JP2011213502A - Method of recovering nickel from copper electrolyte - Google Patents

Method of recovering nickel from copper electrolyte Download PDF

Info

Publication number
JP2011213502A
JP2011213502A JP2010080983A JP2010080983A JP2011213502A JP 2011213502 A JP2011213502 A JP 2011213502A JP 2010080983 A JP2010080983 A JP 2010080983A JP 2010080983 A JP2010080983 A JP 2010080983A JP 2011213502 A JP2011213502 A JP 2011213502A
Authority
JP
Japan
Prior art keywords
nickel sulfate
copper
crude nickel
electrolyte
vacuum evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010080983A
Other languages
Japanese (ja)
Other versions
JP5642987B2 (en
Inventor
Moritomo Hashimoto
守友 橋本
Makoto Narita
誠 成田
Takeshi Hattori
剛 服部
Koji Nishida
幸司 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2010080983A priority Critical patent/JP5642987B2/en
Publication of JP2011213502A publication Critical patent/JP2011213502A/en
Application granted granted Critical
Publication of JP5642987B2 publication Critical patent/JP5642987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a space-saving method of recovering nickel from a copper electrolyte.SOLUTION: In a method of recovering nickel from a copper-removed electrolyte comprising concentrating a copper-removed electrolyte by heating, depositing a crude nickel sulfate by cooling the concentrate, and separating the deposited crude nickel sulfate from the liquid, the concentration of the copper-removed electrolyte by heating is made in a vacuum evaporator.

Description

本発明は銅電解液からニッケルを回収する方法及びシステムに関する。より詳細には、本発明は銅電解精製における脱銅電解液からニッケルを粗硫酸ニッケルとして回収する方法及びシステムに関する。   The present invention relates to a method and system for recovering nickel from a copper electrolyte. More specifically, the present invention relates to a method and system for recovering nickel as crude nickel sulfate from a copper-free electrolyte in copper electrolytic purification.

銅電解精製においてアノードとして使用する粗銅には砒素、ビスマス、アンチモン、ニッケル等の不純物が含まれており、これらは電解液中に溶出する。不純物の中でもニッケルは電析電位が銅の電析電位に比べて極端に低いので、電解液中に特に濃縮されやすい。電解液中のニッケル濃度が上昇すると、電解液の液抵抗増加による電圧上昇が起きるため、消費電力の増加によって電気銅の生産コストが増加するという問題がある。また、電解液中のニッケル濃度が上昇しすぎると、銅イオンの溶出を妨害するスライム層がアノード表面に形成され、いわゆる不動態化が起こることが知られている。   Crude copper used as an anode in copper electrolytic refining contains impurities such as arsenic, bismuth, antimony, nickel, and these are eluted in the electrolytic solution. Among the impurities, nickel has an electrodeposition potential extremely lower than the electrodeposition potential of copper, and is thus particularly easily concentrated in the electrolytic solution. When the nickel concentration in the electrolytic solution increases, the voltage rises due to an increase in the liquid resistance of the electrolytic solution, and thus there is a problem that the production cost of electrolytic copper increases due to an increase in power consumption. Further, it is known that when the nickel concentration in the electrolytic solution increases too much, a slime layer that hinders elution of copper ions is formed on the anode surface, and so-called passivation occurs.

そこで、銅電解液からニッケルを回収することで、銅電解液中のニッケル濃度を一定の値以下に維持することが行われている。銅電解液からニッケルを回収する方法としては脱銅後、電解、硫化、溶媒抽出、析出法等で砒素、アンチモン、ビスマスなどの不純物を取り除いた後、ニッケルを硫酸ニッケルの形で結晶析出させる方法が一般的である。このときの硫酸ニッケルは不純物を少量含むので斯界では粗硫酸ニッケルと呼ばれている。   Therefore, nickel concentration in the copper electrolyte is maintained below a certain value by recovering nickel from the copper electrolyte. As a method for recovering nickel from the copper electrolyte, after removing copper, removing impurities such as arsenic, antimony and bismuth by electrolysis, sulfurization, solvent extraction, precipitation, etc., and then crystallizing nickel in the form of nickel sulfate Is common. Since nickel sulfate at this time contains a small amount of impurities, it is called crude nickel sulfate in this field.

特開2006−283047号公報(特許文献1)では以下のニッケル回収方法が記載されている。銅電解液を加熱濃縮し、その後に冷却することで銅を硫酸銅として取り除く。次に電解採取工程にて銅、砒素、アンチモン、ビスマス等の不純物を陰極側で還元除去する。この電解採取後液を冷却し、溶解度差を利用して液中のニッケルを粗硫酸ニッケルとして晶出させた後、遠心分離することで液中からニッケルを回収する。   Japanese Patent Laying-Open No. 2006-283047 (Patent Document 1) describes the following nickel recovery method. The copper electrolyte is heated and concentrated, and then cooled to remove copper as copper sulfate. Next, impurities such as copper, arsenic, antimony, and bismuth are reduced and removed on the cathode side in an electrowinning process. After the electrolytic collection, the liquid is cooled, and the nickel in the liquid is crystallized as crude nickel sulfate using the difference in solubility, and then the nickel is recovered from the liquid by centrifugation.

特開2003−222408号公報(特許文献2)には、電解採取後液中のNiを析出させる工程として液中燃焼法を使用している。液中燃焼法は被処理液を濃縮し、硫酸濃度を高めることによりNiの溶解度を下げ、溶解度差によりNiを硫酸ニッケルとして晶出させる。液中燃焼後の濃縮液を冷却槽にて冷却することで、粗硫酸ニッケルの晶出を増加させることが可能であることも記載されている。   In JP2003-222408A (Patent Document 2), a submerged combustion method is used as a step of precipitating Ni in a solution after electrolytic collection. In the submerged combustion method, the liquid to be treated is concentrated, and the solubility of Ni is lowered by increasing the concentration of sulfuric acid. It is also described that the crystallization of crude nickel sulfate can be increased by cooling the concentrated liquid after combustion in liquid in a cooling tank.

特開2006−283047号公報JP 2006-283047 A 特開2003−222408号公報JP 2003-222408 A

特許文献2に記載の方法は、液中燃焼法と冷却法を併用することでNiの晶出効率を高めた方法であり、実用的な手法ではある。しかしながら、液中燃焼装置は燃焼のための燃料を必要とするだけでなく、排ガス処理、蒸気攪拌による内部スケールの除去・バーナーの定期メンテナンスなどを行う必要があることから、費用が割高となり、維持管理も手間がかかる。また、排ガス処理のために設置する電気集塵機・排ガススクラバー等多くの設置スペースが必要である。
Niの回収システムを新設する場合には当初から必要な設置スペースを確保しておくことも可能ではあるが、既存設備に対する処理能力の増強を考える場合には工場内の多くのスペースが埋まってしまっていることから設備はできるだけコンパクトに収めることが必要となる。
The method described in Patent Document 2 is a method in which the crystallization efficiency of Ni is increased by using a submerged combustion method and a cooling method in combination, and is a practical method. However, the submerged combustion device not only requires fuel for combustion, but also requires exhaust gas treatment, internal scale removal by steam agitation, and periodic maintenance of the burner. Management also takes time. In addition, many installation spaces such as an electric dust collector and exhaust gas scrubber installed for exhaust gas treatment are required.
When installing a new Ni recovery system, it is possible to secure the necessary installation space from the beginning. However, when considering increasing the processing capacity of existing facilities, a lot of space in the factory is filled. Therefore, it is necessary to keep the equipment as compact as possible.

そこで、本発明は銅電解液からのニッケル回収を低コスト及び省スペースで行う方法を提供することを主たる課題とする。また、本発明はそのような方法を実施することのできるニッケル回収システムを提供することを別の課題とする。   Therefore, the main object of the present invention is to provide a method for recovering nickel from a copper electrolyte at low cost and space saving. Moreover, this invention makes it another subject to provide the nickel recovery system which can implement such a method.

本発明者らは、上記の課題を解決するために検討を重ねたところ、真空蒸発装置を利用してニッケルを濃縮することが有効であることを見出した。真空蒸発装置は装置内を大気圧以下にして電解液の沸点を下げながら被処理液を加熱濃縮する装置であり、工場内で発生する廃熱を利用できる点や、真空蒸発で濃縮液と共に得られる凝縮水(弱酸性)を工程水に利用可能(水使用量削減)である点でメリットがある。また、真空蒸発装置はガス処理が不要であるため省スペース化に資する。真空蒸発装置の熱源としては、燃焼ガスを使用することもできるが、銅製錬工場に設置してある自溶炉等から排出される廃蒸気を利用することができるため、液中燃焼法で必要であった燃料も必要なくなる。   As a result of repeated studies to solve the above-mentioned problems, the present inventors have found that it is effective to concentrate nickel using a vacuum evaporator. The vacuum evaporator is a device that heats and concentrates the liquid to be treated while lowering the boiling point of the electrolyte by reducing the boiling point of the electrolyte, and can be obtained together with the concentrate by vacuum evaporation and the ability to use waste heat generated in the factory. There is a merit that the condensed water (weakly acidic) can be used for process water (reduction of water usage). Moreover, the vacuum evaporation apparatus contributes to space saving because no gas treatment is required. Combustion gas can be used as a heat source for the vacuum evaporator, but waste steam discharged from a flash smelting furnace installed at a copper smelting plant can be used. The required fuel is no longer needed.

上記の知見を基礎として完成した本発明は、一側面において、脱銅電解液を加熱濃縮し、その後冷却することにより粗硫酸ニッケルを析出させ、析出した粗硫酸ニッケルを固液分離することにより、脱銅電解液から粗硫酸ニッケルを回収する方法において、脱銅電解液の加熱濃縮を真空蒸発装置で実施することを特徴とする方法である。   The present invention completed on the basis of the above knowledge, in one aspect, the concentrated copper sulfate is heated and concentrated, and then cooled to precipitate crude nickel sulfate, and the precipitated crude nickel sulfate is separated into solid and liquid, In the method for recovering crude nickel sulfate from a copper removal electrolyte, the copper concentration is heated and concentrated in a vacuum evaporator.

本発明に係る粗硫酸ニッケル回収方法は一実施形態において、脱銅電解液の加熱濃縮を真空蒸発装置及びその後段に直列に配置した液中燃焼装置で実施する。   In one embodiment, the crude nickel sulfate recovery method according to the present invention is performed by heating and concentrating the copper removal electrolyte using a vacuum evaporator and a submerged combustion device arranged in series in the subsequent stage.

本発明に係る粗硫酸ニッケル回収方法は別の一実施形態において、真空蒸発装置の熱源が水蒸気である。   In another embodiment of the crude nickel sulfate recovery method according to the present invention, the heat source of the vacuum evaporator is water vapor.

本発明に係る粗硫酸ニッケル回収方法は更に別の一実施形態において、真空蒸発装置の熱源が自溶炉又は転炉から排出される廃熱を利用して生成した水蒸気である。   In yet another embodiment, the method for recovering crude nickel sulfate according to the present invention is water vapor generated using waste heat discharged from a flash smelting furnace or converter by a heat source of a vacuum evaporator.

本発明に係る粗硫酸ニッケル回収方法は更に別の一実施形態において、脱銅電解液は、前段の真空蒸発装置において1.85〜2.15倍に濃縮され、後段の液中燃焼装置において更に1.85〜2.15倍に濃縮され、合計で3.42〜4.62倍に濃縮される。   In yet another embodiment of the method for recovering crude nickel sulfate according to the present invention, the copper removal electrolyte is concentrated 1.85 to 2.15 times in the former vacuum evaporator, and further in the latter submerged combustion apparatus. It is concentrated 1.85 to 2.15 times, and is concentrated 3.42 to 4.62 times in total.

本発明は、別の一側面において、
・脱銅電解液を加熱濃縮するための真空蒸発装置と、
・真空蒸発装置で濃縮された脱銅電解液を冷却して粗硫酸ニッケルを析出させるための冷却槽と、
・冷却槽で析出した粗硫酸ニッケルを脱銅電解液から除去するための固液分離装置と、
を備えた脱銅電解液からの粗硫酸ニッケル回収システムである。
In another aspect of the present invention,
A vacuum evaporator for heating and concentrating the copper removal electrolyte,
A cooling bath for cooling the copper removal electrolyte concentrated in the vacuum evaporator to deposit crude nickel sulfate;
A solid-liquid separator for removing the crude nickel sulfate precipitated in the cooling bath from the copper removal electrolyte,
Is a system for recovering crude nickel sulfate from a copper removal electrolyte solution.

本発明に係る粗硫酸ニッケル回収システムは一実施形態において、真空蒸発装置で濃縮された脱銅電解液を一層加熱濃縮するための液中燃焼装置を更に備え、冷却槽では液中燃焼装置で濃縮された脱銅電解液を冷却して粗硫酸ニッケルを析出させる。   In one embodiment, the crude nickel sulfate recovery system according to the present invention further comprises a submerged combustion device for further heating and concentrating the copper removal electrolyte concentrated by the vacuum evaporator, and the cooling tank is concentrated by the submerged combustion device. The removed copper removal electrolyte is cooled to deposit crude nickel sulfate.

本発明に係る粗硫酸ニッケル回収システムは別の一実施形態において、真空蒸発装置の熱源が水蒸気である。   In another embodiment of the crude nickel sulfate recovery system according to the present invention, the heat source of the vacuum evaporator is water vapor.

本発明に係る粗硫酸ニッケル回収システムは更に別の一実施形態において、真空蒸発装置の熱源が自溶炉又は転炉から排出される廃熱を利用して生成した水蒸気である。   In yet another embodiment, the crude nickel sulfate recovery system according to the present invention is steam generated by using waste heat discharged from a flash smelting furnace or converter by a heat source of a vacuum evaporator.

本発明によれば、銅電解液からのニッケル回収をこれまでに比べて省スペースで実施することが可能となる。   According to the present invention, nickel recovery from a copper electrolyte can be performed in a smaller space than before.

液中燃焼装置を用いた既存の粗硫酸ニッケル回収設備が存在する場合には、真空蒸発装置を増設することで簡便に電解液からのニッケル回収能力の増強を図ることができる。ニッケル回収能力が強化されると、銅電解における粗銅中のニッケル品位の許容値を上げても電解液中のニッケル濃度を低く維持することが可能となるため、ニッケルの品位が高い鉱石や二次原料を利用することが可能となる。   When there is an existing crude nickel sulfate recovery facility using a submerged combustion device, the ability to recover nickel from the electrolyte can be easily increased by adding a vacuum evaporator. When the nickel recovery capability is strengthened, it is possible to keep the nickel concentration in the electrolyte low even if the tolerance of nickel grade in crude copper in copper electrolysis is increased. The raw material can be used.

真空蒸発装置の熱源として水蒸気を利用することで、真空蒸発で濃縮液と共に得られる凝縮水(弱酸性)を工程水として利用可能であるという利点が得られる。特に、銅製錬工場に設置してある自溶炉や転炉から排出される排ガス中の熱を利用して水蒸気を生成することで、液中燃焼法で必要であった燃料も必要なくなり、ニッケル回収のための費用を低減することができる。   By using water vapor as a heat source of the vacuum evaporator, there is an advantage that condensed water (weak acidity) obtained together with the concentrate by vacuum evaporation can be used as process water. In particular, by using the heat in exhaust gas discharged from flash smelting furnaces and converters installed in copper smelters, water vapor is no longer needed, and the fuel required for submerged combustion is no longer necessary. The cost for collection can be reduced.

本発明に係る粗硫酸ニッケル回収方法の一例を示すフロー図である。It is a flow figure showing an example of the rough nickel sulfate recovery method concerning the present invention.

本発明の一実施形態について図面を参照しながら説明する。脱銅電解液は真空蒸発装置11に導入されると、そこで加熱濃縮を受ける。真空蒸発装置11を出た濃縮脱銅電解液は液中燃焼装置12に入り、更なる濃縮を受ける。次いで、高濃縮された脱銅電解液は冷却槽13に導入されて冷却されることで粗硫酸ニッケルが晶出する。析出した粗硫酸ニッケルはフィルタープレス(固液分離装置)14で分離される。これら一連の工程で脱銅電解液から粗硫酸ニッケルが回収される。   An embodiment of the present invention will be described with reference to the drawings. When the copper removal electrolytic solution is introduced into the vacuum evaporator 11, it is heated and concentrated there. The concentrated copper removal electrolyte leaving the vacuum evaporator 11 enters the submerged combustion device 12 and undergoes further concentration. Next, the highly concentrated copper removal electrolyte is introduced into the cooling bath 13 and cooled, whereby crude nickel sulfate is crystallized. The precipitated crude nickel sulfate is separated by a filter press (solid-liquid separator) 14. Through these series of steps, crude nickel sulfate is recovered from the copper removal electrolyte.

<1.脱銅電解液>
本発明において脱銅電解液とは、銅電解精製工程で使用されて、アノードからの銅イオンや砒素、ビスマス、アンチモン及びニッケル等の不純物の溶出を受けた後の使用済み銅電解液に対して、公知の任意の手段によって少なくとも銅濃度の低減処理を行った後の洗浄後液を指す。脱銅電解液は、銅のみならず、砒素、ビスマス及びアンチモン等の不純物の低減処理も行った後の洗浄後液であるのが、ニッケル回収率の向上の観点で好ましい。
<1. Copper removal electrolyte>
In the present invention, the copper removal electrolytic solution is used in the copper electrolytic purification process, and is used for the used copper electrolytic solution after elution of copper ions, impurities such as arsenic, bismuth, antimony and nickel from the anode. The liquid after washing | cleaning after performing the reduction process of a copper concentration at least by the well-known arbitrary means. The copper removal electrolytic solution is preferably a post-cleaning solution after reduction treatment of impurities such as arsenic, bismuth and antimony as well as copper from the viewpoint of improving the nickel recovery rate.

銅電解液中の銅濃度を低減する方法としては、限定的ではないが、例えば加熱濃縮し、その後に冷却することで銅を硫酸銅として取り除く方法や、銅を陰極側に電着させて除去する電解採取法が挙げられる。   The method for reducing the copper concentration in the copper electrolyte is not limited. For example, it is concentrated by heating and then cooled to remove copper as copper sulfate, or by removing the copper by electrodeposition on the cathode side. Electrolytic collection method is included.

銅電解液中の砒素、ビスマス及びアンチモン等の不純物濃度を低減する方法としては、限定的ではないが、例えば砒素、アンチモン、ビスマス等の不純物を陰極側に電着させて除去する電解採取法、イオン交換樹脂やキレート樹脂に通液する方法などが挙げられる。中でも、不純物の除去効率や操業のし易さなどの観点から、電解採取法が好ましい。   The method for reducing the concentration of impurities such as arsenic, bismuth and antimony in the copper electrolyte is not limited, but for example, an electrowinning method in which impurities such as arsenic, antimony and bismuth are electrodeposited and removed on the cathode side, Examples thereof include a method of passing through an ion exchange resin or a chelate resin. Of these, the electrowinning method is preferable from the viewpoints of impurity removal efficiency and ease of operation.

典型的には使用済みの銅電解液は、加熱濃縮及び冷却処理によって主に銅が除去された後、電解採取工程によって更に銅及び砒素、アンチモン、ビスマス等の不純物が除去されて、本発明の処理対象である脱銅電解液となる。   Typically, the used copper electrolyte is mainly removed of copper by heat concentration and cooling treatment, and further, impurities such as copper and arsenic, antimony, bismuth and the like are further removed by an electrowinning process. A copper removal electrolyte to be treated is obtained.

銅電解液の洗浄により、銅電解液中の各成分の濃度がどのように推移していくかについて、一例を説明する。銅電解液が銅:45〜50g/L、ニッケル:12〜15g/L、硫酸:170〜200g/L、砒素:7〜10g/L、アンチモン:0.1〜0.3g/L、ビスマス:0.1〜0.3g/Lを含む場合、これを加熱濃縮すると、銅:90〜100g/L、ニッケル:24〜30g/L、硫酸:340〜400g/L、砒素:14〜20g/L、アンチモン:0.2〜0.6g/L、ビスマス:0.2〜0.6g/Lとなる。この濃縮液を10℃まで冷却することにより、硫酸銅が析出する。この硫酸銅は、固液分離した後、別途精製され製品硫酸銅とすることができる。冷却後液は例えば銅:10〜20g/L、ニッケル:24〜30g/L、硫酸:260〜330g/L、砒素:14〜20g/L、アンチモン:0.2〜0.6g/L、ビスマス:0.2〜0.6g/Lである。この液を電解採取工程へ送ることにより、銅、砒素、アンチモン、ビスマスが除去され、電解採取後液(すなわち脱銅電解液)は、例えば銅0.5g/L、ニッケル24〜30g/L、硫酸:280〜350g/L、砒素:3.0〜5.0g/L、アンチモン:00.01〜0.1g/L、ビスマス:0.01〜0.05g/Lである。   An example will be described of how the concentration of each component in the copper electrolyte solution changes due to the cleaning of the copper electrolyte solution. Copper electrolyte is copper: 45-50 g / L, nickel: 12-15 g / L, sulfuric acid: 170-200 g / L, arsenic: 7-10 g / L, antimony: 0.1-0.3 g / L, bismuth: When 0.1 to 0.3 g / L is contained, when heated and concentrated, copper: 90 to 100 g / L, nickel: 24 to 30 g / L, sulfuric acid: 340 to 400 g / L, arsenic: 14 to 20 g / L , Antimony: 0.2 to 0.6 g / L, bismuth: 0.2 to 0.6 g / L. By cooling the concentrate to 10 ° C., copper sulfate is precipitated. This copper sulfate can be purified separately after solid-liquid separation to obtain product copper sulfate. The liquid after cooling is, for example, copper: 10-20 g / L, nickel: 24-30 g / L, sulfuric acid: 260-330 g / L, arsenic: 14-20 g / L, antimony: 0.2-0.6 g / L, bismuth : 0.2 to 0.6 g / L. By sending this solution to the electrolytic collection step, copper, arsenic, antimony and bismuth are removed, and the post-electrolytic collection solution (that is, the copper removal electrolytic solution) is, for example, copper 0.5 g / L, nickel 24-30 g / L, Sulfuric acid: 280-350 g / L, Arsenic: 3.0-5.0 g / L, Antimony: 00.01-0.1 g / L, Bismuth: 0.01-0.05 g / L.

<2.真空蒸発装置>
真空蒸発装置11に導入された脱銅電解液は電解液中の水分が蒸発することで濃縮される。
真空蒸発装置11は、装置内を真空ポンプを利用して大気圧以下にして運転する。装置内は、蒸発缶隔壁耐圧・気密性の理由により、0.05〜0.1MPa程度の圧力とするのが好ましく、0.01〜0.05MPa程度の圧力とするのがより好ましい。また、装置内は、真空蒸発装置11の熱源としては、水蒸気、燃焼ガスなどが挙げられるが、廃熱を利用することができれば低ランニングコストで運転できることから、それを利用することが好ましい。例えば、銅製錬工場に設置してある自溶炉や転炉等から排出される廃蒸気を利用することができる。
<2. Vacuum evaporator>
The copper removal electrolyte introduced into the vacuum evaporator 11 is concentrated as the water in the electrolyte evaporates.
The vacuum evaporator 11 is operated with the inside of the apparatus at atmospheric pressure or lower using a vacuum pump. The inside of the apparatus is preferably set to a pressure of about 0.05 to 0.1 MPa, more preferably about 0.01 to 0.05 MPa, for reasons of vaporizer partition pressure resistance and airtightness. In the apparatus, the heat source of the vacuum evaporation apparatus 11 includes water vapor, combustion gas, etc. However, if waste heat can be used, it can be operated at a low running cost. For example, waste steam discharged from a flash smelting furnace, a converter, etc. installed in a copper smelting factory can be used.

真空蒸発装置11は、単一の蒸発缶を有する構成としてもよいが、真空蒸発缶を直列に複数配列して、前段で利用した蒸気を後段の蒸発に利用する多重効用式を採用することも出来る。これにより蒸発効率を高めることができる。このとき、蒸発装置11内の電解液は、第1効用缶で60〜80℃、第2効用缶で40〜60℃となり、典型的には第1効用缶で68〜73℃、第2効用缶で43〜48℃とすることができる。   The vacuum evaporator 11 may have a single evaporator. Alternatively, a plurality of vacuum evaporators may be arranged in series, and a multi-effect formula may be employed in which steam used in the previous stage is used for subsequent evaporation. I can do it. Thereby, evaporation efficiency can be improved. At this time, the electrolytic solution in the evaporator 11 is 60 to 80 ° C. for the first effect can and 40 to 60 ° C. for the second effect can, typically 68 to 73 ° C. for the first effect can and the second effect. It can be 43-48 degreeC with a can.

脱銅電解液の加熱濃縮を真空蒸発装置11のみで実施する場合や、前段に液中燃焼装置12を設置する場合には、脱銅電解液の濃縮率は、電解液中のNiが過飽和状態に達し硫酸ニッケルとして晶析する条件とするため、3.5〜4.5倍とするのが好ましく、4倍前後とするのがより好ましい。一方、液中燃焼装置12を後段に設置する場合には、濃縮率が高すぎると液中燃焼装置内で濃縮液の粘性が増加したり、送液配管内のスケール(硫酸ニッケル)が発生したりする。一方、濃縮率が低すぎると、粗硫酸ニッケルの回収量が低下したり、液中燃焼装置の負荷増大となるため、3〜5倍とするのが好ましく、3.5〜4.5倍とすることがより好ましい。ここでの濃縮率は濃縮液中の硫酸濃度を原液の硫酸濃度で除した値で定義される。   When carrying out the heat concentration of the copper removal electrolyte only with the vacuum evaporator 11 or when the submerged combustion device 12 is installed in the previous stage, the concentration of the copper removal electrolyte is such that Ni in the electrolyte is supersaturated. Therefore, it is preferably 3.5 to 4.5 times and more preferably about 4 times. On the other hand, when the submerged combustion device 12 is installed in the subsequent stage, if the concentration rate is too high, the viscosity of the concentrated liquid increases in the submerged combustion device or scale (nickel sulfate) is generated in the liquid feeding pipe. Or On the other hand, if the concentration rate is too low, the recovered amount of crude nickel sulfate is reduced or the load of the submerged combustion apparatus is increased. Therefore, it is preferably 3 to 5 times, and 3.5 to 4.5 times. More preferably. The concentration rate here is defined as a value obtained by dividing the sulfuric acid concentration in the concentrated solution by the sulfuric acid concentration in the stock solution.

<3.液中燃焼装置>
真空蒸発装置11に加えて液中燃焼装置12を前段又は後段に設けることもできる。液中燃焼装置は、脱銅電解液を液中燃焼炎で130〜160℃程度に加熱して蒸発させ、濃縮する。この際にも脱銅電解液中のニッケル分の一部(約75〜85%)が粗硫酸ニッケルとして析出し得る。液中燃焼装置12による脱銅電解液の濃縮率は、高くしようとし過ぎると濃縮缶内により長い時間操業するために缶内の温度上限を超えるなどして設備損傷の恐れがある。一方で、低すぎると粗硫酸ニッケルの析出量が低下して回収効率が低下する。そこで、3〜5倍とするのが好ましく、3.5〜4.5倍とするのがより好ましい。前段の真空蒸発装置11によって脱銅電解液は既に濃縮されているため、液中燃焼装置12ではそれほど高い濃縮率を設定する必要はない。
<3. Submerged combustion device>
In addition to the vacuum evaporation apparatus 11, the submerged combustion apparatus 12 can also be provided in the front | former stage or a back | latter stage. The submerged combustion apparatus evaporates the copper removal electrolyte by heating it to about 130 to 160 ° C. with a submerged combustion flame to concentrate it. At this time, a part of nickel (about 75 to 85%) in the copper removal electrolytic solution can be precipitated as crude nickel sulfate. If the concentration rate of the copper removal electrolyte solution by the submerged combustion device 12 is too high, the concentration can is operated for a longer time, and the upper limit of the temperature in the can is exceeded. On the other hand, if it is too low, the precipitation amount of the crude nickel sulfate is lowered and the recovery efficiency is lowered. Therefore, it is preferably 3 to 5 times, more preferably 3.5 to 4.5 times. Since the copper removal electrolyte is already concentrated by the vacuum evaporator 11 in the previous stage, the submerged combustion device 12 does not need to set a high concentration rate.

液中燃焼装置12は真空蒸発装置11の後段に設けるのが好ましい。すなわち、真空蒸発装置11で低濃縮液を製造し、次いで液中燃焼装置12で高濃縮液を製造するという手順が好ましい。これは、真空蒸発装置11は装置内でスケールが発生しやすく、あまり高濃縮された液を好まないからである。   The submerged combustion device 12 is preferably provided in the subsequent stage of the vacuum evaporator 11. That is, a procedure in which a low concentrated liquid is produced by the vacuum evaporator 11 and then a high concentrated liquid is produced by the submerged combustion apparatus 12 is preferable. This is because the vacuum evaporator 11 tends to generate scale in the apparatus and does not like a highly concentrated liquid.

表1に、液中燃焼装置12を単独で使用して脱銅電解液を4倍濃縮した場合A、真空蒸発装置11を単独で使用して脱銅電解液を4倍濃縮した場合B、真空蒸発装置11を前段に設置して2倍濃縮し、液中燃焼装置12を後段に設置して更に2倍濃縮した場合C、液中燃焼装置12を前段に設置して2倍濃縮し、真空蒸発装置11を後段に設置して更に2倍濃縮した場合Dの4パターンについて、利点及び欠点をまとめた。   Table 1 shows that the submerged combustion device 12 is used alone to concentrate the copper removal electrolyte four times A, the vacuum evaporator 11 is used alone to concentrate the copper removal electrolyte four times, B, vacuum When the evaporator 11 is installed at the front stage and concentrated twice, and the submerged combustion apparatus 12 is installed at the rear stage and further concentrated twice, C, the submerged combustion apparatus 12 is installed at the front stage and concentrated twice, and vacuum The advantages and disadvantages of the four patterns D are summarized when the evaporator 11 is installed in the latter stage and concentrated twice.

Figure 2011213502
Figure 2011213502

Aの場合、真空蒸発装置を使用しないことからスケールの問題はないが、燃料費の問題及び設置スペースの問題がある。Bの場合、液中燃焼装置を使用しないことから燃料費やスペースの問題は解決するが、新たにスケールが発生しやすい点や得られる粗硫酸ニッケルが6水和物になる点で改善の余地がある。1水和物は結晶水が少ない為Ni品位が高く物流費を低く抑えることが可能である、その為粗硫酸ニッケルは1水和物で回収することが好ましい。Cの場合、燃料費の問題、スケールの問題、粗硫酸ニッケルの品質の問題、スペースの問題がバランス良く解決される。Dの場合、燃料費やスペースの問題は軽減されるが、新たにスケールが発生しやすい点や得られる粗硫酸ニッケルが6水和物になる点でBと同様に改善の余地がある。   In the case of A, there is no problem of scale because the vacuum evaporator is not used, but there are problems of fuel cost and installation space. In the case of B, since the submerged combustion device is not used, the problem of fuel cost and space is solved, but there is room for improvement in that the scale is easily generated and the resulting crude nickel sulfate becomes hexahydrate. There is. Since monohydrate has less crystal water, it has high Ni quality and can keep logistics costs low. Therefore, it is preferable to recover crude nickel sulfate as monohydrate. In the case of C, the fuel cost problem, scale problem, crude nickel sulfate quality problem, and space problem are solved in a well-balanced manner. In the case of D, the problem of fuel cost and space is reduced, but there is room for improvement in the same way as B in that a new scale is likely to occur and the obtained crude nickel sulfate becomes hexahydrate.

ニッケル回収システムを新設する場合には、必ずしも真空蒸発装置11と液中燃焼装置12を併用する必要はなく、真空蒸発装置11のみで十分であるが、ニッケル回収設備に既に液中燃焼装置12が設置されている場合には、液中燃焼装置12を廃棄して真空蒸発装置11を設置しようとすると逆に設備コストが割高になる。そこで、そのようなケースでは、既存の液中燃焼装置12を利用し、真空蒸発装置11を増設することで容易に処理能力増強を図ることができる。この場合であっても、液中燃焼装置12の負荷を減らしながらトータルのニッケル処理能力は増強することが出来るため、ランニングコスト低減のメリットがある。真空蒸発装置11及び液中燃焼装置12を併用する場合は、各設備のメンテナンス頻度(真空蒸発缶2回/年、液中燃焼缶1回/月)および操業形態の理由により、真空蒸発装置11を前段に設け、液中燃焼装置12を後段に設けることが好ましい。   In the case of newly installing a nickel recovery system, it is not always necessary to use the vacuum evaporator 11 and the submerged combustion apparatus 12 together. The vacuum evaporator 11 is sufficient, but the submerged combustor 12 is already in the nickel recovery facility. If installed, discarding the submerged combustion device 12 and installing the vacuum evaporation device 11 conversely increases the equipment cost. Therefore, in such a case, the processing capacity can be easily increased by using the existing submerged combustion apparatus 12 and adding the vacuum evaporation apparatus 11. Even in this case, the total nickel processing capacity can be increased while reducing the load of the submerged combustion device 12, and therefore there is an advantage of reducing the running cost. When the vacuum evaporator 11 and the submerged combustion apparatus 12 are used in combination, the vacuum evaporator 11 depends on the maintenance frequency of each facility (vacuum canister twice / year, submerged combustion can once / month) and the operation mode. Is preferably provided at the front stage, and the submerged combustion device 12 is preferably provided at the rear stage.

<4.冷却槽>
冷却槽13では真空蒸発装置11又は存在する場合には液中燃焼装置12から排出された濃縮液を冷却し、濃縮液中の未析出Niを粗硫酸ニッケルとして晶出させる。冷却は例えば冷却槽13をジャケット構造としたり、冷却槽内に蛇管を入れたりして、ジャケットや蛇管に冷媒を通すことにより行うことができる。また、特別な冷媒を使用せずに自然冷却することも可能である。更に、−20℃程度まで冷却する冷凍結晶法を採用することも可能である。濃縮液の冷却効率・冷却操作の簡易性の理由により、蛇管方式が好ましい。
<4. Cooling tank>
The cooling tank 13 cools the concentrated liquid discharged from the vacuum evaporator 11 or, if present, the in-liquid combustion apparatus 12, and crystallizes undeposited Ni in the concentrated liquid as crude nickel sulfate. Cooling can be performed, for example, by making the cooling tank 13 into a jacket structure, or by inserting a serpentine tube into the cooling tank, and passing a refrigerant through the jacket or serpentine tube. It is also possible to cool naturally without using a special refrigerant. Furthermore, it is also possible to employ a refrigeration crystal method that cools to about −20 ° C. The serpentine method is preferred because of the cooling efficiency of the concentrate and the simplicity of the cooling operation.

また、冷却槽内における析出物(粗硫酸ニッケル)の沈殿防止の理由により冷却槽13内の濃縮液はインペラなどで攪拌するのが好ましい。また、冷却温度が低すぎると冷却時間増加で回収までの時間増で回収効率低下となり、高すぎると固液分離装置の負荷増大となるので、冷却槽13では濃縮液を約0〜50℃程度、好ましくは15〜30℃に冷却する。   Moreover, it is preferable to stir the concentrated liquid in the cooling tank 13 with an impeller or the like for the purpose of preventing precipitation (crude nickel sulfate) in the cooling tank. Also, if the cooling temperature is too low, the cooling time increases and the recovery time decreases due to the increase in recovery time. If it is too high, the load on the solid-liquid separation device increases, so that the concentrated liquid is about 0-50 ° C. in the cooling tank 13. Preferably, it cools to 15-30 degreeC.

<5.固液分離装置>
析出した粗硫酸ニッケルは固液分離装置14を通って、脱銅電解液から回収される。固液分離の手段としては、沈降分離、遠心分離、濾過(重力濾過、真空濾過、加圧濾過等)が挙げられ、これらは単独で用いてもよいし、組み合わせて用いてもよい。回収効率の理由により、濾過の方式が好ましい。ニッケルを回収した後の電解液は、銅電解精製工程に送られ、再利用される。回収した粗硫酸ニッケルは外販可能である。
<5. Solid-liquid separator>
The precipitated crude nickel sulfate passes through the solid-liquid separator 14 and is recovered from the copper removal electrolyte. Examples of the solid-liquid separation include sedimentation separation, centrifugation, filtration (gravity filtration, vacuum filtration, pressure filtration, etc.), and these may be used alone or in combination. A filtration method is preferred for reasons of recovery efficiency. The electrolytic solution after recovering the nickel is sent to the copper electrolytic purification process and reused. The recovered crude nickel sulfate can be sold externally.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

(1)脱銅電解液の調製
銅電解精製で使用した後の銅電解液に対して、電解採取を行うことで以下の組成を有する脱銅電解液を得た。
<組成>
銅0.1g/L、ニッケル20g/L、硫酸:200g/L、砒素:4g/L、アンチモン:0.05g/L、ビスマス:0.02g/L
(1) Preparation of Decopper Electrolytic Solution A copper removal electrolytic solution having the following composition was obtained by performing electrowinning on the copper electrolytic solution after being used in copper electrolytic purification.
<Composition>
Copper 0.1 g / L, Nickel 20 g / L, Sulfuric acid: 200 g / L, Arsenic: 4 g / L, Antimony: 0.05 g / L, Bismuth: 0.02 g / L

(2)比較例
(1)で得られた脱銅電解液を液中燃焼装置に導入して加熱濃縮した後、冷却槽で冷却して粗硫酸ニッケルを晶出させた。粗硫酸ニッケルは固液分離装置で回収した。
(2) Comparative Example The copper removal electrolyte obtained in (1) was introduced into a submerged combustion apparatus, concentrated by heating, and then cooled in a cooling tank to crystallize crude nickel sulfate. Crude nickel sulfate was recovered with a solid-liquid separator.

操業条件は以下とした。
ア)脱銅電解液処理量:35m3/日
イ)液中燃焼装置運転条件:
・電解液加熱温度:138〜143℃
・濃縮率:4倍
・燃料消費量:900〜1200L/日(灯油)
ウ)冷却槽
・冷却方式:熱交換式冷却
・冷却温度:30℃
・容量:4m3/槽×3基
エ)固液分離方式:遠心分離
The operating conditions were as follows.
A) Amount of copper removal electrolyte treatment: 35 m 3 / day b) Operating condition of submerged combustion system:
Electrolyte heating temperature: 138 to 143 ° C
・ Concentration rate: 4 times ・ Fuel consumption: 900-1200 L / day (kerosene)
C) Cooling tank ・ Cooling method: Heat exchange cooling ・ Cooling temperature: 30 ° C.
· Capacity: 4m 3 / tank × 3 group d) solid-liquid separation method: centrifugation

その結果、粗硫酸ニッケルの生産量は80t/月であった。また、ニッケル回収後の脱銅電解液中のニッケル濃度は3g/L程度であった。粉末X線回折法により分析した結果、回収された粗硫酸ニッケルは主として1水和物であった。   As a result, the production amount of crude nickel sulfate was 80 t / month. Moreover, the nickel concentration in the copper removal electrolyte after nickel recovery was about 3 g / L. As a result of analysis by a powder X-ray diffraction method, the recovered crude nickel sulfate was mainly a monohydrate.

(3)発明例
比較例のニッケル回収システムに対して、真空蒸発装置を設置することで図1に記載のニッケル回収システムを構築した。(1)で得られた脱銅電解液を二段効用式の真空蒸発装置に導入して加熱濃縮し、その後更に液中燃焼装置に導入して加熱濃縮した後、冷却槽で冷却して粗硫酸ニッケルを晶出させた。粗硫酸ニッケルは固液分離装置で回収した。
(3) Invention Example The nickel recovery system shown in FIG. 1 was constructed by installing a vacuum evaporator with respect to the nickel recovery system of the comparative example. The copper removal electrolyte obtained in (1) is introduced into a two-stage effect type vacuum evaporator and heated and concentrated, then further introduced into a submerged combustion apparatus and heated and concentrated, and then cooled in a cooling tank to be coarse. Nickel sulfate was crystallized. Crude nickel sulfate was recovered with a solid-liquid separator.

操業条件は以下とした。
ア)脱銅電解液処理量:55m3/日
イ1)真空蒸発装置運転条件
・熱源:自溶炉からの廃蒸気
・電解液加熱温度:40〜80℃(第1効用缶約81℃、第2効用缶約67℃)
・装置内圧力:0.1MPa
・濃縮率:2倍
イ2)液中燃焼装置運転条件
・電解液加熱温度:138〜143℃
・濃縮率:2倍
・燃料消費量:900〜1200L/日(灯油)
ウ)冷却槽
・冷却方式:熱交換式冷却
・冷却温度:30℃
・容量:4m3/槽×4基
エ)固液分離方式:加圧ろ過
The operating conditions were as follows.
A) Decopper electrolyte treatment amount: 55 m 3 / day 1) Vacuum evaporator operating conditions • Heat source: Waste steam from flash furnace • Electrolyte heating temperature: 40-80 ° C. (first effect can about 81 ° C., Second effect can about 67 ℃)
・ Internal pressure: 0.1 MPa
・ Concentration rate: 2 times a) 2) Submerged combustion device operating conditions ・ Electrolyte heating temperature: 138 to 143 ° C.
・ Concentration rate: double ・ Fuel consumption: 900-1200 L / day (kerosene)
C) Cooling tank ・ Cooling method: Heat exchange cooling ・ Cooling temperature: 30 ° C.
· Capacity: 4m 3 / tank × 4 groups d) solid-liquid separation method: pressure filtration

ニッケル回収後の脱銅電解液中のニッケル濃度は3g/L程度であり、比較例と同程度であったが、脱銅電解液処理量は55m3/日に増え、粗硫酸ニッケルの生産量は120t/月に増加した。比較例に対して1.5倍の生産量となった。液中燃焼装置の負担が軽くなり、燃料原単位も減少した。粉末X線回折法により分析した結果、回収された粗硫酸ニッケルは主として1水和物であった。 The nickel concentration in the copper removal electrolyte after nickel recovery was about 3 g / L, which was about the same as the comparative example, but the amount of copper removal electrolyte treatment increased by 55 m 3 / day, and the amount of crude nickel sulfate produced Increased to 120 t / month. The production amount was 1.5 times that of the comparative example. The burden on the submerged combustion device has been reduced, and the fuel consumption rate has also decreased. As a result of analysis by a powder X-ray diffraction method, the recovered crude nickel sulfate was mainly a monohydrate.

11 真空蒸発装置
12 液中燃焼装置
13 冷却槽
14 フィルタープレス(固液分離装置)
11 Vacuum evaporation device 12 Submerged combustion device 13 Cooling tank 14 Filter press (solid-liquid separation device)

Claims (9)

脱銅電解液を加熱濃縮し、その後冷却することにより粗硫酸ニッケルを析出させ、析出した粗硫酸ニッケルを固液分離することにより、脱銅電解液から粗硫酸ニッケルを回収する方法において、脱銅電解液の加熱濃縮を真空蒸発装置で実施することを特徴とする方法。   In the method of recovering the crude nickel sulfate from the decopper electrolyte by precipitating crude nickel sulfate by heating and concentrating the decopper electrolyte and then cooling it, and separating the precipitated crude nickel sulfate by solid-liquid separation, A method characterized in that the heating and concentration of the electrolytic solution is carried out in a vacuum evaporator. 脱銅電解液の加熱濃縮を真空蒸発装置及びその後段に直列に配置した液中燃焼装置で実施する請求項1に記載の粗硫酸ニッケル回収方法。   The crude nickel sulfate recovery method according to claim 1, wherein the copper concentrate electrolytic solution is heated and concentrated using a vacuum evaporator and a submerged combustion apparatus arranged in series in a subsequent stage. 真空蒸発装置の熱源が水蒸気である請求項1又は2に記載の粗硫酸ニッケル回収方法。   The crude nickel sulfate recovery method according to claim 1 or 2, wherein the heat source of the vacuum evaporator is water vapor. 真空蒸発装置の熱源が自溶炉又は転炉から排出される廃熱を利用して生成した水蒸気である請求項3に記載の粗硫酸ニッケル回収方法。   The crude nickel sulfate recovery method according to claim 3, wherein the heat source of the vacuum evaporator is water vapor generated using waste heat discharged from the flash smelting furnace or converter. 脱銅電解液は、前段の真空蒸発装置において1.85〜2.15倍に濃縮され、後段の液中燃焼装置において更に1.85〜2.15倍に濃縮され、合計で3.42〜4.62倍に濃縮される請求項2〜4の何れか一項に記載の粗硫酸ニッケル回収方法。   The copper removal electrolytic solution is concentrated 1.85 to 2.15 times in the vacuum evaporator at the front stage, and further concentrated 1.85 to 2.15 times in the submerged combustion apparatus at the rear stage, so that the total of 3.42 to The crude nickel sulfate recovery method according to any one of claims 2 to 4, which is concentrated 4.62 times. ・脱銅電解液を加熱濃縮するための真空蒸発装置と、
・真空蒸発装置で濃縮された脱銅電解液を冷却して粗硫酸ニッケルを析出させるための冷却槽と、
・冷却槽で析出した粗硫酸ニッケルを脱銅電解液から除去するための固液分離装置と、
を備えた脱銅電解液からの粗硫酸ニッケル回収システム。
A vacuum evaporator for heating and concentrating the copper removal electrolyte,
A cooling bath for cooling the copper removal electrolyte concentrated in the vacuum evaporator to deposit crude nickel sulfate;
A solid-liquid separator for removing the crude nickel sulfate precipitated in the cooling bath from the copper removal electrolyte,
A system for recovering crude nickel sulfate from copper-free electrolytic solution.
真空蒸発装置で濃縮された脱銅電解液を一層加熱濃縮するための液中燃焼装置を更に備え、冷却槽では液中燃焼装置で濃縮された脱銅電解液を冷却して粗硫酸ニッケルを析出させる請求項6に記載の粗硫酸ニッケル回収システム。   It is further equipped with a submerged combustion device for further heating and concentrating the copper removal electrolyte concentrated in the vacuum evaporator, and in the cooling tank, the copper removal electrolyte concentrated in the submerged combustion device is cooled to deposit crude nickel sulfate. The crude nickel sulfate recovery system according to claim 6. 真空蒸発装置の熱源が水蒸気である請求項6又は7に記載の粗硫酸ニッケル回収システム。   The crude nickel sulfate recovery system according to claim 6 or 7, wherein the heat source of the vacuum evaporator is water vapor. 真空蒸発装置の熱源が自溶炉又は転炉から排出される廃熱を利用して生成した水蒸気である請求項8に記載の粗硫酸ニッケル回収システム。   The crude nickel sulfate recovery system according to claim 8, wherein the heat source of the vacuum evaporator is water vapor generated using waste heat discharged from the flash smelting furnace or converter.
JP2010080983A 2010-03-31 2010-03-31 Method for recovering nickel from copper electrolyte Active JP5642987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080983A JP5642987B2 (en) 2010-03-31 2010-03-31 Method for recovering nickel from copper electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080983A JP5642987B2 (en) 2010-03-31 2010-03-31 Method for recovering nickel from copper electrolyte

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014018868A Division JP5822959B2 (en) 2014-02-03 2014-02-03 Crude nickel sulfate recovery method and crude nickel sulfate recovery system from copper removal electrolyte

Publications (2)

Publication Number Publication Date
JP2011213502A true JP2011213502A (en) 2011-10-27
JP5642987B2 JP5642987B2 (en) 2014-12-17

Family

ID=44943650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080983A Active JP5642987B2 (en) 2010-03-31 2010-03-31 Method for recovering nickel from copper electrolyte

Country Status (1)

Country Link
JP (1) JP5642987B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557154A (en) * 2011-12-23 2012-07-11 江门市芳源环境科技开发有限公司 Negative pressure evaporation and step-by-step feeding method of nickel sulfate solution
JP2013245119A (en) * 2012-05-23 2013-12-09 Pan Pacific Copper Co Ltd Concentrator for sulfuric acid liquid, method for concentrating sulfuric acid liquid, and method for collecting crude nickel sulfate
JP2014024688A (en) * 2012-07-25 2014-02-06 Sumitomo Metal Mining Co Ltd Method for crystallizing nickel sulfate
JP2014101546A (en) * 2012-11-20 2014-06-05 Sumitomo Metal Mining Co Ltd Nickel removal method from copper removal electrolytic solution
JP2016029017A (en) * 2015-10-29 2016-03-03 住友金属鉱山株式会社 Facility and method for crystallizing nickel sulfate
JP2016056434A (en) * 2014-09-12 2016-04-21 住友金属鉱山株式会社 Separation method of nickel from nickel sludge
JP2016180187A (en) * 2016-07-05 2016-10-13 パンパシフィック・カッパー株式会社 Concentrating apparatus of sulfuric acid acidic solution, concentrating method of sulfuric acid acidic solution, and recovery method of crude nickel sulfate
CN114214667A (en) * 2021-12-17 2022-03-22 广西金川有色金属有限公司 Method for reducing copper content of copper anode slime

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119428A (en) * 1975-02-13 1977-10-06 Kollmorgen Tech Corp Method of separating deleterious byproducts from copper plating bath
JPH02104687A (en) * 1988-10-13 1990-04-17 Nippon Mining Co Ltd Method for removing bismuth from copper electrolytic solution
JP2003222408A (en) * 2002-01-31 2003-08-08 Mitsui Mining & Smelting Co Ltd Combustion device in liquid
JP2006283047A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk Production method of crude nickel sulfate
JP2006347815A (en) * 2005-06-16 2006-12-28 Astec Irie Co Ltd Method for recycling nickel plating waste solution sludge containing multicomponents
JP2009051723A (en) * 2007-08-01 2009-03-12 Pan Pacific Copper Co Ltd Method of manufacturing copper sulfate and copper sulfate crystal
JP2009114520A (en) * 2007-11-08 2009-05-28 Sumitomo Metal Mining Co Ltd Method and apparatus for removing nickel from copper-removed electrolyte

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119428A (en) * 1975-02-13 1977-10-06 Kollmorgen Tech Corp Method of separating deleterious byproducts from copper plating bath
JPH02104687A (en) * 1988-10-13 1990-04-17 Nippon Mining Co Ltd Method for removing bismuth from copper electrolytic solution
JP2003222408A (en) * 2002-01-31 2003-08-08 Mitsui Mining & Smelting Co Ltd Combustion device in liquid
JP2006283047A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk Production method of crude nickel sulfate
JP2006347815A (en) * 2005-06-16 2006-12-28 Astec Irie Co Ltd Method for recycling nickel plating waste solution sludge containing multicomponents
JP2009051723A (en) * 2007-08-01 2009-03-12 Pan Pacific Copper Co Ltd Method of manufacturing copper sulfate and copper sulfate crystal
JP2009114520A (en) * 2007-11-08 2009-05-28 Sumitomo Metal Mining Co Ltd Method and apparatus for removing nickel from copper-removed electrolyte

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557154A (en) * 2011-12-23 2012-07-11 江门市芳源环境科技开发有限公司 Negative pressure evaporation and step-by-step feeding method of nickel sulfate solution
JP2013245119A (en) * 2012-05-23 2013-12-09 Pan Pacific Copper Co Ltd Concentrator for sulfuric acid liquid, method for concentrating sulfuric acid liquid, and method for collecting crude nickel sulfate
JP2014024688A (en) * 2012-07-25 2014-02-06 Sumitomo Metal Mining Co Ltd Method for crystallizing nickel sulfate
JP2014101546A (en) * 2012-11-20 2014-06-05 Sumitomo Metal Mining Co Ltd Nickel removal method from copper removal electrolytic solution
JP2016056434A (en) * 2014-09-12 2016-04-21 住友金属鉱山株式会社 Separation method of nickel from nickel sludge
JP2016029017A (en) * 2015-10-29 2016-03-03 住友金属鉱山株式会社 Facility and method for crystallizing nickel sulfate
JP2016180187A (en) * 2016-07-05 2016-10-13 パンパシフィック・カッパー株式会社 Concentrating apparatus of sulfuric acid acidic solution, concentrating method of sulfuric acid acidic solution, and recovery method of crude nickel sulfate
CN114214667A (en) * 2021-12-17 2022-03-22 广西金川有色金属有限公司 Method for reducing copper content of copper anode slime

Also Published As

Publication number Publication date
JP5642987B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5642987B2 (en) Method for recovering nickel from copper electrolyte
JP5176493B2 (en) Method and apparatus for nickel removal from copper removal electrolyte
JP6307709B2 (en) Method and apparatus for recovering indium or indium alloy
TWI628287B (en) High-purity tin and manufacturing method thereof
CN102345143B (en) Method for separating copper, arsenic and nickel and purifying copper electrolyte
CN104894607A (en) Method for purifying waste copper sulfate electrolyte
CN114702188B (en) Method and system for cooperatively treating high-salt solid waste ash and acid wastewater of steel plant
CN112662879A (en) Efficient method for extracting nickel sulfate from copper electrolysis waste liquid
CN101906654A (en) Method for purifying copper electrolyte with minimal chemical reacting dose
CN104761444A (en) Process of recycling oxalic acid from rare earth wet-method smelting oxalic acid precipitation waste water
JP5831432B2 (en) Nickel removal method from copper removal electrolyte
CN105838879B (en) From the method and apparatus for removing removing calcium and magnesium after the heavy indium of zinc abstraction in liquid
JP5822959B2 (en) Crude nickel sulfate recovery method and crude nickel sulfate recovery system from copper removal electrolyte
CN1271224C (en) Process for electrolytic production of highly pure zinc or zinc compounds from primary and secondary zinc raw materials
JP2021031345A (en) Method and apparatus for producing vanadium compound
JP5996771B2 (en) High purity In and its manufacturing method
CN104018185A (en) Compound technology for removing As, Sb, Bi by utilizing copper electrolyte
CN102633293B (en) Method for refining multistage circulation evaporation-free copper sulfate
JP5066025B2 (en) Method for producing copper sulfate
CN212581986U (en) Leachate cooling equipment
JP2004124115A (en) Method of recovering copper from copper electrolytic solution, and liquid purification method
JPWO2015060026A1 (en) Method for producing high purity manganese and high purity manganese
JP5993097B2 (en) Method for producing high purity cobalt chloride
CN114477250A (en) Method for preparing magnesium sulfate by using anthraquinone waste acid
JP4779163B2 (en) Method for producing copper sulfate solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141030

R150 Certificate of patent or registration of utility model

Ref document number: 5642987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250