage tank to which clean water is supplied as a solar hot water heater / heater, and a heat medium collected by the solar heat collector is installed in the first heat exchanger. It is known to circulate and exchange heat, and to exchange heat of hot water heated by a boiler in a second heat exchanger (Patent Document 1). In this solar water heater / heater, solar heat is used to heat the hot water in the hot water tank, and the heated hot water is supplied as hot water. Moreover, the hot water heated by the boiler is used for heating and bathing.

また、燃焼排気を熱源に用いる熱源装置では、熱媒の熱を第1の熱交換手段により給水又は浴槽水に熱交換し、燃焼排気の潜熱を第2の熱交換手段により給水又は浴槽水に熱交換する熱源装置や、熱交換装置が知られている(特許文献2)。
In the heat source device using combustion exhaust as a heat source, the heat of the heat medium is exchanged with water or bathtub water by the first heat exchange means, and the latent heat of the combustion exhaust is supplied to water supply or bathtub water with the second heat exchange means. A heat source device for heat exchange and a heat exchange device are known (Patent Document 2).

特開昭59−134432号公報JP 59-134432 A 特開2007−315700号公報JP 2007-315700 A

居住空間における暖房に関し、空調用暖房には高温(例えば、80〔℃〕)側熱源と、床用暖房には低温(例えば、60〔℃〕、40〔℃〕)側熱源の2系統が用いられる。太陽熱を利用するソーラーシステムでは、太陽熱の集熱で温められた温水を暖房に利用する場合、貯湯温水の温度が要求温度より低ければ、バーナの燃焼熱で要求温度まで加熱すればよい。また、貯湯温水の温度が要求温度より高ければ、その温水を暖房回路に循環させることができない。この場合、低い温度の水等の熱媒で温水温度を要求温度に低下させることが必要となり、その温水温度を要求温度まで低下させる分だけ熱エネルギの利用効率が低下する。   Regarding heating in a living space, two systems of a high temperature (for example, 80 [° C]) side heat source are used for air conditioning heating and a low temperature (for example, 60 [° C], 40 [° C]) side heat source is used for floor heating. It is done. In a solar system using solar heat, when hot water heated by solar heat collection is used for heating, if the temperature of hot water stored in hot water is lower than the required temperature, it may be heated to the required temperature with the combustion heat of the burner. Moreover, if the temperature of the hot water storage hot water is higher than the required temperature, the hot water cannot be circulated through the heating circuit. In this case, it is necessary to lower the hot water temperature to the required temperature with a heat medium such as low-temperature water, and the utilization efficiency of the heat energy is lowered by the amount that the hot water temperature is lowered to the required temperature.

そこで、本発明の目的は、上記課題に鑑み、熱エネルギの利用効率を高めることにある。
Accordingly, an object of the present invention is to increase the utilization efficiency of thermal energy in view of the above problems.

本発明の熱源装置は、熱媒を貯留手段に貯留して蓄熱させ、放熱負荷や放熱手段を通過した熱媒を貯留手段側に流す循環流量と、分流路側に流す循環流量とに分配して両者を合流させ、貯留手段の貯留熱媒が持つ熱エネルギの利用を最小限にして放熱量を抑制することにより、熱エネルギを節減する。
Heat source equipment of the present invention, the heating medium was heat storage and stored in the storage means, and the circulation flow rate to flow passing through the heat radiation load and heat radiation unit heat medium to the storage unit side, and partitioned between circulation flow rate flowing through the shunt roadside Thus, the heat energy is saved by combining the two and suppressing the heat radiation by minimizing the use of the heat energy of the storage heat medium of the storage means.

本発明の熱源装置は、熱媒が溜められる貯留手段と、放熱負荷に前記熱媒を循環させる循環路と、前記循環路に設置され、熱交換により前記熱媒を加熱する熱交換手段と、前記貯留手段の入側と出側との間の前記循環路に形成され、前記放熱負荷を通過した前記熱媒を分流し、前記貯留手段をバイパスして前記貯留手段の前記出側で前記貯留手段から提供される前記熱媒に合流させる分流路と、前記放熱負荷を通過した前記熱媒を前記貯留手段に流す熱媒流量と、前記分流路に流す熱媒流量とに分配する流量分配手段と、前記貯留手段にある前記熱媒の温度を検出する第1の温度センサと、前記放熱負荷を通過して前記循環路に戻る前記熱媒の温度を検出する第2の温度センサとを備え、前記第1の温度センサの検出温度が前記第2の温度センサの検出温度より高く且つ前記放熱負荷の要求温度より低い場合に、前記流量分配手段による前記熱媒の分配比率を変更して前記貯留手段にのみ前記放熱負荷を通過した前記熱媒を流し、前記貯留手段から提供された前記熱媒を前記熱交換手段で加熱することにより、前記放熱負荷に流れる前記熱媒の温度を前記放熱負荷の前記要求温度に調節し、前記第1の温度センサの検出温度が前記第2の温度センサの検出温度より高く且つ前記熱媒負荷の要求温度より高い場合に、前記流量分配手段による前記熱媒の分配比率を調整して前記貯留手段と前記分流路の双方に前記放熱負荷を通過した前記熱媒を流して、前記貯留手段から提供される前記熱媒と前記分流路を流れる前記熱媒とを混合することにより、前記放熱負荷に流れる前記熱媒の温度を前記放熱負荷の要求温度に調節し、前記第2の温度センサの検出温度が前記第1の温度センサの検出温度以上である場合、前記流量分配手段の分配比率を変更して、前記放熱負荷を通過した前記熱媒を前記分流路にのみ流す構成である。

The heat source device of the present invention includes a storage unit that stores a heat medium, a circulation path that circulates the heat medium to a heat radiation load, a heat exchange unit that is installed in the circulation path and heats the heat medium by heat exchange, The heat medium that is formed in the circulation path between the entry side and the exit side of the storage means, diverts the heat medium that has passed through the heat radiation load, bypasses the storage means, and stores the storage medium on the exit side of the storage means. A flow distribution unit that distributes the flow path to the storage medium and the flow rate of the heat medium that flows to the storage unit and the flow rate of the heat medium that flows to the storage path And a first temperature sensor that detects the temperature of the heat medium in the storage means, and a second temperature sensor that detects the temperature of the heat medium that passes through the heat radiation load and returns to the circulation path. The detected temperature of the first temperature sensor is the second temperature sensor. It is lower than the required temperature of and higher than the detection temperature of said heat radiation load, flowing the heat medium having passed through the heat radiation load only in the storing means by changing the distribution ratio of the heating medium by the flow distribution means, By heating the heat medium provided from the storage means by the heat exchange means, the temperature of the heat medium flowing through the heat radiation load is adjusted to the required temperature of the heat radiation load, and the first temperature sensor When the detected temperature is higher than the detected temperature of the second temperature sensor and higher than the required temperature of the heat medium load, the distribution ratio of the heat medium by the flow rate distribution means is adjusted to adjust the storage means and the branch flow path. Flowing the heat medium that has passed through the heat radiation load on both sides, and mixing the heat medium provided from the storage means and the heat medium flowing through the branch flow path, the heat medium flowing through the heat radiation load Warm It is adjusted to the required temperature of the heat dissipation load, when the detected temperature of the second temperature sensor is detected temperature above the first temperature sensor, to change the distribution ratio of the flow distribution means, the heat radiation load The heat medium that has passed through is flowed only through the branch channel.

(1) 貯留手段に熱媒によって蓄熱された熱エネルギの利用が最小限に抑えられ、最適化できるので、熱エネルギの利用効率を高めることができる。   (1) Since the use of the heat energy stored in the storage means by the heat medium is minimized and can be optimized, the use efficiency of the heat energy can be increased.

(2) 貯留手段側の熱媒の温度と放熱負荷又は放熱手段で放熱された熱媒の温度とにより、熱エネルギの利用量を加減でき、設備コストの低減に寄与することができる。
(2) The amount of heat energy used can be adjusted by the temperature of the heat medium on the storage means side and the temperature of the heat medium radiated by the heat radiating load or the heat radiating means, which can contribute to a reduction in equipment costs.

そして、本発明の他の目的、特徴及び利点は、添付図面及び各実施の形態を参照することにより、一層明確になるであろう。
Other objects, features, and advantages of the present invention will become clearer with reference to the accompanying drawings and each embodiment.

第1の実施の形態に係る暖房・給湯・追焚装置の一例を示す図である。It is a figure which shows an example of the heating / hot water supply / remembrance device which concerns on 1st Embodiment. 制御装置及びリモコン装置の一例を示す図である。It is a figure which shows an example of a control apparatus and a remote control device. 貯湯タンク切替弁の一例を示す断面図である。It is sectional drawing which shows an example of a hot water storage tank switching valve. 貯湯タンク切替弁の切替え機能を示す図である。It is a figure which shows the switching function of a hot water storage tank switching valve. 貯湯タンク切替弁の制御位置及び制御内容を示す図である。It is a figure which shows the control position and control content of a hot water tank switching valve. 貯湯タンク切替弁による流量切替えを示す図である。It is a figure which shows the flow volume switching by a hot water storage tank switching valve. 貯湯タンクを利用した低温暖房動作を説明するための図である。It is a figure for demonstrating the low-temperature heating operation | movement using a hot water storage tank. 貯湯タンクを利用した低温暖房動作を示すフローチャートである。It is a flowchart which shows the low-temperature heating operation | movement using a hot water storage tank. 貯湯タンクを利用した低温暖房動作を説明するための図である。It is a figure for demonstrating the low-temperature heating operation | movement using a hot water storage tank. 貯湯タンクを利用した高温暖房動作を説明するための図である。It is a figure for demonstrating the high temperature heating operation | movement using a hot water storage tank. 貯湯タンクを利用した給湯動作を説明するための図である。It is a figure for demonstrating the hot water supply operation | movement using a hot water storage tank. 貯湯タンクを利用した注湯動作を説明するための図である。It is a figure for demonstrating the pouring operation | movement using a hot water storage tank. 貯湯タンクを利用した追焚動作を説明するための図である。It is a figure for demonstrating the memorial operation using a hot water storage tank. 集熱動作を説明するための図である。It is a figure for demonstrating heat collection operation | movement. 集熱動作を示すフローチャートである。It is a flowchart which shows heat collection operation | movement. 第2の実施の形態に係る暖房・給湯・追焚装置を示す図である。It is a figure which shows the heating / hot water supply / remembrance device which concerns on 2nd Embodiment.

〔第1の実施の形態〕 [First Embodiment]

第1の実施の形態について、図1を参照する。図1は、暖房・給湯・追焚装置を示す図である。図1に示す構成は一例であって、斯かる構成に本発明が限定されるものではない。   The first embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a heating / hot water supply / remembrance device. The configuration shown in FIG. 1 is an example, and the present invention is not limited to such a configuration.

この暖房・給湯・追焚装置2は熱源装置又は暖房装置の一例である。この暖房・給湯・追焚装置2には、第1の熱媒体として温水HM1を溜める貯湯タンク4と、温水HM1を循環させる循環路6とが備えられている。貯湯タンク4は、温水HM1を溜める貯留手段の一例であるとともに、温水HM1を以て蓄熱する蓄熱手段の一例でもある。   The heating / hot water supply / remembrance device 2 is an example of a heat source device or a heating device. The heating / hot water supply / remembrance device 2 includes a hot water storage tank 4 that stores hot water HM1 as a first heat medium, and a circulation path 6 that circulates the hot water HM1. The hot water storage tank 4 is an example of a storage unit that stores the hot water HM1, and also an example of a heat storage unit that stores heat using the hot water HM1.

貯湯タンク4には、温水HM1の加熱手段として太陽熱集熱回路8が設置されている。この太陽熱集熱回路8は、熱源に太陽熱を利用して集熱し、第2の熱媒体として温水HM2を循環させ、その熱を温水HM1に熱交換する手段の一例である。この太陽熱集熱回路8には、集熱パネル10、熱交換部としての太陽熱用熱交換器12、集熱ポンプ14、ソーラー切替弁16、バイパス路18が備えられている。集熱パネル10は、太陽熱を集熱し、その熱を温水HM2に熱交換する熱交換手段の一例である。集熱パネル10に代え、燃焼熱や排熱を利用した熱源を用いてもよい。太陽熱用熱交換器12は、温水HM2の熱を温水HM1に熱交換する手段の一例である。集熱ポンプ14は、温水HM2に太陽熱を熱交換する際や、温水HM2を温水HM1に熱交換する際に用いられる温水圧送手段の一例である。バイパス路18はソーラー切替弁16を介して太陽熱集熱回路8を分岐させ、太陽熱用熱交換器12の側路であって、温水HM2の温度が低い場合に温水HM2を循環させる。集熱パネル10の入側には温度センサ20、集熱パネル10の出側には温度センサ22が設置され、温度センサ20の検出温度T1が太陽熱用熱交換器12による温水HM2の熱交換前の温度、温度センサ22の検出温度T2が熱交換後の温水HM2の温度であり、これらの検出温度がソーラー切替弁16の切替えによるバイパス路18の開閉や集熱ポンプ14の制御に用いられる。   The hot water storage tank 4 is provided with a solar heat collecting circuit 8 as a heating means for the hot water HM1. This solar heat collecting circuit 8 is an example of means for collecting heat using solar heat as a heat source, circulating hot water HM2 as a second heat medium, and exchanging the heat to the hot water HM1. The solar heat collecting circuit 8 includes a heat collecting panel 10, a solar heat exchanger 12 as a heat exchange unit, a heat collecting pump 14, a solar switching valve 16, and a bypass 18. The heat collection panel 10 is an example of a heat exchange unit that collects solar heat and exchanges the heat with the hot water HM2. Instead of the heat collection panel 10, a heat source using combustion heat or exhaust heat may be used. The solar heat exchanger 12 is an example of means for exchanging heat of the hot water HM2 to the hot water HM1. The heat collecting pump 14 is an example of a hot water pumping means used when exchanging solar heat with the hot water HM2 or when exchanging heat with the hot water HM1. The bypass path 18 branches the solar heat collecting circuit 8 via the solar switching valve 16 and is a side path of the solar heat exchanger 12 and circulates the hot water HM2 when the temperature of the hot water HM2 is low. A temperature sensor 20 is installed on the entry side of the heat collection panel 10, and a temperature sensor 22 is installed on the exit side of the heat collection panel 10, and the temperature T 1 detected by the temperature sensor 20 is before heat exchange of the hot water HM 2 by the solar heat exchanger 12. The detected temperature T2 of the temperature sensor 22 is the temperature of the hot water HM2 after heat exchange, and these detected temperatures are used to open and close the bypass 18 and control the heat collecting pump 14 by switching the solar switching valve 16.

循環路6には、分流路24と、循環ポンプ26と、温水HM1を加熱するための一次熱交換器28と、二次熱交換器30とが備えられ、温水HM1の熱を利用する手段として低温暖房回路32、高温暖房回路34、給湯回路36、追焚回路38が備えられている。   The circulation path 6 is provided with a branch path 24, a circulation pump 26, a primary heat exchanger 28 for heating the hot water HM1, and a secondary heat exchanger 30 as means for using the heat of the hot water HM1. A low temperature heating circuit 32, a high temperature heating circuit 34, a hot water supply circuit 36, and a memorial circuit 38 are provided.

分流路24は、貯湯タンク4の入側と出側との間の循環路6に連結された管路であって、温水HM1を分流して貯留タンク4の出側の温水HM1に合流させる手段の一例である。循環路6と分流路24との分岐点には貯湯タンク切替弁40が設置され、この貯湯タンク切替弁40は、貯湯タンク4側に流れる温水流量と、分流路24に流れる温水流量とに分配する流量分配手段の一例である。貯湯タンク切替弁40の入側の循環路6には温度センサ42、貯湯タンク4の出側付近には温度センサ44が設置され、これらの検出温度T3、T4が貯湯タンク4側に流れる温水流量と、分流路24に流れる温水流量との分配比率の設定や制御に用いられる。温度センサ44は熱媒である温水HM1の温度を検出する第1の温度センサ、温度センサ42は負荷側から循環路6に戻る温水HM1の温度を検出する第2の温度センサである。   The diversion channel 24 is a pipe connected to the circulation path 6 between the entry side and the exit side of the hot water storage tank 4, and is a means for diverting the hot water HM1 and joining it with the hot water HM1 on the exit side of the storage tank 4. It is an example. A hot water storage tank switching valve 40 is installed at a branch point between the circulation path 6 and the branch flow path 24, and the hot water storage tank switching valve 40 distributes the hot water flow flowing to the hot water storage tank 4 side and the hot water flow flowing to the branch flow path 24. It is an example of the flow volume distribution means to do. A temperature sensor 42 is installed in the circulation path 6 on the inlet side of the hot water tank switching valve 40, and a temperature sensor 44 is installed in the vicinity of the outlet side of the hot water tank 4, and the hot water flow rate at which these detected temperatures T 3 and T 4 flow to the hot water tank 4 side. And the setting and control of the distribution ratio between the flow rate of the hot water flowing in the diversion channel 24. The temperature sensor 44 is a first temperature sensor that detects the temperature of the hot water HM1 that is a heat medium, and the temperature sensor 42 is a second temperature sensor that detects the temperature of the hot water HM1 that returns to the circulation path 6 from the load side.

循環ポンプ26は、温水HM1の圧送手段の一例であって、温水HM1の熱利用や一次及び二次熱交換器28、30による加熱の際等に駆動され、循環路6に温水HM1を循環させる。   The circulation pump 26 is an example of a pumping means for the hot water HM1 and is driven when the hot water HM1 is used for heat or heated by the primary and secondary heat exchangers 28 and 30 to circulate the hot water HM1 in the circulation path 6. .

一次熱交換器28は、燃料ガスの燃焼手段の一例として設置されたバーナ46の燃焼排気から主として顕熱を温水HM1に熱交換する第1の熱交換手段である。二次熱交換器30は、バーナ46の燃焼排気から主として潜熱を温水HM1に熱交換する第2の熱交換手段であって、温水HM1の予備加熱に用いられる。一次熱交換器28の出側の循環路6には温度センサ48、二次熱交換器30の出側の循環路6には温度センサ50が設置され、これらの検出温度T5、T6がバーナ46の燃焼制御に用いられる。   The primary heat exchanger 28 is a first heat exchanging means that mainly exchanges sensible heat from the combustion exhaust of the burner 46 installed as an example of the fuel gas combustion means to the hot water HM1. The secondary heat exchanger 30 is a second heat exchange means for exchanging mainly latent heat from the combustion exhaust of the burner 46 to the hot water HM1, and is used for preheating the hot water HM1. A temperature sensor 48 is installed in the circulation path 6 on the outlet side of the primary heat exchanger 28, and a temperature sensor 50 is installed in the circulation path 6 on the outlet side of the secondary heat exchanger 30, and these detected temperatures T5 and T6 are detected by the burner 46. Used for combustion control.

低温暖房回路32は、循環路6の二次熱交換器30の出側と貯湯タンク切替弁40の入側とから分岐され、低温暖房器52に低温側の温水HM1を循環させる管路である。低温暖房器52は、温水HM1の第1の放熱負荷又は放熱手段の一例であって、例えば、床暖房器である。   The low temperature heating circuit 32 is a pipe that branches from the outlet side of the secondary heat exchanger 30 and the inlet side of the hot water tank switching valve 40 in the circulation path 6 and circulates the low temperature side hot water HM1 to the low temperature heater 52. . The low-temperature heater 52 is an example of a first heat radiation load or heat radiation means of the hot water HM1, and is, for example, a floor heater.

高温暖房回路34は、循環路6の一次熱交換器28の出側と貯湯タンク切替弁40の入側とから分岐され、高温暖房器54に高温側の温水HM1を循環させる管路である。高温暖房器54は、温水HM1の第2の放熱負荷又は放熱手段の一例であって、例えば、温風暖房器である。   The high temperature heating circuit 34 is a pipe that branches from the outlet side of the primary heat exchanger 28 of the circulation path 6 and the inlet side of the hot water storage tank switching valve 40 and circulates the high temperature side hot water HM1 in the high temperature heater 54. The high temperature heater 54 is an example of a second heat radiation load or heat radiation means of the hot water HM1, and is, for example, a hot air heater.

給湯回路36は給水Wを温水HM1で加熱して温水HWとして出湯する管路であって、この実施の形態では、給湯用熱交換器56と、二次熱交換器58と、バイパス路60とを備える。給湯用熱交換器56は、温水HM1の熱を給水Wに熱交換する熱交換手段である。この給湯用熱交換器56は、給湯用熱交換手段の一例であって、循環路6に高温分配弁62を介して分岐された循環路6Aに設置され、循環路6Aを通して温水HM1が循環する。二次熱交換器58は、既述のバーナ46の燃焼排気から主として潜熱を給水Wに熱交換する手段であって、給水Wが常温の上水であれば、効率よく潜熱を給水Wに熱交換することができる。この予備加熱された給水Wには、給湯用熱交換器56により温水HM1の熱が熱交換され、高温の温水HWが得られる。バイパス路60は、この温水HWに上水Wをミキシングする手段であって、図示しないミキシング弁を用いて高温の温水HWを適温化することができる。給湯回路36の上水Wの入側には温度センサ64、温水HWの出湯側には温度センサ66が設置され、これらの検出温度T7、T8等が出湯温度の制御としてバーナ46の燃焼制御やバイパス路60側への給水Wとのミキシング比率の制御に用いられる。   The hot water supply circuit 36 is a conduit that heats the water supply W with the hot water HM1 and discharges the hot water as the hot water HW. In this embodiment, the hot water supply heat exchanger 56, the secondary heat exchanger 58, the bypass passage 60, Is provided. The hot water supply heat exchanger 56 is heat exchanging means for exchanging heat of the hot water HM1 to the water supply W. The hot water supply heat exchanger 56 is an example of hot water supply heat exchanging means, and is installed in a circulation path 6A branched from the circulation path 6 via a high-temperature distribution valve 62, and the hot water HM1 circulates through the circulation path 6A. . The secondary heat exchanger 58 is means for exchanging mainly latent heat from the combustion exhaust of the burner 46 described above to the feed water W, and efficiently heats the latent heat to the feed water W if the feed water W is clean water at room temperature. Can be exchanged. The preheated water supply W is heat-exchanged by the hot water supply heat exchanger 56 with the heat of the hot water HM1 to obtain high-temperature hot water HW. The bypass 60 is a means for mixing the hot water W with the hot water HW, and can warm the hot water HW at an appropriate temperature using a mixing valve (not shown). A temperature sensor 64 is installed on the inlet side of the hot water W of the hot water supply circuit 36, and a temperature sensor 66 is installed on the outlet side of the hot water HW. These detected temperatures T7, T8, etc. are used to control the combustion of the burner 46 as control of the outlet temperature. It is used to control the mixing ratio with the water supply W to the bypass 60 side.

追焚回路38は、温水HM1の熱を浴槽68にある浴槽水BWに熱交換し、浴槽水BWを入浴に適する温度に昇温する手段の一例である。この追焚回路38は追焚用熱交換器70と、追焚ポンプ72とを備える。追焚用熱交換器70は、温水HM1の熱を浴槽水BWに熱交換する熱交換手段の一例であって、循環路6に高温分配弁62を介して分岐された循環路6Bに設置され、循環路6Bを通して温水HM1が循環する。追焚ポンプ72は、追焚時、浴槽水BWを浴槽68から追焚用熱交換器70を通して浴槽68に循環させる手段である。追焚回路38の浴槽68の出側には温度センサ74が設置され、その検出温度T9が追焚制御に用いられる。   The memorial circuit 38 is an example of means for exchanging heat of the hot water HM1 to the bathtub water BW in the bathtub 68 and raising the temperature of the bathtub water BW to a temperature suitable for bathing. The remedy circuit 38 includes a remedy heat exchanger 70 and a remedy pump 72. The memorial heat exchanger 70 is an example of a heat exchanging means for exchanging heat of the hot water HM1 to the bath water BW, and is installed in the circulation path 6B branched to the circulation path 6 via the high-temperature distribution valve 62. The warm water HM1 circulates through the circulation path 6B. The remedy pump 72 is a means for circulating the bath water BW from the tub 68 through the remedy heat exchanger 70 to the tub 68 during the remedy. A temperature sensor 74 is installed on the exit side of the bathtub 68 of the tracking circuit 38, and the detected temperature T9 is used for tracking control.

この追焚回路38と給湯回路36との間には注湯回路76が接続され、この注湯回路76は、注湯電磁弁78を介して給湯回路36と追焚回路38とを連結している。注湯電磁弁78は、上水W側と浴槽水BWとを絶縁する手段の一例である。   A pouring circuit 76 is connected between the chasing circuit 38 and the hot water supply circuit 36, and the pouring circuit 76 connects the hot water supplying circuit 36 and the chasing circuit 38 via a pouring electromagnetic valve 78. Yes. The pouring solenoid valve 78 is an example of means for insulating the water W side and the bath water BW.

循環路6の設置エリアには温度センサ80が設置され、この温度センサ80によって外気温度T10が検出される。   A temperature sensor 80 is installed in the installation area of the circulation path 6, and the outside air temperature T <b> 10 is detected by the temperature sensor 80.

そして、これら検出温度T1〜T10は制御情報として制御装置82(図2)に取り込まれ、集熱ポンプ14、循環ポンプ26、追焚ポンプ72の駆動やバーナ46の燃焼が制御装置82(図2)の駆動出力によって制御される。   These detected temperatures T1 to T10 are taken into the control device 82 (FIG. 2) as control information, and the control device 82 (FIG. 2) controls the driving of the heat collecting pump 14, the circulation pump 26, the recuperation pump 72, and the combustion of the burner 46. ).

この制御装置82について、図2を参照する。図2は、制御装置を示す図である。図2に示す構成は一例であって、斯かる構成に本発明が限定されるものではない。図2において、図1と同一部分には同一符号を付してある。   The control device 82 will be described with reference to FIG. FIG. 2 is a diagram illustrating the control device. The configuration illustrated in FIG. 2 is an example, and the present invention is not limited to such a configuration. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals.

この制御装置82は、コンピュータによって構成されており、CPU(Central Processing Unit )84、ROM(Read-Only Memory)86、RAM(Random-Access Memory)88、タイマ90、カウンタ92等を備える。CPU84はROM86にある制御プログラムを実行し、検出温度等を制御情報に用いてその演算等の処理により、制御出力を発生する。RAM88はプログラムの実行エリアを構成する。タイマ90は計時手段の一例であって、時間制御のための時間情報を生成する。カウンタ92は、計数可能な検出情報を計数し、また、アナログ情報であってもディジタル化された情報を計数する。   The control device 82 is configured by a computer and includes a CPU (Central Processing Unit) 84, a ROM (Read-Only Memory) 86, a RAM (Random-Access Memory) 88, a timer 90, a counter 92, and the like. The CPU 84 executes a control program stored in the ROM 86, and generates a control output by processing such as calculation using the detected temperature as control information. The RAM 88 forms a program execution area. The timer 90 is an example of a time measuring unit, and generates time information for time control. The counter 92 counts detection information that can be counted, and counts digitized information even if it is analog information.

この制御装置82には、リモコン装置94が有線又は無線により接続されている。リモコン装置94は、ユーザの操作装置であって、制御部96と、操作部98と、表示部100とを備え、ユーザの生活エリアに設置される。   A remote control device 94 is connected to the control device 82 by wire or wirelessly. The remote control device 94 is a user operation device, and includes a control unit 96, an operation unit 98, and a display unit 100, and is installed in the user's living area.

制御部96は、操作部98からの操作入力を受け、その操作能力に基づく制御情報を制御装置82に通知する。操作部98はキーボードやタッチセンサ等で構成される。制御部96はコンピュータによって構成されており、CPU102、ROM104、RAM106等を備える。CPU102はROM104にある制御プログラムを実行し、制御出力を発生する。RAM106はプログラムの実行エリアを構成する。この制御部96は制御装置82と連係し、制御装置82に対する制御命令を出力し、制御装置82からの出力情報を受け、制御状態等を表す提示出力を表示部100に提供する。   The control unit 96 receives an operation input from the operation unit 98 and notifies the control device 82 of control information based on the operation capability. The operation unit 98 includes a keyboard, a touch sensor, and the like. The control unit 96 is configured by a computer and includes a CPU 102, a ROM 104, a RAM 106, and the like. The CPU 102 executes a control program in the ROM 104 and generates a control output. The RAM 106 constitutes a program execution area. The control unit 96 cooperates with the control device 82, outputs a control command to the control device 82, receives output information from the control device 82, and provides a display output indicating a control state or the like to the display unit 100.

表示部100は制御部96の表示制御に基づき、制御部96から提供される提示出力に基づく視認可能な表示を行う。   The display unit 100 performs a visible display based on the presentation output provided from the control unit 96 based on the display control of the control unit 96.

次に、貯湯タンク切替弁40について、図3、図4、図5及び図6を参照する。図3は、貯湯タンク切替弁の一例を示す断面図、図4は、切替弁の切替機能を示す図、図5は、制御位置と弁の開閉を示す図、図6は、制御位置と流量比率を示す図である。   Next, the hot water tank switching valve 40 will be described with reference to FIGS. 3, 4, 5, and 6. 3 is a sectional view showing an example of a hot water tank switching valve, FIG. 4 is a diagram showing a switching function of the switching valve, FIG. 5 is a diagram showing a control position and opening / closing of the valve, and FIG. 6 is a control position and flow rate. It is a figure which shows a ratio.

この貯湯タンク切替弁40は、既述の通り、循環路6と分流路24との分岐点に設置される流路切替手段である。この貯湯タンク切替弁40には、図3に示すように、弁本体108に入側ポート110、第1及び第2の出側ポート112、114が備えられている。入側ポート110には低温暖房器52側の循環路6が接続され、出側ポート112には貯湯タンク4側の循環路6が接続され、また、出側ポート114には分流路24が接続されている。この弁本体108の弁室116には弁118が回転可能に設置され、その弁軸120には駆動モータ122が取り付けられている。   As described above, the hot water tank switching valve 40 is a flow path switching unit installed at a branch point between the circulation path 6 and the branch flow path 24. As shown in FIG. 3, the hot water tank switching valve 40 is provided with an inlet port 110 and first and second outlet ports 112 and 114 in the valve body 108. The circulation path 6 on the low temperature heater 52 side is connected to the inlet side port 110, the circulation path 6 on the hot water storage tank 4 side is connected to the outlet side port 112, and the branch path 24 is connected to the outlet side port 114. Has been. A valve 118 is rotatably installed in the valve chamber 116 of the valve body 108, and a drive motor 122 is attached to the valve shaft 120.

この貯湯タンク切替弁40は、図4に示すように、弁118の制御位置A、B、C、Dの切替ポイントを備え、制御位置A、Dがリミット位置であり、角度θは、弁118の回転角度を示している。各制御位置A、B、C、Dに対し、図5に示すように、制御位置Aでは貯湯タンク4側に全開、制御位置Bでは貯湯タンク4側:分流路24側=1:1の開度、制御位置Cでは貯湯タンク4側:分流路24側=1:2の開度、制御位置Dでは貯湯タンク4側が全閉となる。   As shown in FIG. 4, the hot water tank switching valve 40 includes switching points of control positions A, B, C, and D of the valve 118, the control positions A and D are limit positions, and the angle θ is the valve 118. The rotation angle is shown. As shown in FIG. 5, with respect to each control position A, B, C, D, the control position A is fully opened to the hot water storage tank 4 side, and the control position B is open to the hot water storage tank 4 side: branching channel 24 side = 1: 1. At the control position C, the hot water tank 4 side: branch channel 24 side = 1: 2 opening degree, and at the control position D, the hot water tank 4 side is fully closed.

このような開度の切替えにより、図6に示すように、制御位置A、B、C、Dに対し、貯湯タンク4側と分流路24側との流量比率となり、Lは温水HM1の全流量、L1 は分流路24側に分流する温水HM1の流量、L−L1 は貯湯タンク4側に分流する温水HM1の流量である。 By such switching of the opening, as shown in FIG. 6, with respect to the control positions A, B, C, D, the flow rate ratio between the hot water storage tank 4 side and the branch flow path 24 side is obtained, and L is the total flow rate of the hot water HM1. , L 1 is the flow rate of the hot water HM1 that is diverted to the branch channel 24 side, and L-L 1 is the flow rate of the hot water HM1 that is diverted to the hot water storage tank 4 side.

次に、この暖房・給湯・追焚装置2について、貯湯タンク4の温水HM1を利用する低温暖房動作、高温暖房動作、給湯動作、浴槽注湯動作、浴槽水追焚動作を説明し、温水HM1を加熱のための集熱動作を説明する。   Next, with regard to the heating / hot water supply / remembrance device 2, a low temperature heating operation, a high temperature heating operation, a hot water supply operation, a bath pouring operation, and a bath water retreat operation using the hot water HM1 of the hot water storage tank 4 will be described. The heat collecting operation for heating the will be described.

(1) 低温暖房動作   (1) Low temperature heating operation

この低温暖房動作について、図7、図8及び図9を参照する。図7は、低温暖房における温水HM1の循環を説明するための図、図8は、低温暖房における貯湯タンク切替弁40の切替動作を示す図、図9は、低温暖房における温水HM1の他の循環を説明するための図である。   This low temperature heating operation will be described with reference to FIGS. FIG. 7 is a diagram for explaining circulation of hot water HM1 in low-temperature heating, FIG. 8 is a diagram showing switching operation of the hot water storage tank switching valve 40 in low-temperature heating, and FIG. 9 is another circulation of hot water HM1 in low-temperature heating. It is a figure for demonstrating.

この低温暖房動作では、図7に太線で示すように、低温暖房器52に循環させて低温化した温水HM1に貯湯タンク4にある高温の温水HM1を混合し、低温暖房器52に要求温度の温水HM1を循環させる。   In this low temperature heating operation, as indicated by a thick line in FIG. 7, the hot water HM1 in the hot water storage tank 4 is mixed with the hot water HM1 circulated through the low temperature heater 52 to lower the temperature, and the required temperature is supplied to the low temperature heater 52. Circulate hot water HM1.

この低温暖房動作の処理手順は、図8に示すように、検出温度T3と検出温度T4とを比較する(ステップS11)。検出温度T3は、温水HM1の低温暖房器52の出側温度であり、検出温度T4は、貯湯タンク4の温水HM1の温度である。温水HM1の検出温度T4が検出温度T3より高ければ(T4>T3)、温水HM1の加熱に貯湯タンク4の温水HM1を利用できる。   In the processing procedure of this low-temperature heating operation, as shown in FIG. 8, the detected temperature T3 is compared with the detected temperature T4 (step S11). The detected temperature T3 is the outlet temperature of the low temperature heater 52 of the hot water HM1, and the detected temperature T4 is the temperature of the hot water HM1 in the hot water storage tank 4. If the detected temperature T4 of the hot water HM1 is higher than the detected temperature T3 (T4> T3), the hot water HM1 in the hot water storage tank 4 can be used for heating the hot water HM1.

そこで、T4≦T3であれば(ステップS11のNO)、貯湯タンク4の温水HM1を利用する必要がないので、貯湯タンク切替弁40を貯湯タンク4側を全閉とする(ステップS12)。   Therefore, if T4 ≦ T3 (NO in step S11), there is no need to use the hot water HM1 in the hot water storage tank 4, so the hot water storage tank switching valve 40 is fully closed on the hot water storage tank 4 side (step S12).

T4>T3であれば(ステップS11のYES)、貯湯タンク4の温水HM1を利用することが可能なので、低温暖房単独運転であるか否かを判定する(ステップS13)。低温暖房単独運転でなければ(ステップS13のNO)、貯湯タンク切替弁40を貯湯タンク4側を全開とする(ステップS14)。この場合、分流路24を利用しない。   If T4> T3 (YES in step S11), it is possible to use the hot water HM1 in the hot water storage tank 4, so it is determined whether or not the operation is a low temperature heating single operation (step S13). If it is not the low temperature heating single operation (NO in step S13), the hot water tank switching valve 40 is fully opened on the hot water tank 4 side (step S14). In this case, the diversion channel 24 is not used.

低温暖房単独運転であれば(ステップS13のYES)、貯湯タンク4の温水HM1の検出温度T4が低温暖房要求温度Tf以上(T4≧Tf)であるか否かを判定する(ステップS15)。T4<Tfであれば(ステップS15のNO)、貯湯タンク4の温水HM1のみでは低温暖房運転に利用できないが、貯湯タンク切替弁40を貯湯タンク4側を全開とする(ステップS14)。 If it is the low temperature heating single operation (YES in step S13), it is determined whether or not the detected temperature T4 of the hot water HM1 in the hot water storage tank 4 is equal to or higher than the low temperature heating request temperature Tf (T4 ≧ Tf) (step S15). If T4 <Tf (NO in step S 15), but only the hot water HM1 of the hot water storage tank 4 can not be used in low temperature heating operation, the hot water storage tank switching valve 40 to fully open the hot water tank 4 side (step S14).

T4≧Tfであれば(ステップS15のYES)、バーナ46の燃焼は不要となり、貯湯タンク切替弁40の弁開度を調整し、低温暖房要求温度Tfになるよう貯湯タンク4から提供される温水HM1と、低温暖房器52からの戻り温水HM1とをミキシングする(ステップS16)。   If T4 ≧ Tf (YES in step S15), combustion of the burner 46 is not necessary, and the hot water provided from the hot water storage tank 4 is adjusted so that the temperature of the hot water storage tank switching valve 40 is adjusted to the required low temperature heating temperature Tf. HM1 and the return hot water HM1 from the low-temperature heater 52 are mixed (step S16).

貯湯タンク4から提供される温水HM1と、低温暖房器52からの戻り温水HM1との混合比率は、
a)貯湯タンク4側の流量:分流路24側の流量=1:0
b)貯湯タンク4側の流量:分流路24側の流量=1:1
c)貯湯タンク4側の流量:分流路24側の流量=1:2
d)貯湯タンク4側の流量:分流路24側の流量=0:1
の4パターンである。なお、これは一例であり、パターンを増やしたり、割合を変えてもよい。
The mixing ratio of the hot water HM1 provided from the hot water storage tank 4 and the return hot water HM1 from the low-temperature heater 52 is:
a) Flow rate on the hot water storage tank 4 side: Flow rate on the branch channel 24 side = 1: 0
b) Flow rate on the hot water storage tank 4 side: Flow rate on the branch channel 24 side = 1: 1
c) Flow rate on the hot water storage tank 4 side: Flow rate on the branch channel 24 side = 1: 2
d) Flow rate on the hot water storage tank 4 side: Flow rate on the branch channel 24 side = 0: 1
4 patterns. This is an example, and the pattern may be increased or the ratio may be changed.

この場合、低温暖房単独以外(ステップS13のNO)及び、T4<Tfの場合には(ステップS15のNO)、貯湯タンク切替弁40での調整制御ではなく、燃焼制御(図9)に切り替える。即ち、バーナ46により燃料ガスを燃焼させ、その燃焼熱の潜熱又は顕熱により、温水HM1を加熱するので、貯湯タンク切替弁40を貯湯タンク4側全開とする(ステップS14)。T4≦T3の場合には、蓄熱無しと判断し、貯湯タンク切替弁40を貯湯タンク4側全閉とする(ステップS12)。   In this case, in cases other than low temperature heating alone (NO in step S13) and T4 <Tf (NO in step S15), the control is switched to the combustion control (FIG. 9) instead of the adjustment control in the hot water tank switching valve 40. That is, the fuel gas is burned by the burner 46, and the hot water HM1 is heated by the latent heat or sensible heat of the combustion heat, so that the hot water storage tank switching valve 40 is fully opened (step S14). If T4 ≦ T3, it is determined that there is no heat storage, and the hot water tank switching valve 40 is fully closed (step S12).

ここで、貯湯タンク切替弁40に循環路6から流入する温水HM1の流量をL、分流路24に分流する温水HM1の流量をL1 、貯湯タンク4に流れる温水HM1の流量を(L−L1 )、T3を貯湯タンク切替弁40に流入する温水HM1の検出温度、T4を貯湯タンク4の温水HM1の検出温度、Tfを低温暖房要求温度とし、流量Lに対する流量(L−L1 )を温度T3、T4、Tfで表すと、
(L−L1 )/L=1−L1 /L
=1−(T4−Tf)/(T4−T3)
=(T4−T3−T4+Tf)/(T4−T3)
=(Tf−T3)/(T4−T3) ・・・(1)
となる。ここで、流量L1 と流量(L−L1 )との流量比率{L1 :(L−L1 )}を温度で表すと、
1 :(L−L1
=(T4−Tf)/(T4−T3):(Tf−T3)/(T4−T3)
=T4−Tf:Tf−T3 ・・・(2)
となる。
Here, L a flow rate of the hot water HM1 flowing from the circulation path 6 in the hot water storage tank switching valve 40, the flow rate of the hot water HM1 shunting the shunt path 24 L 1, the flow rate of the hot water HM1 flowing in the hot water storage tank 4 (L-L 1), the detected temperature of the hot water HM1 flowing the T3 in the hot water storage tank switching valve 40, the detected temperature of the hot water HM1 of T4 hot water tank 4, a low-temperature heating demand temperature Tf, the flow rate (L-L 1) to the flow rate L Expressed as temperatures T3, T4, and Tf,
(L−L 1 ) / L = 1−L 1 / L
= 1- (T4-Tf) / (T4-T3)
= (T4-T3-T4 + Tf) / (T4-T3)
= (Tf-T3) / (T4-T3) (1)
It becomes. Here, when the flow rate ratio {L 1 : (L−L 1 )} between the flow rate L 1 and the flow rate (L−L 1 ) is represented by temperature,
L 1 : (L−L 1 )
= (T4-Tf) / (T4-T3) :( Tf-T3) / (T4-T3)
= T4-Tf: Tf-T3 (2)
It becomes.

そこで、貯湯タンク4の温水温度が低温暖房器52の要求温度に比べて、低温、適温、又は高温時の制御を説明する。   Therefore, control when the hot water temperature of the hot water storage tank 4 is lower than the required temperature of the low-temperature heater 52, at an appropriate temperature, or at a high temperature will be described.

ア)貯湯タンク4の温水温度が低温暖房器52の要求温度より低い場合(低温)   A) When the hot water temperature of the hot water storage tank 4 is lower than the required temperature of the low temperature heater 52 (low temperature)

低温暖房器52から運転信号が制御装置82に入力されると、循環ポンプ26の運転を開始する。貯湯タンク4の温水HM1の検出温度T4が低温暖房器52の要求温度Tfより低い場合においても、T4>T3であれば、貯湯タンク切替弁40を分流路24側を全閉状態とし、貯湯タンク4の温水HM1を利用する。この場合、低温暖房器52に要求温度の温水HM1を送り込むことができない。循環ポンプ26から送り出された温水HM1の検出温度T6が低温暖房器52の要求温度より低いため、一次熱交換器28及び二次熱交換器30で温水HM1を加熱する。燃焼加熱により、検出温度T3が検出温度T4より高くなると、貯湯タンク切替弁40を分流路24側を全開にする。   When an operation signal is input from the low-temperature heater 52 to the control device 82, the operation of the circulation pump 26 is started. Even when the detected temperature T4 of the hot water HM1 in the hot water storage tank 4 is lower than the required temperature Tf of the low temperature heater 52, if T4> T3, the hot water storage tank switching valve 40 is fully closed on the side of the branch channel 24, 4 warm water HM1 is used. In this case, the hot water HM1 having the required temperature cannot be fed into the low-temperature heater 52. Since the detected temperature T6 of the hot water HM1 sent out from the circulation pump 26 is lower than the required temperature of the low-temperature heater 52, the hot water HM1 is heated by the primary heat exchanger 28 and the secondary heat exchanger 30. When the detected temperature T3 becomes higher than the detected temperature T4 due to combustion heating, the hot water storage tank switching valve 40 is fully opened on the side of the branch flow path 24.

イ)貯湯タンク4の温水温度が低温暖房器52の要求温度と同じ場合(適温)   B) When the hot water temperature of the hot water storage tank 4 is the same as the required temperature of the low-temperature heater 52 (appropriate temperature)

低温暖房器52から運転信号が制御装置82に入力されると、循環ポンプ26の運転を開始する。貯湯タンク4の温水HM1の検出温度T4が低温暖房器52の要求温度と同じ場合(適温)では、貯湯タンク切替弁40を貯湯タンク4側を全開とする。循環ポンプ26から送り出された温水HM1の検出温度T6が低温暖房器52の要求温度であれば、低温暖房器52に貯湯タンク4から温水HM1がそのまま送り込まれる。   When an operation signal is input from the low-temperature heater 52 to the control device 82, the operation of the circulation pump 26 is started. When the detected temperature T4 of the hot water HM1 in the hot water storage tank 4 is the same as the required temperature of the low temperature heater 52 (appropriate temperature), the hot water tank switching valve 40 is fully opened on the hot water tank 4 side. If the detected temperature T6 of the hot water HM1 sent out from the circulation pump 26 is the required temperature of the low temperature heater 52, the hot water HM1 is sent from the hot water storage tank 4 to the low temperature heater 52 as it is.

ウ)貯湯タンク4の温水温度が低温暖房器52の要求温度より高い場合(高温)   C) When the hot water temperature of the hot water storage tank 4 is higher than the required temperature of the low-temperature heater 52 (high temperature)

この場合、燃焼による温度調整は行わず、弁開度の調整のみを行う。低温暖房器52から運転信号が制御装置82に入力されると、循環ポンプ26の運転を開始する。貯湯タンク4の温水HM1の検出温度T4が低温暖房器52の要求温度より高い場合には、貯湯タンク切替弁40の弁開度を調整する。この弁開度は運転開始時は式(2) により決定され、その後、要求温度より検出温度T6が高い場合、貯湯タンク4側より、分流路24側に流れる温水HM1(即ち、低温暖房器52の戻り温水HM1側)を多くし、貯湯タンク4からの温水HM1の温度を下げる。この状態で循環ポンプ26から送り出された温水HM1の検出温度T6が低温暖房器52の要求温度であれば、その弁開度を保持し、低温暖房器52に温水HM1を循環し続ける。   In this case, temperature adjustment by combustion is not performed, but only valve opening adjustment is performed. When an operation signal is input from the low-temperature heater 52 to the control device 82, the operation of the circulation pump 26 is started. When the detected temperature T4 of the hot water HM1 in the hot water storage tank 4 is higher than the required temperature of the low temperature heater 52, the valve opening degree of the hot water tank switching valve 40 is adjusted. This valve opening is determined by the equation (2) at the start of operation. Thereafter, when the detected temperature T6 is higher than the required temperature, the hot water HM1 (that is, the low temperature heater 52) that flows from the hot water storage tank 4 side to the branch channel 24 side. ) And the temperature of the hot water HM1 from the hot water storage tank 4 is lowered. If the detected temperature T6 of the hot water HM1 sent from the circulation pump 26 in this state is the required temperature of the low temperature heater 52, the valve opening degree is maintained and the hot water HM1 is continuously circulated to the low temperature heater 52.

前述の調整にもかかわらず、温水HM1の検出温度T6が低温暖房器52の要求温度より高い場合には、貯湯タンク切替弁40を分流路24側に切り替え、貯湯タンク4内の温水HM1の使用を停止する。燃焼加熱は行わないため、低温暖房器52の放熱により検出温度T6は徐々に下がるので、後述の制御が行われる。   If the detected temperature T6 of the hot water HM1 is higher than the required temperature of the low-temperature heater 52 despite the above adjustment, the hot water storage tank switching valve 40 is switched to the branch flow path 24 side and the hot water HM1 in the hot water storage tank 4 is used. To stop. Since the combustion heating is not performed, the detection temperature T6 is gradually lowered by the heat radiation of the low-temperature heater 52, so that the control described later is performed.

また、温水HM1の検出温度T6が低温暖房器52の要求温度を下回った場合には、貯湯タンク切替弁40の弁解度を調整し、貯湯タンク4内の温水HM1の使用量を増加し、温水HM1の温度を上昇させる。その温度が低温暖房器52の要求温度であれば低温暖房器52へ循環をし続ける。   When the detected temperature T6 of the hot water HM1 is lower than the required temperature of the low-temperature heater 52, the degree of use of the hot water tank switching valve 40 is adjusted to increase the usage amount of the hot water HM1 in the hot water tank 4. Increase the temperature of HM1. If the temperature is the required temperature of the low-temperature heater 52, the circulation continues to the low-temperature heater 52.

このように、貯湯タンク4側の温水HM1は、温水HM1の低温暖房器52側での温度低下の分だけが流量に応じて利用され、貯湯タンク4側の蓄熱量の節減が図られる。   In this way, the hot water HM1 on the hot water storage tank 4 side uses only the temperature drop of the hot water HM1 on the low temperature heater 52 side according to the flow rate, so that the amount of heat stored on the hot water storage tank 4 side is reduced.

ところで、バーナ46の燃焼制御を伴う一次熱交換器28及び二次熱交換器30で温水HM1を加熱する場合には、通常はT4<T3のとき貯湯タンク切替弁40を貯湯タンク4側全閉とするが、図9に示すように、貯湯タンク切替弁40を貯湯タンク4側全開とし、二次熱交換器30で温水HM1に燃焼排気の潜熱を熱交換して低温暖房器52に循環させる。この場合、一次熱交換器28で燃焼排気の顕熱を熱交換した温水HM1は、循環路6Aを通して貯湯タンク4に循環させる。これにより、低温暖房器52に流れる温水HW1を要求温度に制御できるとともに、貯湯タンク4の温水HW1を昇温させ、蓄熱させることができる。   By the way, when the hot water HM1 is heated by the primary heat exchanger 28 and the secondary heat exchanger 30 accompanied by the combustion control of the burner 46, the hot water tank switching valve 40 is normally fully closed when T4 <T3. However, as shown in FIG. 9, the hot water tank switching valve 40 is fully opened on the hot water tank 4 side, and the secondary heat exchanger 30 exchanges the latent heat of the combustion exhaust with the hot water HM1 and circulates it to the low temperature heater 52. . In this case, the hot water HM1 obtained by exchanging the sensible heat of the combustion exhaust with the primary heat exchanger 28 is circulated to the hot water storage tank 4 through the circulation path 6A. Thereby, while being able to control the warm water HW1 which flows into the low temperature heater 52 to required temperature, the warm water HW1 of the hot water storage tank 4 can be heated up and can be stored.

(2) 高温暖房動作   (2) High temperature heating operation

この高温暖房動作について、図10を参照する。図10は、高温暖房における温水HM1の循環を説明するための図である。   This high temperature heating operation will be described with reference to FIG. FIG. 10 is a diagram for explaining circulation of hot water HM1 in high-temperature heating.

この高温暖房動作は、図10に示すように、高温暖房器54に温水HM1を循環させ、高温の温水HM1により放熱させる動作である。   As shown in FIG. 10, the high-temperature heating operation is an operation in which the hot water HM1 is circulated through the high-temperature heater 54 and is radiated by the high-temperature hot water HM1.

この場合、高温暖房器54から運転信号が制御装置82にに入力されると、循環ポンプ26の運転を開始する。温度センサ42の検出温度T3と温度センサ44の検出温度T4とを比較し、T4>T3の場合、貯湯タンク切替弁40を貯湯タンク4側を開状態にする。貯湯タンク4の温水HM1は、循環ポンプ26から二次熱交換器30、一次熱交換器28に送り込まれる。一次熱交換器28の出側にある温度センサ48の検出温度T5が放熱暖房に適する一定温度として例えば、80〔℃〕になるようにバーナ46の燃焼を制御する。なお、貯湯タンク4の温水HM1が放熱暖房に適する一定温度である例えば、80〔℃〕であれば、一次熱交換器28による加熱は行わない。   In this case, when an operation signal is input from the high-temperature heater 54 to the control device 82, the operation of the circulation pump 26 is started. The detected temperature T3 of the temperature sensor 42 and the detected temperature T4 of the temperature sensor 44 are compared. If T4> T3, the hot water tank switching valve 40 is opened on the hot water tank 4 side. Hot water HM1 in the hot water storage tank 4 is sent from the circulation pump 26 to the secondary heat exchanger 30 and the primary heat exchanger 28. Combustion of the burner 46 is controlled so that the detected temperature T5 of the temperature sensor 48 on the outlet side of the primary heat exchanger 28 is, for example, 80 [° C.] as a constant temperature suitable for radiant heating. If the hot water HM1 in the hot water storage tank 4 is a constant temperature suitable for heat radiation heating, for example, 80 [° C.], the heating by the primary heat exchanger 28 is not performed.

高温化された温水HM1は、高温暖房器54に流れ、放熱を行う。この場合、循環路6の高温分配弁62に流れた温水HM1は循環路6Aに分流されて給湯用熱交換器56を通り、高温暖房器54からの戻り温水HM1と合流し、貯湯タンク4に至る。この場合、循環路6Aで形成された給湯用熱交換器56の回路は高温暖房器54が運転可能になるまでの循環回路及び給湯要求の際に即応可能な給湯用加熱路として使用される。   The heated hot water HM1 flows into the high-temperature heater 54 and dissipates heat. In this case, the hot water HM1 that has flowed to the high-temperature distribution valve 62 of the circulation path 6 is diverted to the circulation path 6A, passes through the hot water supply heat exchanger 56, joins with the return hot water HM1 from the high-temperature heater 54, and enters the hot water storage tank 4. It reaches. In this case, the circuit of the hot water supply heat exchanger 56 formed by the circulation path 6A is used as a circulation circuit until the high-temperature heater 54 becomes operable and a hot water supply heating path that can respond immediately when a hot water supply is requested.

高温暖房器54を通過して熱が奪われた温水HM1と、給湯用熱交換器56からの戻り温水HM1とが混合されるが、この混合温水HM1は温度センサ42で検出される。この検出温度T3は、貯湯タンク4の出側にある温度センサ44の検出温度T4と比較される。T4<T3であれば、貯湯タンク切替弁40の開度は貯湯タンク4側から分流路24側へ切り替えられ、貯湯タンク4の温水HM1の使用を停止する。即ち、温水HM1による蓄熱を行い、その節減を図る。   The hot water HM1 deprived of heat through the high-temperature heater 54 and the return hot water HM1 from the hot water supply heat exchanger 56 are mixed, and this mixed hot water HM1 is detected by the temperature sensor 42. This detected temperature T3 is compared with the detected temperature T4 of the temperature sensor 44 on the outlet side of the hot water storage tank 4. If T4 <T3, the opening degree of the hot water tank switching valve 40 is switched from the hot water tank 4 side to the branch flow path 24 side, and the use of the hot water HM1 in the hot water tank 4 is stopped. That is, heat is stored by the hot water HM1 to save the heat.

(3) 給湯動作   (3) Hot water supply operation

この給湯動作について、図11を参照する。図11は、給湯動作における温水HM1の循環を説明するための図である。   This hot water supply operation will be described with reference to FIG. FIG. 11 is a diagram for explaining circulation of hot water HM1 in the hot water supply operation.

この給湯動作は、図11に示すように、給湯用熱交換器56に温水HM1を循環させ、給水Wに温水HM1の熱を熱交換し、温水HWとして給湯する動作である。   As shown in FIG. 11, this hot water supply operation is an operation of circulating hot water HM1 through the hot water supply heat exchanger 56, exchanging heat of the hot water HM1 with the hot water W, and supplying hot water as the hot water HW.

この場合、給水口から暖房・給湯・追焚装置2に入った給水Wは、温度センサ64、水量センサ、水制御弁等を経てバイパス路60の分岐点に至る。バイパス路60側に流れる給水Wはミキシングのために温水HWに混合される。また、二次熱交換器58を経て給湯用熱交換器56に流れた給水Wは、給湯用熱交換器56で温水HM1の熱と熱交換が行われ、温水HWとなってバイパス路60の分岐点に設置されているミキシング弁を通過する。ミキシング弁の開度は、温度センサ66の検出温度T8が設定温度になるように調整され、給湯用熱交換器56により加熱された高温の温水HWが給水Wと混合されて設定温度に調整され、出湯口から出湯される。   In this case, the water supply W that has entered the heating / hot water supply / remedy device 2 from the water supply port reaches the branch point of the bypass 60 through the temperature sensor 64, the water amount sensor, the water control valve, and the like. The water supply W flowing to the bypass 60 side is mixed with the hot water HW for mixing. Further, the feed water W that has flowed into the hot water supply heat exchanger 56 via the secondary heat exchanger 58 is subjected to heat exchange with the hot water HM1 in the hot water supply heat exchanger 56, and becomes hot water HW. Passes the mixing valve installed at the branch point. The opening of the mixing valve is adjusted so that the detected temperature T8 of the temperature sensor 66 becomes the set temperature, and the hot water HW heated by the hot water supply heat exchanger 56 is mixed with the feed water W to be adjusted to the set temperature. The hot water is taken out from the hot spring outlet.

この場合、温水HM1の循環動作は次の通りである。給湯回路36にある水量センサが流水を感知すると、循環ポンプ26が運転を開始する。温度センサ42の検出温度T3と温度センサ44の検出温度T4とが比較される。T4>T3の場合には、貯湯タンク切替弁40を貯湯タンク4側を開状態にする。貯湯タンク4の温水HM1は、循環ポンプ26に吸い込まれ、二次熱交換器30及び一次熱交換器28に送り込まれる。これら一次熱交換器28及び二次熱交換器30を通過した温水HM1の温度は温度センサ48で検出され、その検出温度T5が一定の温度として例えば、80〔℃〕になるように、バーナ46の燃焼制御が行われる。なお、貯湯タンク4の温水HM1がその一定温度である例えば、80〔℃〕であれば、バーナ46による加熱は行わない。   In this case, the circulating operation of the hot water HM1 is as follows. When the water amount sensor in the hot water supply circuit 36 detects flowing water, the circulation pump 26 starts operation. The detected temperature T3 of the temperature sensor 42 and the detected temperature T4 of the temperature sensor 44 are compared. When T4> T3, the hot water tank switching valve 40 is opened on the hot water tank 4 side. Hot water HM1 in the hot water storage tank 4 is sucked into the circulation pump 26 and sent to the secondary heat exchanger 30 and the primary heat exchanger 28. The temperature of the hot water HM1 that has passed through the primary heat exchanger 28 and the secondary heat exchanger 30 is detected by the temperature sensor 48, and the burner 46 is adjusted so that the detected temperature T5 is, for example, 80 [° C.]. The combustion control is performed. If the hot water HM1 in the hot water storage tank 4 is at a constant temperature, for example, 80 [° C.], the heating by the burner 46 is not performed.

一定温度即ち、80〔℃〕の温水HM1は給湯用熱交換器56で給水W側との熱交換を行う。例えば、給湯能力を24号とした場合、その熱量は41.86〔kW〕(36,000〔kcal/h〕)である。貯湯タンク4の温水温度が80〔℃〕で循環ポンプ26の循環量が約12〔リットル/min〕であれば、貯湯タンク4に戻る温水HM1の温度が約30〔℃〕で、貯湯タンク4の温水HM1の全てを給湯熱交換に使用したとすれば、貯湯タンク4内の温水温度は約30〔℃〕となる。給湯号数が減少すれば、貯湯タンク4に戻る温水HM1の温度低下が少なく、貯湯タンク4の温水温度は、常に30〔℃〕以上となる。   The hot water HM1 at a constant temperature, that is, 80 [° C.] exchanges heat with the hot water supply W side in the hot water supply heat exchanger 56. For example, when the hot water supply capacity is No. 24, the amount of heat is 41.86 [kW] (36,000 [kcal / h]). If the hot water temperature of the hot water storage tank 4 is 80 [° C.] and the circulation rate of the circulation pump 26 is about 12 [liter / min], the temperature of the hot water HM1 returning to the hot water storage tank 4 is about 30 [° C.] If all of the hot water HM1 is used for hot water supply heat exchange, the temperature of the hot water in the hot water storage tank 4 is about 30 [° C.]. If the number of hot water supply numbers decreases, the temperature drop of the hot water HM1 returning to the hot water storage tank 4 is small, and the hot water temperature of the hot water storage tank 4 is always 30 [° C.] or higher.

また、給湯用熱交換器56で熱を奪われた温水HM1の検出温度T3と温度センサ44の検出温度T4とを比較する。T4<T3であれば、貯湯タンク切替弁40を貯湯タンク4側から分流路24側へ切り替え、貯湯タンク4の温水HM1を使用しない。これにより、貯湯タンク4の温水HM1の使用による熱損失が抑制される。   Further, the detected temperature T3 of the hot water HM1 deprived of heat by the hot water supply heat exchanger 56 and the detected temperature T4 of the temperature sensor 44 are compared. If T4 <T3, the hot water storage tank switching valve 40 is switched from the hot water storage tank 4 side to the branch flow path 24 side, and the hot water HM1 of the hot water storage tank 4 is not used. Thereby, the heat loss by use of the hot water HM1 of the hot water storage tank 4 is suppressed.

(4) 浴槽注湯動作   (4) Bath pouring operation

この浴槽注湯動作について、図12を参照する。図12は、浴槽注湯動作における温水HM1の循環及び注湯を説明するための図である。   This bathtub pouring operation will be described with reference to FIG. FIG. 12 is a diagram for explaining circulation and pouring of hot water HM1 in a bath pouring operation.

この浴槽注湯動作は、図12に示すように、給湯用熱交換器56に温水HM1を循環させ、給水Wに温水HM1の熱を熱交換して得られる温水HWを浴槽68側に注湯する動作である。   In this bathtub pouring operation, as shown in FIG. 12, hot water HM1 is circulated in the hot water supply heat exchanger 56, and hot water HW obtained by heat exchange of the heat of the hot water HM1 with the hot water W is poured into the bathtub 68 side. It is an operation to do.

給湯時、注湯電磁弁78を開くと、給湯回路36が追焚回路38に連結され、給湯回路36から分岐された注湯回路76に流れる温水HWが追焚用熱交換器70を経て浴槽68に注湯される。この場合、追焚ポンプ72は使用しない。給水Wが上水であれば、十分な水圧があるので、温水HWはその水圧を利用して浴槽68に注湯される。   When the hot water solenoid valve 78 is opened at the time of hot water supply, the hot water supply circuit 36 is connected to the remedy circuit 38, and the hot water HW flowing through the hot water supply circuit 76 branched from the hot water supply circuit 36 passes through the remedy heat exchanger 70. 68 is poured. In this case, the remedy pump 72 is not used. If the water supply W is clean water, there is sufficient water pressure, and the hot water HW is poured into the bathtub 68 using the water pressure.

(5) 浴槽水追焚動作   (5) Bath water tracking operation

この浴槽水追焚動作について、図13を参照する。図13は、浴槽水追焚動作における温水HM1の循環及び追焚を説明するための図である。   About this bathtub water pursuit operation | movement, FIG. 13 is referred. FIG. 13 is a diagram for explaining circulation and replenishment of the hot water HM1 in the bathtub water retreat operation.

この浴槽水追焚動作は、図13に示すように、追焚用熱交換器70に温水HM1を循環させ、浴槽水BWに温水HM1の熱を熱交換する動作である。   As shown in FIG. 13, the bathtub water tracking operation is an operation of circulating the hot water HM1 in the tracking heat exchanger 70 and exchanging heat of the hot water HM1 with the bathtub water BW.

リモコン装置94から追焚運転信号が制御装置82に入力されると、追焚ポンプ72の運転を開始させる。これにより、浴槽水BWは、追焚回路38に循環され、追焚用熱交換器70で温水HM1の熱が熱交換され、加熱される。温度センサ74の検出温度T9が設定温度に達すれば、追焚運転を終了し、追焚ポンプ72の運転を停止させる。   When a chasing operation signal is input from the remote control device 94 to the control device 82, the chasing pump 72 is started to operate. Thereby, the bath water BW is circulated to the reheating circuit 38, and heat of the hot water HM1 is heat-exchanged by the reheating heat exchanger 70 to be heated. When the detected temperature T9 of the temperature sensor 74 reaches the set temperature, the chasing operation is ended and the chasing pump 72 is stopped.

この場合、追焚運転信号が制御装置82に入力されると、循環ポンプ26の運転を開始する。温度センサ42の検出温度T3と温度センサ44の検出温度T4とが比較され、T4>T3であれば、貯湯タンク切替弁40を貯湯タンク4側に切り替える。貯湯タンク4の温水HM1は、循環ポンプ26に吸い込まれ、二次熱交換器30及び一次熱交換器28に送り込まれる。これら一次熱交換器28及び二次熱交換器30を通過した温水HM1の温度は温度センサ48で検出され、その検出温度T5が一定の温度として例えば、80〔℃〕になるように、バーナ46の燃焼制御が行われる。なお、貯湯タンク4の温水HM1がその一定温度である例えば、80〔℃〕であれば、バーナ46による加熱は行わない。   In this case, when the follow-up operation signal is input to the control device 82, the operation of the circulation pump 26 is started. The detected temperature T3 of the temperature sensor 42 and the detected temperature T4 of the temperature sensor 44 are compared. If T4> T3, the hot water tank switching valve 40 is switched to the hot water tank 4 side. Hot water HM1 in the hot water storage tank 4 is sucked into the circulation pump 26 and sent to the secondary heat exchanger 30 and the primary heat exchanger 28. The temperature of the hot water HM1 that has passed through the primary heat exchanger 28 and the secondary heat exchanger 30 is detected by the temperature sensor 48, and the burner 46 is adjusted so that the detected temperature T5 is, for example, 80 [° C.]. The combustion control is performed. If the hot water HM1 in the hot water storage tank 4 is at a constant temperature, for example, 80 [° C.], the heating by the burner 46 is not performed.

高温分配弁62を循環路6B側にも開き、循環路6B側に温水HM1を流し、追焚回路38と循環路6Bとの間で温水HM1の熱を浴槽水BWに熱交換する。この場合、高温分配弁62は給湯用熱交換器56側にも温水HM1を流す。追焚用熱交換器70で浴槽水BWに熱を奪われた温水HM1は、循環路6Aにある給湯用熱交換器56を通過した温水HM1と合流し、貯湯タンク4に戻される。高温分配弁62から給湯用熱交換器56を通る循環路6Aは、給湯要求の際に即応可能な給湯用回路として使用する。   The high temperature distribution valve 62 is also opened on the circulation path 6B side, the warm water HM1 is allowed to flow on the circulation path 6B side, and the heat of the warm water HM1 is exchanged with the bath water BW between the remedy circuit 38 and the circulation path 6B. In this case, the high temperature distribution valve 62 also flows the hot water HM1 to the hot water supply heat exchanger 56 side. The hot water HM1 that has been deprived of heat by the bath water BW by the heat exchanger for remedy 70 merges with the hot water HM1 that has passed through the hot water supply heat exchanger 56 in the circulation path 6A, and is returned to the hot water storage tank 4. The circulation path 6A passing through the hot water supply heat exchanger 56 from the high temperature distribution valve 62 is used as a hot water supply circuit that can immediately respond to a hot water supply request.

追焚用熱交換器70で熱を奪われた温水HM1は、給湯用熱交換器56を通過した温水HM1と混合され、その混合温水HM1の検出温度T3と検出温度T4とを比較し、T4<T3であれば、貯湯タンク切替弁40を貯湯タンク4側から分流路24側へ切り替え、貯湯タンク4の温水HM1を使用しない。即ち、温水HM1による蓄熱を行い、その節減を図る。   The hot water HM1 deprived of heat by the heat exchanger for remedy 70 is mixed with the hot water HM1 that has passed through the hot water supply heat exchanger 56, and the detected temperature T3 and the detected temperature T4 of the mixed hot water HM1 are compared, and T4 If T3, the hot water tank switching valve 40 is switched from the hot water tank 4 side to the branch flow path 24 side, and the hot water HM1 of the hot water tank 4 is not used. That is, heat is stored by the hot water HM1 to save the heat.

(6) 太陽熱集熱動作   (6) Solar heat collection operation

この太陽熱集熱動作について、図14及び図15を参照する。図14は、太陽熱集熱動作における温水HM1の循環を説明するための図、図15は、集熱動作を示すフローチャートである。   This solar heat collecting operation will be described with reference to FIGS. 14 and 15. FIG. 14 is a diagram for explaining the circulation of the hot water HM1 in the solar heat collecting operation, and FIG. 15 is a flowchart showing the heat collecting operation.

この太陽熱集熱動作は、図14に示すように、太陽熱集熱回路8に温水HM2を循環させ、太陽熱を温水HM2に熱交換し、温水HM2の熱を貯湯タンク4内にある太陽熱用熱交換器12で温水HM1に熱交換する動作である。   In this solar heat collecting operation, as shown in FIG. 14, the hot water HM2 is circulated through the solar heat collecting circuit 8, the solar heat is exchanged with the hot water HM2, and the heat of the hot water HM2 is exchanged with the solar heat in the hot water storage tank 4. This is an operation of exchanging heat with the hot water HM1 in the vessel 12.

太陽熱による温水HM2の温度上昇は、日射量に関係し、その試験結果によれば、冬季でも約30〔℃〕の上昇が期待できることが確認されている。季節にかかわらず、貯湯タンク4の温水温度は約30〔℃〕であるため、太陽熱用熱媒である温水HM2と熱交換する太陽熱用熱交換器12を備える貯湯タンク4では、冬期でも30〔℃〕の温度上昇があり、貯湯タンク4の温水温度は30〔℃〕+30〔℃〕で約60〔℃〕に上昇させることができる。この場合、既述の低温暖房器52の要求温度が例えば、60〔℃〕であれば、貯湯タンク4に蓄えられた温水HM1の熱を低温暖房器52の放熱に利用できる。夏期であれば、これ以上の熱利用ができることは勿論である。   The temperature rise of the hot water HM2 due to solar heat is related to the amount of solar radiation, and according to the test results, it has been confirmed that an increase of about 30 [° C.] can be expected even in winter. Regardless of the season, the hot water temperature of the hot water storage tank 4 is about 30 [° C.], so the hot water storage tank 4 including the solar heat exchanger 12 that exchanges heat with the hot water HM2 that is a solar heat medium is 30 [ The temperature of the hot water storage tank 4 can be raised to about 60 [° C.] by 30 [° C.] + 30 [° C.]. In this case, if the required temperature of the low-temperature heater 52 described above is, for example, 60 [° C.], the heat of the hot water HM1 stored in the hot water storage tank 4 can be used for heat dissipation of the low-temperature heater 52. Of course, more heat can be used in summer.

この太陽熱集熱回路8に利用できる太陽熱について、季節により日の出、日の入り時刻が変わり、日射のある時間帯も変化する。季節(夏季・冬季・中間期)により集熱ポンプ14の運転開始時刻及び停止時刻をリモコン装置94を通して制御装置82に設定する。季節の判断は、温度センサ80の検出温度T10を用いればよい。   As for the solar heat that can be used for the solar heat collecting circuit 8, the time of sunrise and sunset changes depending on the season, and the time zone with solar radiation also changes. The operation start time and stop time of the heat collecting pump 14 are set in the control device 82 through the remote control device 94 according to the season (summer, winter, intermediate period). The season may be determined using the detected temperature T10 of the temperature sensor 80.

そこで、設定時刻が集熱ポンプ14の運転開始時刻になると集熱ポンプ14を運転する。温水HM2が太陽熱集熱回路8に循環し、温度センサ20が集熱パネル10に入る温水HM2の温度を検出する。集熱パネル10は温水HM2を太陽熱で加熱する手段であるから、日射があれば、集熱パネル10を通過した温水HM2の検出温度T2が上昇する。そこで、T2>T1であれば、太陽熱の集熱有りと判断し、集熱ポンプ14の運転を継続する。これに対し、T2≦T1であれば、集熱パネル10を通過した温水HM2の温度が低下したのであるから、太陽熱の集熱無しと判断し、集熱ポンプ14の運転を停止し、集熱動作を終了する。   Therefore, when the set time reaches the operation start time of the heat collecting pump 14, the heat collecting pump 14 is operated. The hot water HM2 circulates in the solar heat collecting circuit 8, and the temperature sensor 20 detects the temperature of the hot water HM2 entering the heat collecting panel 10. Since the heat collection panel 10 is means for heating the hot water HM2 with solar heat, if there is solar radiation, the detected temperature T2 of the hot water HM2 that has passed through the heat collection panel 10 rises. Therefore, if T2> T1, it is determined that solar heat is collected, and the operation of the heat collection pump 14 is continued. On the other hand, if T2 ≦ T1, the temperature of the hot water HM2 that has passed through the heat collection panel 10 has decreased, so it is determined that there is no solar heat collection, the operation of the heat collection pump 14 is stopped, and the heat collection End the operation.

この場合、集熱パネル10においては温度上昇(T2>T1)があれば、その検出温度T2が温度センサ44の検出温度T4より低い場合(T2<T4)には、貯湯タンク4の温水HM1の熱が温水HM2に奪われることになり、熱損失を来す。これを防止するため、ソーラー切替弁16をバイパス路18側に切り替えて循環させる。この循環は、T2>T4になるまで継続し、T2>T4になれば、ソーラー切替弁16を太陽熱用熱交換器12側に切り替え、温水HM2の熱を貯湯タンク4内の温水HM1に熱交換を行う。そして、設定時刻が集熱ポンプ10の停止時刻になれば、集熱ポンプ10の運転を停止する。   In this case, if there is a temperature rise (T2> T1) in the heat collecting panel 10, if the detected temperature T2 is lower than the detected temperature T4 of the temperature sensor 44 (T2 <T4), the hot water HM1 in the hot water storage tank 4 Heat is lost to the hot water HM2, resulting in heat loss. In order to prevent this, the solar switching valve 16 is switched to the bypass path 18 side and circulated. This circulation continues until T2> T4. When T2> T4, the solar switching valve 16 is switched to the solar heat exchanger 12 side, and the heat of the hot water HM2 is exchanged with the hot water HM1 in the hot water storage tank 4. I do. When the set time comes to the stop time of the heat collection pump 10, the operation of the heat collection pump 10 is stopped.

この結果、太陽熱の集熱を温水HM2に行い、その温水HM2の熱を温水HM1に熱交換することにより、貯湯タンク4に温水HM1を通じて蓄熱することができる。   As a result, by collecting solar heat in the hot water HM2 and exchanging heat of the hot water HM2 for the hot water HM1, heat can be stored in the hot water storage tank 4 through the hot water HM1.

この集熱動作では、図15に示すように、集熱運転開始時刻になると (ステップS2l) 、集熱ポンプ14を運転する (ステップS22) 。このとき、ソーラー切替弁16は貯湯タンク4側が閉となっている(ステップS23)。温水HM2は太陽熱集熱回路8を循環し、検出温度T2と検出温度T4とを比較し(ステップS24)、T2>T4であれば、ソーラー切替弁16を貯湯タンク4側を開とし(ステップS25)、太陽熱を温水HM2に蓄熱する。   In this heat collecting operation, as shown in FIG. 15, when the heat collecting operation start time comes (step S21), the heat collecting pump 14 is operated (step S22). At this time, the solar switching valve 16 is closed on the hot water storage tank 4 side (step S23). The hot water HM2 circulates through the solar heat collecting circuit 8 and compares the detected temperature T2 with the detected temperature T4 (step S24). If T2> T4, the solar switching valve 16 is opened on the hot water storage tank 4 side (step S25). ), The solar heat is stored in the hot water HM2.

T2>T4でなければ、ソーラー切替弁16は貯湯タンク4側を閉に維持し(ステップS26)、検出温度T1を記憶手段として例えば、RAM88に記憶する(ステップS27)。その検出時点から一定時間例えば、t秒後に検出温度T2と記憶している検出温度T1’とを比較する(ステップS28)。T2>T1’であれば、集熱パネル10で集熱があるので、ステップS24に戻り、蓄熱可能か否かを判断する。また、T2>T1’でなければ、集熱ができないので、集熱ポンプ14を停止し(ステップS29)、所定のインターバル運転(ステップS30)を経てステップS21に戻る。同様の集熱動作を継続的に行う。   If T2> T4 is not satisfied, the solar switching valve 16 keeps the hot water storage tank 4 side closed (step S26), and stores the detected temperature T1 in, for example, the RAM 88 as storage means (step S27). The detected temperature T2 is compared with the stored detected temperature T1 'after a predetermined time, for example, t seconds from the detection time (step S28). If T2> T1 ', the heat collecting panel 10 collects heat, so the process returns to step S24 to determine whether heat can be stored. If T2> T1 ', since heat cannot be collected, the heat collecting pump 14 is stopped (step S29), and after a predetermined interval operation (step S30), the process returns to step S21. The same heat collecting operation is continuously performed.

上記実施の形態によって改善される事項は以下の通りである。   The matters improved by the above embodiment are as follows.

(1) この暖房・給湯・追焚装置2では、太陽熱集熱制御と給湯暖房制御とを並列化している。太陽熱集熱は日射のある時間に行われ、貯湯タンク4に蓄熱される。給湯及び暖房には、貯湯タンク4に蓄熱されていれば、貯湯タンク4の温水HM1の熱を利用する。利用時は循環する温水HM1の温度が太陽熱により上昇するため、バーナ46の燃焼により消費する燃料ガスの消費が低減され、貯湯タンク4の温水HM1の熱を利用する分だけ熱効率を上昇させることができる。さらに、暖められた温水HM1は直接暖房負荷へ循環するため太陽熱を効率よく暖房に使用することができる。   (1) In the heating / hot water supply / remembrance device 2, solar heat collection control and hot water supply / heating control are parallelized. Solar heat collection is performed during solar radiation and is stored in the hot water storage tank 4. If hot water is stored in the hot water storage tank 4, the heat of the hot water HM1 in the hot water storage tank 4 is used for hot water supply and heating. At the time of use, the temperature of the circulating hot water HM1 rises due to solar heat, so the consumption of fuel gas consumed by the combustion of the burner 46 is reduced, and the thermal efficiency can be increased by the amount of use of the heat of the hot water HM1 in the hot water storage tank 4. it can. Furthermore, since the warmed hot water HM1 circulates directly to the heating load, solar heat can be used efficiently for heating.

(2) この暖房・給湯・追焚装置2では、給水へ蓄熱する従来のソーラーシステムと異なり、給水への蓄熱をしていないため、給水温度は太陽熱により上昇することがない。これは、燃焼排気の潜熱を熱源に利用する潜熱回収装置である二次熱交換器30に循環する温水HM1の温度を低くできるため、二次熱交換器30の性能を損なうことなく利用でき、熱エネルギを効率よく利用できる。   (2) Unlike the conventional solar system that stores heat in the water supply, the heating / hot water supply / remembrance device 2 does not store heat in the water supply, so the water supply temperature does not rise due to solar heat. This is because the temperature of the hot water HM1 circulating to the secondary heat exchanger 30 that is a latent heat recovery device that uses the latent heat of the combustion exhaust as a heat source can be lowered, so that it can be used without impairing the performance of the secondary heat exchanger 30, Thermal energy can be used efficiently.

(3) 予熱側はバーナ46で温水HM1を80〔℃〕に加熱し、その循環量が約12〔リットル/min〕であるため、給湯用熱交換器56から戻る温水HM1の温度は約30〔℃〕であり、この制御は季節に関係なく行うことができる。よって、温水HM1は常に30〔℃〕以上に維持でき、この温水HM1に太陽熱を蓄熱させるため、冬期でも約60〔℃〕の温水HM1を得ることができ、暖房負荷に直接、温水HM1を循環することにより、太陽熱を効率よく使用することができる。   (3) On the preheating side, the hot water HM1 is heated to 80 [° C.] by the burner 46, and the circulation amount is about 12 [liter / min], so the temperature of the hot water HM1 returning from the hot water supply heat exchanger 56 is about 30 [° C.], and this control can be performed regardless of the season. Therefore, the hot water HM1 can always be maintained at 30 [° C.] or higher, and the solar water is stored in the hot water HM1, so that the hot water HM1 of about 60 [° C.] can be obtained even in winter, and the hot water HM1 is circulated directly to the heating load. By doing so, solar heat can be used efficiently.

(4) 暖房・給湯・追焚装置2の試験データによれば、温水HM1の最高温度は約80〔℃〕である。低温暖房運転では低温暖房負荷に循環する温度を60〔℃〕若しくは40〔℃〕になるように制御するが、貯湯タンク4の温水温度が高温の場合にはその温水温度の温水HM1をそのまま低温暖房回路へ循環させることはできない。そこで、貯湯タンク切替弁40の開度を調整し、低温暖房負荷からの戻り温水HM1と貯湯タンク4の温水HM1とを混合させて低温暖房の要求温度まで下げて循環させる制御を行うことができ、極めて効率的な温水HM1による蓄熱とその熱利用の節約を実現できる。   (4) According to the test data of the heating / hot water supply / remembrance device 2, the maximum temperature of the hot water HM1 is about 80 [° C.]. In the low-temperature heating operation, the temperature circulating to the low-temperature heating load is controlled to be 60 [° C.] or 40 [° C.], but when the hot water temperature of the hot water storage tank 4 is high, the hot water HM1 of the hot water temperature is kept as it is. It cannot be circulated to the heating circuit. Therefore, the opening degree of the hot water storage tank switching valve 40 is adjusted so that the return hot water HM1 from the low temperature heating load and the hot water HM1 of the hot water storage tank 4 are mixed and lowered to the required temperature for the low temperature heating and circulated. It is possible to realize the heat storage by the very efficient hot water HM1 and the saving of the heat use.

(5) このように、貯湯タンク4への流路切替えのため、開度を調整できる温水分配弁(貯湯タンク切替弁40)を用いており、貯湯タンク4の温水HM1が暖房要求温度より高い場合には、その開度を調整し、暖房端末からの戻り温水HM1と貯湯タンク4の温水HM1を混ぜ合わせて、要求温度の温水にすることで暖房回路に温水を循環することを可能にし、熱エネルギの利用効率を高めることができる。   (5) Thus, the hot water distribution valve (hot water tank switching valve 40) whose opening degree can be adjusted is used for switching the flow path to the hot water tank 4, and the hot water HM1 in the hot water tank 4 is higher than the required heating temperature. In this case, the opening degree is adjusted, the warm water HM1 returned from the heating terminal and the warm water HM1 in the hot water storage tank 4 are mixed, and the hot water can be circulated in the heating circuit by making the required temperature hot water, The utilization efficiency of thermal energy can be increased.

〔第2の実施の形態〕 [Second Embodiment]

上記第1の実施の形態では、温水HM1の加熱にバーナ46の燃焼排気から潜熱を用いる場合について説明したが、図16に示すように、二次熱交換器30(図1)を用いないで、一次熱交換器28を加熱源にしてもよい。   In the first embodiment, the case where the latent heat is used from the combustion exhaust of the burner 46 to heat the hot water HM1 has been described. However, as shown in FIG. 16, the secondary heat exchanger 30 (FIG. 1) is not used. The primary heat exchanger 28 may be a heating source.

〔他の実施の形態〕 [Other Embodiments]

(1) 上記実施の形態では、高温水分配式の暖房給湯用熱源機の暖房回路に太陽熱集熱回路8を接続し、太陽熱を熱源に利用し、太陽熱との熱交換により得られた高温水を給湯、低温暖房にも利用しているが、本発明はこのような熱源に太陽熱を利用するものに限定されない。上記実施の形態は一例であって、太陽熱に代え燃焼熱やエンジンの排熱を熱源に用いてもよい。   (1) In the above embodiment, the high-temperature water obtained by connecting the solar heat collecting circuit 8 to the heating circuit of the high-temperature water distribution type heating water heater and using the solar heat as a heat source and exchanging heat with solar heat. However, the present invention is not limited to such a heat source that uses solar heat. The above-described embodiment is an example, and instead of solar heat, combustion heat or engine exhaust heat may be used as a heat source.

(2) 上記実施の形態では、熱媒体として温水HM1、HM2を利用したが、温水以外の熱媒流体を用いてもよい。   (2) In the above embodiment, the hot water HM1 and HM2 are used as the heat medium, but a heat medium fluid other than the hot water may be used.

(3) 上記実施の形態では、貯湯タンク4にある温水HM1の温度を検出する温度センサ4を貯湯タンク4外の循環路6側に設置しているが、貯湯タンク4内に設置して温水HM1の温度を検出してもよい。   (3) In the above embodiment, the temperature sensor 4 for detecting the temperature of the hot water HM1 in the hot water storage tank 4 is installed on the side of the circulation path 6 outside the hot water storage tank 4, but the hot water is installed in the hot water storage tank 4. The temperature of HM1 may be detected.

以上説明したように、本発明の最も好ましい実施の形態等について説明したが、本発明は、上記記載に限定されるものではなく、特許請求の範囲に記載され、又は明細書に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論であり、斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
As described above, the most preferable embodiment and the like of the present invention have been described. However, the present invention is not limited to the above description, and is described in the claims or disclosed in the specification. It goes without saying that various modifications and changes can be made by those skilled in the art based on the above gist, and such modifications and changes are included in the scope of the present invention.

本発明は、太陽熱や燃焼熱を熱源に用いた給湯装置や、暖房・給湯・追焚装置等の熱源装置に広く利用できる。
INDUSTRIAL APPLICABILITY The present invention can be widely used for a hot water supply device using solar heat or combustion heat as a heat source, or a heat source device such as a heating / hot water supply / remembrance device.

2 暖房・給湯・追焚装置 4 貯湯タンク
6 循環路
24 分流路
32 低温暖房回路
40 貯湯タンク切替弁
42、44 温度センサ
2 Heating / hot water supply / remembrance device 4 Hot water storage tank 6 Circulation path 24 minute flow path 32 Low temperature heating circuit 40 Hot water storage tank switching valve 42, 44 Temperature sensor

Claims (6)

熱媒が溜められる貯留手段と、
放熱負荷に前記熱媒を循環させる循環路と、
前記循環路に設置され、熱交換により前記熱媒を加熱する熱交換手段と、
前記貯留手段の入側と出側との間の前記循環路に形成され、前記放熱負荷を通過した前記熱媒を分流し、前記貯留手段をバイパスして前記貯留手段の前記出側で前記貯留手段から提供される前記熱媒に合流させる分流路と、
前記放熱負荷を通過した前記熱媒を前記貯留手段に流す熱媒流量と、前記分流路に流す熱媒流量とに分配する流量分配手段と、
前記貯留手段にある前記熱媒の温度を検出する第1の温度センサと、
前記放熱負荷を通過して前記循環路に戻る前記熱媒の温度を検出する第2の温度センサと、
を備え、前記第1の温度センサの検出温度が前記第2の温度センサの検出温度より高く且つ前記放熱負荷の要求温度より低い場合に、前記流量分配手段による前記熱媒の分配比率を変更して前記貯留手段にのみ前記放熱負荷を通過した前記熱媒を流し、前記貯留手段から提供された前記熱媒を前記熱交換手段で加熱することにより、前記放熱負荷に流れる前記熱媒の温度を前記放熱負荷の前記要求温度に調節し、
前記第1の温度センサの検出温度が前記第2の温度センサの検出温度より高く且つ前記熱媒負荷の要求温度より高い場合に、前記流量分配手段による前記熱媒の分配比率を調整して前記貯留手段と前記分流路の双方に前記放熱負荷を通過した前記熱媒を流して、前記貯留手段から提供される前記熱媒と前記分流路を流れる前記熱媒とを混合することにより、前記放熱負荷に流れる前記熱媒の温度を前記放熱負荷の要求温度に調節し、
前記第2の温度センサの検出温度が前記第1の温度センサの検出温度以上である場合、前記流量分配手段の分配比率を変更して、前記放熱負荷を通過した前記熱媒を前記分流路にのみ流すことを特徴とする熱源装置。
A storage means for storing the heat medium;
A circulation path for circulating the heat medium to the heat radiation load;
Heat exchange means installed in the circulation path and heating the heat medium by heat exchange;
The heat medium that is formed in the circulation path between the entry side and the exit side of the storage means, diverts the heat medium that has passed through the heat radiation load, bypasses the storage means, and stores the storage medium on the exit side of the storage means. A diversion channel that merges with the heat medium provided by the means;
A flow rate distribution means for distributing the heat medium flow that has passed through the heat dissipation load to the heat medium flow rate that flows to the storage means and the heat medium flow rate that flows to the branch flow path;
A first temperature sensor for detecting the temperature of the heating medium in the storage means;
A second temperature sensor that detects the temperature of the heating medium that passes through the heat dissipation load and returns to the circulation path;
When the temperature detected by the first temperature sensor is higher than the temperature detected by the second temperature sensor and lower than the required temperature of the heat radiation load, the distribution ratio of the heat medium by the flow rate distribution means is changed. The heat medium that has passed through the heat radiation load is allowed to flow only to the storage means, and the heat medium provided from the storage means is heated by the heat exchange means, whereby the temperature of the heat medium that flows to the heat radiation load is increased. Adjust to the required temperature of the heat dissipation load,
When the detected temperature of the first temperature sensor is higher than the detected temperature of the second temperature sensor and higher than the required temperature of the heat medium load, the distribution ratio of the heat medium by the flow rate distribution means is adjusted to By flowing the heat medium that has passed through the heat radiation load through both the storage unit and the branch channel, and mixing the heat medium provided from the storage unit and the heat medium flowing through the branch channel, the heat dissipation Adjust the temperature of the heating medium flowing to the load to the required temperature of the heat dissipation load,
When the detected temperature of the second temperature sensor is equal to or higher than the detected temperature of the first temperature sensor, the distribution ratio of the flow distribution means is changed, and the heat medium that has passed through the heat radiating load is transferred to the branch flow path. A heat source device characterized by flowing only.
前記第1の温度センサの検出温度と前記第2の温度センサの検出温度とを利用し、前記流量分配手段による前記熱媒の分配比率を制御することを特徴とする請求項1記載の熱源装置。   2. The heat source device according to claim 1, wherein a distribution ratio of the heat medium by the flow rate distribution unit is controlled using a detection temperature of the first temperature sensor and a detection temperature of the second temperature sensor. . 前記貯留手段に溜められた前記熱媒を加熱する熱源に太陽熱を用いることを特徴とする請求項1記載の熱源装置。   The heat source apparatus according to claim 1, wherein solar heat is used as a heat source for heating the heat medium stored in the storage means. 燃焼排気が持つ顕熱を前記熱媒に熱交換する第1の熱交換手段又は前記燃焼排気が持つ潜熱を前記熱媒に熱交換する第2の熱交換手段の何れか一方又は双方を前記循環路に備え、前記熱媒の温度が所定温度未満の場合に前記熱媒を前記第1の熱交換手段又は前記第2の熱交換手段の何れか一方又は双方で加熱することを特徴とする請求項1記載の熱源装置。   Circulating either one or both of the first heat exchange means for exchanging sensible heat of combustion exhaust gas to the heat medium and the second heat exchange means for exchanging latent heat of combustion exhaust gas to the heat medium. It is provided in a path, and when the temperature of the heat medium is lower than a predetermined temperature, the heat medium is heated by one or both of the first heat exchange means and the second heat exchange means. Item 2. The heat source device according to Item 1. 前記循環路に流れる前記熱媒の熱を給湯水に熱交換する給湯熱交換手段を前記循環路に備えることを特徴とする請求項1記載の熱源装置。   The heat source device according to claim 1, further comprising a hot water supply heat exchanging means for exchanging heat of the heat medium flowing through the circulation path with hot water. 前記循環路に流れる前記熱媒の熱を浴槽水に熱交換する追焚熱交換手段を前記循環路に備えることを特徴とする請求項1記載の熱源装置。   The heat source device according to claim 1, wherein the circulation path is provided with additional heat exchange means for exchanging heat of the heat medium flowing through the circulation path with bathtub water.
JP2009138430A 2009-06-09 2009-06-09 Heat source equipment Active JP5944614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009138430A JP5944614B2 (en) 2009-06-09 2009-06-09 Heat source equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009138430A JP5944614B2 (en) 2009-06-09 2009-06-09 Heat source equipment

Publications (2)

Publication Number Publication Date
JP2010286137A JP2010286137A (en) 2010-12-24
JP5944614B2 true JP5944614B2 (en) 2016-07-05

Family

ID=43541972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138430A Active JP5944614B2 (en) 2009-06-09 2009-06-09 Heat source equipment

Country Status (1)

Country Link
JP (1) JP5944614B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040693B1 (en) * 2011-03-10 2011-06-10 윤석구 The central heating and hot water supply systems for saving energy
JP5904722B2 (en) * 2011-06-14 2016-04-20 株式会社ガスター Hot water storage system
JP6041570B2 (en) * 2011-12-19 2016-12-07 大阪瓦斯株式会社 Hot water storage heat source device
CN104315588A (en) * 2014-11-13 2015-01-28 苏州英合伦金属科技有限公司 Multifunctional solar energy warming system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134431A (en) * 1983-01-20 1984-08-02 Matsushita Electric Works Ltd Solar heat-utilizing hot water supply and heater in combination
JP2002081764A (en) * 2000-09-05 2002-03-22 Sekisui Chem Co Ltd Solar heat utilizing device
JP3933543B2 (en) * 2002-08-08 2007-06-20 松下電器産業株式会社 Heat medium supply device
JP2006017405A (en) * 2004-07-02 2006-01-19 Toshiba Electric Appliance Co Ltd Hot-water heating system
JP4912792B2 (en) * 2006-08-23 2012-04-11 リンナイ株式会社 Hot water storage unit
JP4938385B2 (en) * 2006-08-25 2012-05-23 リンナイ株式会社 Hot water storage hot water supply system
JP4750834B2 (en) * 2008-09-08 2011-08-17 株式会社デンソー Hot water storage hot water heater

Also Published As

Publication number Publication date
JP2010286137A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
KR101427694B1 (en) Hot-water centered boiler for heating and hot-water supply
JP5347654B2 (en) Hot water storage hot water supply system
JP6456627B2 (en) Hot water supply system and cogeneration system
EP2515050A1 (en) Hot water supply system
JP5171868B2 (en) Hot water storage water heater
JP5944614B2 (en) Heat source equipment
CN104823003A (en) Heat pump heat supply system
JP5537971B2 (en) Solar water heating system
JP2007333332A (en) Hot water storage type heating apparatus
JP5192778B2 (en) Hot water heater
JP2008045841A (en) Hot water storage type hot water supply system and cogeneration system
JP5606140B2 (en) Heat source device, heating device, freeze prevention control method thereof, and freeze prevention control program
JP5921416B2 (en) Cogeneration system and hot water supply equipment
JP4956005B2 (en) Instant water heater
JP2012122644A (en) Water heater
JP2002364912A (en) Multifunctional water-heater
JP2006183960A (en) Cogeneration system
JP2007309531A (en) Hot water storage type hot water supply system
KR200370859Y1 (en) Water Supply System for Heating and Domestic Hot Water
JP3738236B2 (en) Heat source machine
JP5606141B2 (en) Heat source device and hot water supply device
JP2007333335A (en) Hot water storage type hot water supply heating apparatus
KR100603962B1 (en) Water Supply System for Heating and Domestic Hot Water
JP4867274B2 (en) Water heater
JP2017036913A (en) Hot water supply system and cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141126

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160526

R150 Certificate of patent or registration of utility model

Ref document number: 5944614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250