JPH02104687A - Method for removing bismuth from copper electrolytic solution - Google Patents

Method for removing bismuth from copper electrolytic solution

Info

Publication number
JPH02104687A
JPH02104687A JP63257936A JP25793688A JPH02104687A JP H02104687 A JPH02104687 A JP H02104687A JP 63257936 A JP63257936 A JP 63257936A JP 25793688 A JP25793688 A JP 25793688A JP H02104687 A JPH02104687 A JP H02104687A
Authority
JP
Japan
Prior art keywords
soln
evaporator
bismuth
copper
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63257936A
Other languages
Japanese (ja)
Other versions
JPH0558078B2 (en
Inventor
Yoichi Takazawa
高沢 洋一
Shiro Kawai
志郎 河合
Yasukatsu Sasaki
康勝 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP63257936A priority Critical patent/JPH02104687A/en
Publication of JPH02104687A publication Critical patent/JPH02104687A/en
Publication of JPH0558078B2 publication Critical patent/JPH0558078B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To separate and recover Bi as a valuable metal from a used soln. discharged from a cell for electrolytically refining copper by adding anhydrous gypsum to the used soln., allowing Bi in the soln. to be adsorbed on the gypsum and carrying out solid-liq. separation. CONSTITUTION:An electrolytic soln. S1 used to electrolytically refine Cu is fed to a concentrating apparatus composed essentially of a first evaporator 1 and a first heating drum 2, anhydrous gypsum is added to the soln. S1 and this soln. S1 is circulated by a pump 3 between the evaporator 1, the drum 2 and fed as a concd. electrolytic soln. S2 by a pump 10 to a concentrating apparatus composed essentially of a second evaporator 8 and a second heating drum 9. A further concd. electrolytic soln. S3 overflowing the evaporator 8 is fed by a pump 14 to a settling vessel 15 and the gypsum with adsorbed Bi is settled and fed again to the evaporator 1 together with a used electrolytic soln. S1 to adsorb Bi in the soln. S1. The resulting Bi-free soln. overflowing the vessel 15 is reutilized after copper sulfate remaining in the soln. is recovered. The settled gypsum in the vessel 15 is treated to recover the adsorbed Bi.

Description

【発明の詳細な説明】 産’l    It>’! 本発明は、一般には銅電解液から該液中に含有されてい
るビスマス(Bi)を分離除去する方法に関するもので
あり、特に銅電解製錬系統に使用されたtJi4市解液
からビスマス(Bi)を除去する浄液方法として好適に
使用し得る。ヌ1本発明は有価物であるビスマス(Bi
)の分離回収に有効に適用される。
[Detailed Description of the Invention] Production'l It>'! The present invention generally relates to a method for separating and removing bismuth (Bi) contained in a copper electrolyte, and in particular, it relates to a method for separating and removing bismuth (Bi) contained in a copper electrolytic solution. ) can be suitably used as a liquid purification method to remove. Nu1 The present invention uses bismuth (Bi), which is a valuable material.
) is effectively applied to the separation and recovery of

支え立且遣 従来、銅電解製錬系統において、使用された銅電解液か
ら不純物を除去する浄液方法としては脱銅電解が採用さ
れている。
BACKGROUND ART Conventionally, in copper electrolytic smelting systems, decopper removal electrolysis has been adopted as a solution purification method for removing impurities from the copper electrolyte used.

一方、近年、ビスマス(Bi)は、医薬品、合金用材料
、1fX子炉用冷却剤、その他種々の技術分野で広く使
用されており、又、ビスマス(Bi)が銅製錬の副産物
として得られることも周知である。
On the other hand, in recent years, bismuth (Bi) has been widely used in pharmaceuticals, alloy materials, coolants for 1fX sub-reactors, and various other technical fields. is also well known.

−が  しよう する しかしながら、特に、L記銅電解製錬系統における脱銅
°屯解では、電解液としては予め不純物濃度が高められ
た濃縮電解液が使用され、ビスマス(Bi)は他の不純
物であるAs、Sb、Fe。
However, in particular, in the decopper removal process in the copper electrolytic smelting system, a concentrated electrolyte with a high impurity concentration is used as the electrolyte, and bismuth (Bi) is contaminated with other impurities. Certain As, Sb, and Fe.

その他と共に析出銅の中に析出される。従って、ビスマ
ス(Bi)を単独にて分離回収するには更に多くの処理
を必要とした。
It is precipitated in copper deposits along with others. Therefore, more treatments were required to separate and recover bismuth (Bi) alone.

本発明者等は、多くの研究実験の結果、銅電解製錬に使
用された銅電解液に無水石膏(CaS04)を添加する
と、銅電解液中のビスマス(Bi)のみが無水石f(C
a S 04 )に吸着され共沈することを見出した。
As a result of many research experiments, the present inventors found that when anhydrite (CaS04) was added to the copper electrolyte used in copper electrolytic smelting, only bismuth (Bi) in the copper electrolyte was removed from the anhydrite f(C
It was found that it was adsorbed to a S 04 ) and co-precipitated.

又、該沈澱物からは従来の技術にて高純度のビスマス(
Bi)を容易に分離回収し得ることが分かった。
In addition, high-purity bismuth (
It was found that Bi) could be easily separated and recovered.

本発明は斯る新規な知見に基づきなされたものである。The present invention has been made based on this new knowledge.

従って1本発明の目的は、銅電解液からビスマス(Bi
)のみを筒中に除去する方法を提供することである。
Therefore, one object of the present invention is to convert copper electrolyte into bismuth (Bi).
) in a cylinder.

未発明の他の目的は、銅電解液からビスマス(Bi)を
0@単に分離回収する方法を提供することである。
Another object of the present invention is to provide a method for simply separating and recovering bismuth (Bi) from a copper electrolyte.

l     ため 二 上記目的は本発明に係る銅電解液からのビスマス除去法
にて達成される。要約すれば本発明は。
The above objects are achieved by the method for removing bismuth from a copper electrolyte according to the present invention. In summary, the present invention.

銅゛屯解液に無水石!(CuSOs)を添加し、該銅電
解液中のビスマス(Bi)を、偵無木石脅(CaS04
)にて吸着沈澱させることを特徴とする銅″屯解液から
のビスマス除去法である。
Anhydrite in copper solution! (CuSOs) to remove bismuth (Bi) in the copper electrolyte.
) is a method for removing bismuth from a copper solution by adsorption and precipitation.

笈i1 次に、本発明に係る銅電解液からのビスマス除去法を図
面に即して更に詳しく説明する。
笈i1 Next, the method for removing bismuth from a copper electrolyte according to the present invention will be explained in more detail with reference to the drawings.

第1図に、銅電解製錬系統における銅電解液から不純物
を浄液する浄液プラントの一部が概略図示される。
FIG. 1 schematically shows a part of a liquid purification plant for purifying impurities from a copper electrolyte in a copper electrolytic smelting system.

本実施例にて浄液プラントは、第1蒸発缶lと第1加熱
缶2とを有し、第1蒸発缶lと第1加熱缶2とはポンプ
3を備えた管路4及び管路5にて接続されている。ts
tss智錬系統の電解槽(図示せず)からの使用済電解
液S1は、第1蒸発缶lと第1加熱缶2とを接続する管
路3に連結された供給管路6を介して、ポンプ3を作動
させることにより第1加熱缶2に供給される0本実施例
では電解液Slは毎分100文の割合にて第1加熱缶2
に供給された。
In this embodiment, the liquid purification plant has a first evaporator l and a first heating can 2, and the first evaporator l and the first heating can 2 are connected to a pipe line 4 and a pipe line equipped with a pump 3. It is connected at 5. ts
The used electrolyte S1 from the electrolytic cell (not shown) of the TSS Chiren system is supplied via a supply pipe line 6 connected to a pipe line 3 connecting the first evaporator l and the first heating can 2. In this embodiment, the electrolytic solution Sl is supplied to the first heating can 2 by operating the pump 3 at a rate of 100 liters per minute.
was supplied to.

本実施例にて、電解液S1は第1加熱缶2にて所定温度
、例えば60℃に加熱され、管路5を介して第1蒸発缶
lに供給される。第1蒸発缶lは、60℃、0.89気
圧に保持されており、電解液S1の第1次の濃縮が行な
われる0本実施例では該第1次濃縮にて電解@S1は約
1.3倍に濃縮された。
In this embodiment, the electrolytic solution S1 is heated in the first heating can 2 to a predetermined temperature, for example, 60° C., and is supplied to the first evaporator l via the pipe line 5. The first evaporator l is maintained at 60°C and 0.89 atm, and the first concentration of the electrolytic solution S1 is performed. In this embodiment, the electrolysis @ S1 is approximately 1 .3 times concentrated.

第1蒸発缶lの低層電解液は前記管路3を介して第1加
熱缶2に循環され、加熱される。
The lower electrolyte in the first evaporator 1 is circulated through the pipe 3 to the first heating can 2 and heated.

更に、本実施例にて浄液プラントは、第2蒸発缶8と第
2加熱缶9とを有し、第2蒸発缶8と第2加熱缶9とは
ポンプ10t−備えた管路11及び管路12にて接続さ
れる。
Further, in this embodiment, the liquid purification plant has a second evaporator 8 and a second heating can 9, and the second evaporator 8 and the second heating can 9 are connected to a pipe line 11 equipped with a pump 10t and a second heating can 9. They are connected through a conduit 12.

第1蒸発缶lの上層のオーバーフローした。約1.3倍
にまで濃縮された第1次濃縮電解液S2は管路7.11
を介して、ポンプ10によって第2加熱缶9へと供給さ
れる。第1次濃縮電解液S2は第2加熱缶9にて所定温
度1例えば80℃に加熱され、管路12を介して第2蒸
発缶8に供給される。第2蒸発缶8は、本実施例では8
0℃、0.43気圧に保持されており、電解液の第2次
の濃縮を行なう0本実施例では該第2次濃縮にて電解液
は約1.8倍にまで濃縮された。
The upper layer of the first evaporator L overflowed. The primary concentrated electrolyte S2, which has been concentrated to approximately 1.3 times, is transferred to pipe 7.11.
is supplied to the second heating can 9 by the pump 10 via. The first concentrated electrolytic solution S2 is heated in the second heating can 9 to a predetermined temperature 1, for example, 80° C., and is supplied to the second evaporator 8 via the conduit 12. The second evaporator 8 is 8 in this embodiment.
The temperature was maintained at 0° C. and 0.43 atm, and the electrolytic solution was subjected to secondary concentration. In this example, the electrolytic solution was concentrated to about 1.8 times in the secondary concentration.

第2蒸発缶8の低層電解液は前記管路11を介して第2
加熱缶9に循環され、加熱される。又、第2蒸発缶8の
上層のオーバーフローした、約1.8倍に濃縮された第
2次濃縮電解液S3は管路13を介して、ポンプ14に
よって沈降槽15へと送給される。
The lower electrolyte in the second evaporator 8 is transferred to the second evaporator via the pipe line 11.
It is circulated to the heating can 9 and heated. Further, the overflowing second concentrated electrolyte S3 in the upper layer of the second evaporator 8, which has been concentrated to about 1.8 times, is sent to the settling tank 15 by the pump 14 via the pipe line 13.

沈降槽15の上層オーバーフロー電解液は、当業者には
周知の従来の真空結晶缶(図示せず)に送給され、電解
液中の硫酸銅(CuSOs)、その他の不純物の晶析が
行なねれる。更に2該浄液された電解液は、濾過その他
の処理がなされた後、電解槽へと還流される。
The upper overflow electrolyte of settling tank 15 is fed to a conventional vacuum crystallizer (not shown) well known to those skilled in the art to crystallize copper sulfates (CuSOs) and other impurities in the electrolyte. I can sleep. Furthermore, the purified electrolytic solution is subjected to filtration and other treatments, and then returned to the electrolytic cell.

本発明に従えば、第1図に図示されるように。According to the invention, as illustrated in FIG.

゛電解液SIの供給管路6に無水石膏(CaS04)が
添加される。無水石膏(Ca S O4)の添加量は、
:V解液中のビスマス(Bi)の量により任意に選択さ
れ得るが1例えば電解液中のビスマスの埴がO、l g
/n程度とされる場合には、13g/lを連続的に添加
することにより良好な結果を得ることができた。一般に
、無水石膏(CaS04)は、銅電解液中のビスマス(
Bi)iに対し、70倍以北のり添加するのが好ましい
Anhydrous gypsum (CaS04) is added to the electrolyte solution SI supply pipe line 6. The amount of anhydrite (CaSO4) added is
:V can be arbitrarily selected depending on the amount of bismuth (Bi) in the electrolytic solution, but for example, bismuth (Bi) in the electrolytic solution is
/n, good results could be obtained by continuously adding 13 g/l. Generally, anhydrite (CaS04) is mixed with bismuth (CaS04) in a copper electrolyte.
Bi) It is preferable to add 70 times or more of the paste to i.

第2図は、無水石膏(Canoe)が添加される前後の
供給電解液51.第1次濃縮電解液Sz及び第2次濃縮
電解液S3中のビスマス(Bi)のI4の変化を、時間
軸に対して示すグラフである。
FIG. 2 shows the feed electrolyte 51. before and after anhydrite (Canoe) is added. It is a graph showing changes in I4 of bismuth (Bi) in the first concentrated electrolyte Sz and the second concentrated electrolyte S3 with respect to the time axis.

第2図のグラフから、第2次濃縮電解液S3中のビスマ
ス(B i)は、!!水石膏(Ca5O4)を添加する
ことにより大略完全に除去し得ることが理解されるであ
ろう。
From the graph in Figure 2, bismuth (B i) in the secondary concentrated electrolyte S3 is ! ! It will be appreciated that almost complete removal can be achieved by adding hydrogypsum (Ca5O4).

沈降槽15内の無水石膏(Canoe)に吸着され、共
沈した沈澱物は、例えば、(1)Biを含むCa5O,
+を塩触で溶解し、鉄を用いて沈澱させて黒鉛ルツボで
溶融する。又は、(2)浸出液を炭酸ソーダ又は石灰で
中和して11!基性塩化ビスマスとして沈澱させ、if
fし1石灰乳を加えて平たい鉄鍋で攪拌し、ここで得ら
れるB iz O3を炭素で5元してBiとする1等の
処理によりビスマス(Bi)が分離回収される。
The precipitate adsorbed and co-precipitated by anhydrite (Canoe) in the settling tank 15 is, for example, (1) Ca5O containing Bi;
+ is dissolved using salt, precipitated using iron, and melted in a graphite crucible. Or, (2) neutralize the leachate with soda carbonate or lime and 11! Precipitated as basic bismuth chloride, if
1 Milk of lime is added and stirred in a flat iron pot, and bismuth (Bi) is separated and recovered by the 1st treatment in which the B iz O3 obtained here is quintupled with carbon to form Bi.

斯る方法にて純度99%のビスマス(Bi)を得ること
ができた。
By this method, bismuth (Bi) with a purity of 99% could be obtained.

尚、沈降槽15内の沈澱物は、その一部を前記’+((
耐液供給管路6に循環することも可能である。
Incidentally, a part of the sediment in the settling tank 15 is added to the above-mentioned '+((
It is also possible to circulate to the liquid-resistant supply line 6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明に係る方法を銅′市解製錬系統の炸液
1−程に適用した一実施例を示す概略図である。 第2図は、無水石膏(Canoe)が添加される前後の
供給電解液SI、第1次濃1ilTL解液52及び第2
次濃縮電解液S3中のビスマス(Bi)の1−の変化を
、時間軸に対して示すグラフである。 1:第1蒸発缶 2:pJ41加熱缶 8:第2蒸発缶 9:第2加熱缶 15:沈降槽 第1図
FIG. 1 is a schematic diagram showing an embodiment in which the method according to the present invention is applied to the explosive liquid 1-1 of a copper smelting system. Figure 2 shows the feed electrolyte SI, the primary concentrated 1il TL solution 52 and the secondary electrolyte SI before and after anhydrite (Canoe) is added.
It is a graph showing the change of 1- of bismuth (Bi) in the next concentrated electrolytic solution S3 with respect to the time axis. 1: First evaporator 2: pJ41 heating can 8: Second evaporator 9: Second heating can 15: Sedimentation tank Fig. 1

Claims (1)

【特許請求の範囲】 1)銅電解液に無水石膏(CaSO_4)を添加し、該
銅電解液中のビスマス(Bi)を該無水石膏(CaSO
_4)にて吸着沈澱させることを特徴とする銅電解液か
らのビスマス除去法。 2)銅電解液は銅電解製錬系統からの使用済電解液であ
り、無水石膏(CaSO_4)が添加された銅電解液は
1.8倍以上に濃縮されて成る請求項1に記載の銅電解
液からのビスマス除去法。 3)無水石膏(CaSO_4)は、銅電解液中のビスマ
ス(Bi)量に対し、70倍以上の量添加される請求項
1又は2に記載の銅電解液からのビスマス除去法。
[Claims] 1) Anhydrous gypsum (CaSO_4) is added to the copper electrolyte, and bismuth (Bi) in the copper electrolyte is mixed with the anhydrous gypsum (CaSO_4).
_4) A method for removing bismuth from a copper electrolyte, characterized by adsorption and precipitation. 2) The copper electrolyte according to claim 1, wherein the copper electrolyte is a used electrolyte from a copper electrolytic smelting system, and the copper electrolyte to which anhydrite (CaSO_4) is added is concentrated 1.8 times or more. Method for removing bismuth from electrolytes. 3) The method for removing bismuth from a copper electrolyte according to claim 1 or 2, wherein anhydrous gypsum (CaSO_4) is added in an amount of 70 times or more the amount of bismuth (Bi) in the copper electrolyte.
JP63257936A 1988-10-13 1988-10-13 Method for removing bismuth from copper electrolytic solution Granted JPH02104687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63257936A JPH02104687A (en) 1988-10-13 1988-10-13 Method for removing bismuth from copper electrolytic solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63257936A JPH02104687A (en) 1988-10-13 1988-10-13 Method for removing bismuth from copper electrolytic solution

Publications (2)

Publication Number Publication Date
JPH02104687A true JPH02104687A (en) 1990-04-17
JPH0558078B2 JPH0558078B2 (en) 1993-08-25

Family

ID=17313258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63257936A Granted JPH02104687A (en) 1988-10-13 1988-10-13 Method for removing bismuth from copper electrolytic solution

Country Status (1)

Country Link
JP (1) JPH02104687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213502A (en) * 2010-03-31 2011-10-27 Pan Pacific Copper Co Ltd Method of recovering nickel from copper electrolyte

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246138A (en) * 1994-03-10 1995-09-26 Kanebo Ltd Display structure of article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213502A (en) * 2010-03-31 2011-10-27 Pan Pacific Copper Co Ltd Method of recovering nickel from copper electrolyte

Also Published As

Publication number Publication date
JPH0558078B2 (en) 1993-08-25

Similar Documents

Publication Publication Date Title
RU2233898C2 (en) Method of preparation of magnesium chloride solution
US5783057A (en) Method of purifying copper electrolytic solution
CN112981104B (en) Method for treating cadmium-containing waste residues and recycling metal cadmium
US4150976A (en) Method for the recovery of metallic copper
TWI383958B (en) Wastewater treatment methods
AU756317B2 (en) Separation and concentration method
US3929597A (en) Production of lead and silver from their sulfides
JP3151182B2 (en) Copper electrolyte cleaning method
US4789446A (en) Method of processing residues from the hydrometallurgical production of zinc
JP5062111B2 (en) Method for producing high-purity arsenous acid aqueous solution from copper-free slime
JPH02104687A (en) Method for removing bismuth from copper electrolytic solution
US4544460A (en) Removal of potassium chloride as a complex salt in the hydrometallurgical production of copper
US3816590A (en) Method and apparatus for providing a pure concentrated aqueous solution of aluminum nitrate
US4255399A (en) Process for the recovery of magnesium oxide of high purity
JP4309648B2 (en) High purity aluminum chloride manufacturing method and high purity aluminum chloride manufacturing apparatus
JP3226475B2 (en) A method for separating and recovering metals from a circulating copper electrolyte and purifying the same in a copper electrorefining system for producing electrolytic copper by electrolytically refining blister copper
JP2960876B2 (en) Copper electrolyte cleaning method
SE451854B (en) SET FOR PREPARATION OF ALKALIMETAL CHLORATE
CN1195880C (en) Method of recovering waste copper foil
JPS589820B2 (en) Method for recovering gallium from alkaline aluminate solutions obtained from processing aluminum-containing ores
CN111807391B (en) Method for preparing magnesium sulfate by utilizing gold concentrate biological oxidation waste liquid
JPH085676B2 (en) A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel
WO2003072503A1 (en) Method of purifying niobium compound and/or tantalum compound
JPH09235684A (en) Method for regenerating waste liquid etchant
JPH0967627A (en) Method for selectively recovering antimony and bismuth in electrolyte in copper electrorefining