JP2013245119A - Concentrator for sulfuric acid liquid, method for concentrating sulfuric acid liquid, and method for collecting crude nickel sulfate - Google Patents

Concentrator for sulfuric acid liquid, method for concentrating sulfuric acid liquid, and method for collecting crude nickel sulfate Download PDF

Info

Publication number
JP2013245119A
JP2013245119A JP2012117813A JP2012117813A JP2013245119A JP 2013245119 A JP2013245119 A JP 2013245119A JP 2012117813 A JP2012117813 A JP 2012117813A JP 2012117813 A JP2012117813 A JP 2012117813A JP 2013245119 A JP2013245119 A JP 2013245119A
Authority
JP
Japan
Prior art keywords
sulfuric acid
solution
acid acidic
concentration
concentrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012117813A
Other languages
Japanese (ja)
Other versions
JP6001328B2 (en
Inventor
Koji Nishida
幸司 西田
Takeshi Hattori
剛 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2012117813A priority Critical patent/JP6001328B2/en
Publication of JP2013245119A publication Critical patent/JP2013245119A/en
Application granted granted Critical
Publication of JP6001328B2 publication Critical patent/JP6001328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a concentrator for a sulfuric acid liquid that suppresses damage of a heater by concentrating the sulfuric acid liquid.SOLUTION: A concentrator of a sulfuric acid liquid containing at least calcium includes: a first concentrator (10) for concentrating the sulfuric acid liquid; a heat exchanger (30) for heating the concentrated sulfuric acid liquid in the first concentrator (10) at a temperature lower than a boiling point; and a second concentrator (20) for decompressing the heated sulfuric acid liquid to evaporate water for concentration. By heating the sulfuric acid liquid at the temperature lower than the boiling point, evaporation of the sulfuric acid liquid in the heat exchanger (30) is suppressed and damage to the heat exchanger (30) can be suppressed.

Description

本発明は、硫酸酸性液の濃縮装置、硫酸酸性液の濃縮方法及び粗硫酸ニッケルの回収方法に関する。   The present invention relates to a sulfuric acid acidic liquid concentrator, a sulfuric acid acidic liquid concentration method, and a crude nickel sulfate recovery method.

硫酸酸性液は金属を溶解するため、工業上様々な場面で用いられ、重要な役割を担っている。硫酸酸性液が用いられる一分野として銅の電解精製工程が挙げられる。銅の電解精製では、粗銅板を陽極、純銅板を陰極、硫酸酸性硫酸銅水溶液を電解液としている。銅電解精製においてアノードとして使用する粗銅には砒素As、ビスマスBi、アンチモンSb、ニッケルNi等の不純物が含まれており、これらが電解液中に溶出する。これらの溶出した不純物のうち、一部は、電解槽の底に泥状の銅スライムとして沈積する。電解液中の不純物は、電解槽から抜き出した電解液に対して適切な処理を行うことにより、除去、回収される。具体的には、電解液中の余剰銅が脱銅電解により除去され、砒素、ビスマス、アンチモン等が清浄電解により電解液中から除去される。電解液中のニッケルは、脱銅、清浄後の尾液を濃縮することにより、硫酸ニッケルとして結晶析出し、電解液中から除去、回収できる。電解液中から除去される硫酸ニッケルは、不純物を少量含むため粗硫酸ニッケルと呼ばれている。   Sulfuric acid solution dissolves metals and is used in various industrial situations and plays an important role. One field in which an acidic sulfuric acid solution is used is a copper electrolytic purification process. In electrolytic refining of copper, a crude copper plate is used as an anode, a pure copper plate as a cathode, and an acidic copper sulfate aqueous solution as an electrolyte. Crude copper used as an anode in copper electrolytic refining contains impurities such as arsenic As, bismuth Bi, antimony Sb, nickel Ni, and these are eluted in the electrolytic solution. Some of these eluted impurities are deposited as mud copper slime on the bottom of the electrolytic cell. Impurities in the electrolytic solution are removed and collected by performing an appropriate treatment on the electrolytic solution extracted from the electrolytic cell. Specifically, excess copper in the electrolytic solution is removed by copper removal electrolysis, and arsenic, bismuth, antimony, and the like are removed from the electrolytic solution by clean electrolysis. Nickel in the electrolytic solution is crystallized as nickel sulfate by removing the copper solution after copper removal and cleaning, and can be removed and recovered from the electrolytic solution. Nickel sulfate removed from the electrolyte is called crude nickel sulfate because it contains a small amount of impurities.

この銅電解液中のニッケルの回収について、例えば、特許文献1に開示されている。特許文献1に開示の粗硫酸ニッケルの回収方法は、脱銅電解液を真空蒸発装置で加熱濃縮し、その後冷却することにより粗硫酸ニッケルを析出させ、析出した粗硫酸ニッケルを固液分離することにより、脱銅電解液から粗硫酸ニッケルを分離し回収する。特許文献1の粗硫酸ニッケルの回収方法において、真空蒸発装置は、単一の蒸発缶を有する構成としてもよいが、蒸発缶を直列に複数配列して、前段で利用した蒸気を後段の蒸発に利用する多重効用式を採用し、蒸発効率を高めることができる。   For example, Patent Document 1 discloses the recovery of nickel in the copper electrolyte. The method for recovering crude nickel sulfate disclosed in Patent Document 1 is to concentrate a copper removal electrolyte by heating with a vacuum evaporator, and then precipitate the crude nickel sulfate by cooling to separate the precipitated crude nickel sulfate into a solid-liquid separation. To separate and recover the crude nickel sulfate from the copper removal electrolyte. In the method for recovering crude nickel sulfate of Patent Document 1, the vacuum evaporator may have a single evaporator. However, a plurality of evaporators are arranged in series, and the vapor used in the previous stage is used for the latter stage evaporation. Adopting the multi-effect formula to be used, the evaporation efficiency can be increased.

特許文献2には、蒸気圧縮型真空蒸発式濃縮装置が開示されている。例えば、特許文献2に開示された蒸気圧縮型真空蒸発式濃縮装置を特許文献1の真空蒸発装置として採用することができる。この場合、特許文献2の蒸発室が特許文献1における蒸発缶に相当する。特許文献2の蒸気圧縮型真空蒸発式濃縮装置では、大気圧以下の真空状態に保持した蒸発室内に加熱濃縮される水溶液を循環させて、蒸発室内に設けた間接式加熱器により水溶液を加熱する。間接式加熱器は複数本の伝熱管を有し、この伝熱管にはボイラーから供給される高圧蒸気が通じる。蒸発室内において、散布ノズルから伝熱管の外表面へ水溶液が散布され、散布された水溶液が伝熱管内の高圧蒸気により加熱されて蒸発する。水溶液から蒸発した蒸気は、ボイラーからの高圧蒸気に合流して、水溶液を加熱する熱源として利用される。   Patent Document 2 discloses a vapor compression type vacuum evaporation type concentrator. For example, the vapor compression vacuum evaporation concentrator disclosed in Patent Document 2 can be employed as the vacuum evaporation apparatus disclosed in Patent Document 1. In this case, the evaporation chamber of Patent Document 2 corresponds to the evaporator in Patent Document 1. In the vapor compression type vacuum evaporation type concentrating device of Patent Document 2, an aqueous solution to be heated and concentrated is circulated in an evaporation chamber kept in a vacuum state at atmospheric pressure or lower, and the aqueous solution is heated by an indirect heater provided in the evaporation chamber. . The indirect heater has a plurality of heat transfer tubes, and high pressure steam supplied from a boiler is connected to the heat transfer tubes. In the evaporation chamber, the aqueous solution is sprayed from the spray nozzle to the outer surface of the heat transfer tube, and the sprayed aqueous solution is heated and evaporated by the high-pressure steam in the heat transfer tube. The vapor evaporated from the aqueous solution joins the high-pressure steam from the boiler and is used as a heat source for heating the aqueous solution.

特開2011−213502号公報JP 2011-213502 A 特開平7−24202号公報Japanese Patent Laid-Open No. 7-24202

ところで、特許文献2に示すような蒸発室内で複数の伝熱管と水溶液とが熱交換する蒸発室の構成を特許文献1の粗硫酸ニッケルの回収方法における真空蒸発装置として採用する場合、銅電解溶液の濃度の関係で問題が生じる場合がある。すなわち、銅電解溶液は、金属イオンを溶解した硫酸酸性液であるため、その濃度が上昇することにより硫酸塩を析出する。例えば、銅電解溶液から析出する硫酸塩の代表的なものとして、硫酸カルシウム(CaSO)がある。複数の伝熱管を備えた加熱器へ銅電解溶液を散布し、銅電解溶液を濃縮する場合、伝熱管周りに硫酸塩(例えば、硫酸カルシウム)が析出し、スケールが生成される。 By the way, when employ | adopting as a vacuum evaporation apparatus in the collection | recovery method of the crude nickel sulfate of patent document 1 the structure of the evaporation chamber which heat-exchanges a some heat exchanger tube and aqueous solution as shown in patent document 2 at a copper electrolytic solution There may be a problem with the concentration of the. That is, since the copper electrolytic solution is a sulfuric acid acidic solution in which metal ions are dissolved, sulfate is precipitated by increasing the concentration thereof. For example, calcium sulfate (CaSO 4 ) is a representative example of sulfate precipitated from a copper electrolytic solution. When a copper electrolyte solution is sprayed on a heater having a plurality of heat transfer tubes and the copper electrolyte solution is concentrated, sulfate (for example, calcium sulfate) is deposited around the heat transfer tubes, and a scale is generated.

図1は、管周りに硫酸塩のスケールが生成された場合の伝熱管101を断面にして示した図である。伝熱管101周りに硫酸塩のスケール102が生成されると、伝熱管101とスケール102との隙間103に銅電解溶液が浸入する。銅電解溶液が沸点に達する条件である場合、伝熱管101とスケール102との隙間103に浸入した銅電解溶液は、伝熱管101内の蒸気により加熱されて蒸発し、濃縮される。この結果、局部的に硫酸の濃度が上昇し、主に鉄Fe(その他クロムCr,ニッケルNiも含む)から構成された伝熱管101が腐食されて、亀裂、破損を生じる。これにより、伝熱管から蒸気の漏洩が起こり、銅電解溶液の濃縮処理を妨げ、加熱器の交換を余儀なくされる。特に、すでに濃縮工程を経た電解溶液をさらに濃縮するために蒸発缶内へ導入する場合に、硫酸塩が析出される条件が満たされやすく、硫酸塩のスケールが形成されやすい。また、このような現象は金属が溶解した硫酸酸性液を濃縮する場合にも同様に生じる問題であると考えられる。   FIG. 1 is a cross-sectional view of a heat transfer tube 101 when a sulfate scale is generated around the tube. When the sulfate scale 102 is generated around the heat transfer tube 101, the copper electrolytic solution enters the gap 103 between the heat transfer tube 101 and the scale 102. In the condition where the copper electrolytic solution reaches the boiling point, the copper electrolytic solution that has entered the gap 103 between the heat transfer tube 101 and the scale 102 is heated and evaporated by the steam in the heat transfer tube 101 and concentrated. As a result, the concentration of sulfuric acid locally increases, and the heat transfer tube 101 mainly composed of iron Fe (including other chromium Cr and nickel Ni) is corroded to cause cracks and breakage. As a result, steam leaks from the heat transfer tube, hindering the concentration process of the copper electrolyte solution, and the heater must be replaced. In particular, when the electrolytic solution that has already undergone the concentration step is introduced into the evaporator for further concentration, the conditions under which the sulfate is precipitated are easily satisfied, and a sulfate scale is easily formed. Further, such a phenomenon is considered to be a problem that occurs in the same manner when an acidic sulfuric acid solution in which a metal is dissolved is concentrated.

そこで、本発明は、上記の課題を鑑み、硫酸酸性液の濃縮による加熱器の損傷を抑制した硫酸酸性液の濃縮装置を提供することを目的とする。   Then, an object of this invention is to provide the sulfuric acid acidic liquid concentration apparatus which suppressed the damage of the heater by the concentration of sulfuric acid acidic liquid in view of said subject.

かかる課題を解決する本発明は、少なくともカルシウムを含む硫酸酸性液の濃縮装置において、前記硫酸酸性液を濃縮する第1濃縮器と、前記第1濃縮器において濃縮された前記硫酸酸性液を沸点未満で加熱する加熱器と、加熱後の前記硫酸酸性液を減圧して水分を蒸発させ、濃縮する第2濃縮器と、を備えたことを特徴とする。この構成によると、加熱器において硫酸酸性液が蒸発することが抑制される。これにより、硫酸濃度の上昇が抑制され、加熱器の損傷が抑制できる。   The present invention that solves such a problem, in a concentration apparatus for a sulfuric acid solution containing at least calcium, comprises: a first concentrator that concentrates the sulfuric acid solution; and the sulfuric acid solution concentrated in the first concentrator is less than the boiling point. And a second concentrator for evaporating and condensing water by depressurizing the sulfuric acid acidic solution after heating. According to this structure, it is suppressed that a sulfuric acid acidic liquid evaporates in a heater. Thereby, the raise of a sulfuric acid concentration is suppressed and damage to a heater can be suppressed.

上記の硫酸酸性液の濃縮装置において、前記硫酸酸性液は銅の電解尾液としてもよい。さらには、上記の硫酸酸性液の濃縮装置において、前記第1濃縮器は、減圧した室内で加熱濃縮してもよい。この場合、特に、前記加熱器は、前記第1濃縮器における前記硫酸酸性液の加熱濃縮時に発生した蒸気を利用して前記硫酸酸性液を加熱してもよい。この構成により、熱源からの蒸気供給量を減少できるので、硫酸酸性液の濃縮を行うためのエネルギー消費量を減少しつつ、加熱器の損傷を抑制できる。   In the sulfuric acid acidic liquid concentration apparatus, the sulfuric acid acidic liquid may be a copper electrolytic tail liquid. Further, in the sulfuric acid acidic liquid concentrating device, the first concentrator may be heated and concentrated in a decompressed room. In this case, in particular, the heater may heat the sulfuric acid acidic liquid using steam generated during the heat concentration of the sulfuric acid acidic liquid in the first concentrator. With this configuration, since the amount of steam supplied from the heat source can be reduced, damage to the heater can be suppressed while reducing the amount of energy consumed to concentrate the sulfuric acid acidic liquid.

上記の硫酸酸性液の濃縮装置において、前記加熱器は、銅製錬工程の廃熱から発生した蒸気を利用して前記硫酸酸性液を加熱してもよい。この構成によると、銅製錬工程において廃棄してしまう熱を利用するので、エネルギーを有効利用しつつ、加熱器の損傷を抑制できる。   In the sulfuric acid acidic liquid concentrating device, the heater may heat the sulfuric acid acidic liquid using steam generated from waste heat of the copper smelting process. According to this structure, since the heat | fever which will be discarded in a copper smelting process is utilized, damage to a heater can be suppressed, utilizing energy effectively.

上記の課題を解決する硫酸酸性液の濃縮方法は、少なくともカルシウムを含む硫酸酸性液の濃縮方法において、前記硫酸酸性液を濃縮する第1濃縮工程後に、加熱工程において前記硫酸酸性液を沸点未満で加熱し、前記加熱工程後に第2濃縮工程において前記硫酸酸性液を減圧して水分を蒸発させ、濃縮することを特徴とする。これによると、加熱工程中に硫酸酸性液が蒸発することを抑制する。この結果、硫酸濃度の上昇を抑制し、硫酸酸性液の濃縮における不具合を抑制できる。   The method for concentrating a sulfuric acid solution that solves the above problem is a method for concentrating a sulfuric acid solution that contains at least calcium. After the first concentration step of concentrating the sulfuric acid solution, the sulfuric acid solution is reduced to below the boiling point in the heating step. In the second concentration step after heating, the sulfuric acid acidic solution is decompressed to evaporate moisture and concentrated. According to this, it suppresses that a sulfuric acid acidic liquid evaporates during a heating process. As a result, an increase in sulfuric acid concentration can be suppressed, and problems in the concentration of sulfuric acid acidic liquid can be suppressed.

上記の硫酸酸性液の濃縮方法において、前記硫酸酸性液は銅の電解尾液としてもよい。さらには、上記の硫酸酸性液の濃縮方法において、前記第1濃縮工程では、前記硫酸酸性液を減圧しながら加熱濃縮してもよい。この場合、特に、前記加熱工程では、前記第1濃縮工程で加熱濃縮した際に前記硫酸酸性液から発生した蒸気を利用して、前記硫酸酸性液を加熱してもよい。この構成により、熱源からの蒸気供給量を減少できるので、硫酸酸性液の濃縮を行うためのエネルギー消費量を減少しつつ、硫酸酸性液の濃縮における不具合を抑制できる。   In the sulfuric acid acidic liquid concentration method, the sulfuric acid acidic liquid may be a copper electrolytic tail liquid. Furthermore, in the sulfuric acid acidic liquid concentration method, in the first concentration step, the sulfuric acid acidic liquid may be heated and concentrated under reduced pressure. In this case, in particular, in the heating step, the sulfuric acid acidic liquid may be heated using steam generated from the sulfuric acid acidic liquid when heated and concentrated in the first concentration step. With this configuration, since the amount of steam supplied from the heat source can be reduced, it is possible to suppress problems in the concentration of the sulfuric acid acidic liquid while reducing the energy consumption for concentrating the sulfuric acid acidic liquid.

上記の硫酸酸性液の濃縮方法において、前記加熱工程は、銅製錬工程の廃熱から発生した蒸気を利用して前記硫酸酸性液を加熱してもよい。この構成によると、銅製錬工程において廃棄してしまう熱を利用するので、エネルギーを有効利用しつつ、硫酸酸性液の濃縮における不具合を抑制できる。   In the method for concentrating sulfuric acid acidic solution, the heating step may heat the sulfuric acid acidic solution using steam generated from waste heat of the copper smelting step. According to this configuration, since heat that is discarded in the copper smelting process is used, problems in the concentration of the sulfuric acid acidic liquid can be suppressed while effectively using energy.

また、上記の課題を解決し、粗硫酸ニッケルを回収する粗硫酸ニッケルの回収方法の発明は、ニッケルを含んだ銅の電解尾液を濃縮した後、冷却して析出させた粗硫酸ニッケルを固液分離することにより回収する粗硫酸ニッケルの回収方法において、前記電解尾液を濃縮した後に、前記電解尾液を沸点未満で加熱し、減圧して水分を蒸発させ、さらに濃縮することを特徴とする。これにより、電解尾液の濃縮における不具合を抑制するので、ニッケルの回収を効率よく行うことができる。   In addition, the invention of a method for recovering crude nickel sulfate that solves the above problems and recovers crude nickel sulfate concentrates the electrolytic tail solution of copper containing nickel, and then cools and precipitates the crude nickel sulfate that has been cooled. In the method for recovering crude nickel sulfate recovered by liquid separation, after the electrolytic tail solution is concentrated, the electrolytic tail solution is heated at a temperature lower than the boiling point, the pressure is reduced to evaporate the water, and further concentration is performed. To do. Thereby, since the trouble in the concentration of the electrolytic tail solution is suppressed, nickel can be recovered efficiently.

本発明の硫酸酸性液の濃縮装置は、硫酸酸性液の濃縮による加熱器の損傷を抑制することが可能である。   The sulfuric acid acidic liquid concentrator of the present invention can suppress damage to the heater due to the concentration of sulfuric acid acidic liquid.

管周りに硫酸塩のスケールが生成された場合の伝熱管を断面にして示した図である。It is the figure which showed the heat exchanger tube when the scale of a sulfate salt was produced | generated around the pipe | tube in the cross section. 実施の形態における粗硫酸ニッケルの回収に係る銅の電解尾液の流れを表すフローである。It is a flow showing the flow of the copper electrolysis tail liquid which concerns on collection | recovery of the crude nickel sulfate in embodiment. 実施の形態の濃縮装置を示した図である。It is the figure which showed the concentration apparatus of embodiment. 比較の形態の濃縮装置を示した図である。It is the figure which showed the concentration apparatus of the comparison form. 腐食度の検証試験結果を示した図である。It is the figure which showed the verification test result of the corrosion degree. 実施の形態の濃縮装置の変形例を示した図である。It is the figure which showed the modification of the concentration apparatus of embodiment.

本発明の一実施形態について図面を参照しながら説明する。本発明の実施形態では、硫酸酸性液を濃縮する濃縮装置について説明する。ここでは、濃縮装置は、銅の電解精製工程における尾液を濃縮する。ただし、同様の濃縮装置により、銅の電解精製工程における尾液以外の硫酸酸性液を濃縮することが可能である。図2は、本実施の形態における粗硫酸ニッケルの回収に係る銅の電解精製工程における尾液(以下、「電解尾液」という。)の流れを表すフローである。本実施形態では、電解尾液を硫酸酸性液の濃縮装置(以下、単に「濃縮装置」という。)1へ導入して濃縮する。濃縮した電解尾液は液中燃焼缶2へ送られ、さらに濃縮される。濃縮装置1と液中燃焼缶2とにおいて高濃縮された電解尾液は、冷却槽3に導入されて冷却される。冷却されることにより、電解尾液中の粗硫酸ニッケルが晶出する。晶出した粗硫酸ニッケルは固液分離器4で高濃縮された電解尾液から分離される。固液分離器4の一例として、フィルタープレスが挙げられる。なお、電解尾液とは、銅電解精製工程で使用されて、アノードからの銅イオンや砒素、ビスマス、アンチモン及びニッケル等の不純物の溶出を受けた後の銅電解液(主として硫酸銅が溶解した水溶液)に対して、少なくとも、銅濃度の低減を行う脱銅処理を行った後の後液を指す。より好ましくは、脱銅処理後、砒素、ビスマス、アンチモン等の不純物を低減する清浄処理を行った後の後液を電解尾液とする。   An embodiment of the present invention will be described with reference to the drawings. In the embodiment of the present invention, a concentration device for concentrating an acidic sulfuric acid solution will be described. Here, the concentration device concentrates the tail liquid in the copper electrolytic purification process. However, it is possible to concentrate sulfuric acid acidic liquids other than the tail liquid in the copper electrolytic purification process by the same concentration apparatus. FIG. 2 is a flow showing the flow of tail liquid (hereinafter referred to as “electrolytic tail liquid”) in the copper electrolytic purification process related to the recovery of crude nickel sulfate in the present embodiment. In this embodiment, the electrolytic tail solution is introduced into a concentration device (hereinafter simply referred to as “concentration device”) 1 of an acidic sulfuric acid solution and concentrated. The concentrated electrolytic tail solution is sent to the submerged combustion can 2 and further concentrated. The electrolytic tail liquor highly concentrated in the concentrator 1 and the submerged combustion can 2 is introduced into the cooling tank 3 and cooled. By cooling, the crude nickel sulfate in the electrolytic tail solution is crystallized. The crystallized crude nickel sulfate is separated from the highly concentrated electrolytic tail solution by the solid-liquid separator 4. An example of the solid-liquid separator 4 is a filter press. The electrolytic tail solution is used in the copper electrolytic refining process, and after being eluted from copper ions, impurities such as arsenic, bismuth, antimony and nickel from the anode (mainly copper sulfate dissolved) It refers to a post-solution after a copper removal treatment for reducing the copper concentration. More preferably, after the copper removal treatment, the subsequent solution after performing a cleaning treatment for reducing impurities such as arsenic, bismuth, antimony, etc. is used as the electrolytic tail solution.

(本実施の形態の構成)
図3は本実施の形態の濃縮装置1を示した図である。濃縮装置1は第1濃縮器10、第2濃縮器20、熱交換器30を備えている。
(Configuration of this embodiment)
FIG. 3 is a diagram showing the concentrating device 1 of the present embodiment. The concentrating device 1 includes a first concentrator 10, a second concentrator 20, and a heat exchanger 30.

第1濃縮器10は、伝熱部11を内部に組み込んだ第1真空蒸気缶12内に、電解尾液を供給し、缶内を減圧した状態で電解尾液を濃縮する真空蒸発式濃縮器である。伝熱部11は小径の伝熱管19を複数備えている。伝熱管19にはボイラなどから供給される蒸気が流れ込む。伝熱管19を構成する材質の一例として、SUS316J1Lが挙げられる。伝熱管19はφ19mm、2035mmの長さがあり、伝熱部11は480本の伝熱管19を備えていてもよい。なお、伝熱部11へは、ボイラ以外にも、銅製錬工程における自溶炉や転炉を始め、燃焼炉その他熱源から排出される廃熱を利用して発生させた蒸気を供給してもよい。   The first concentrator 10 is a vacuum evaporation type concentrator that supplies electrolytic tail liquor into a first vacuum steam can 12 incorporating a heat transfer section 11 therein, and concentrates the electrolytic tail solution in a state where the inside of the can is decompressed. It is. The heat transfer unit 11 includes a plurality of small-diameter heat transfer tubes 19. Steam supplied from a boiler or the like flows into the heat transfer tube 19. SUS316J1L is mentioned as an example of the material which comprises the heat exchanger tube 19. FIG. The heat transfer tube 19 has a length of φ19 mm and 2035 mm, and the heat transfer unit 11 may include 480 heat transfer tubes 19. In addition to the boiler, the heat transfer section 11 may be supplied with steam generated using waste heat discharged from a combustion furnace or other heat source, including a flash smelting furnace and a converter in a copper smelting process. Good.

第1真空蒸気缶12は、外気の侵入を防止する密封構造上の水槽である。第1真空蒸気缶12の材質は、例えば、SUS836LやNAS254Nが用いられる。第1真空蒸気缶12は、φ2400mm、奥行2000mmの円筒を、円筒の軸が水平になるように倒した状態で軸を通る面で半分に仕切った半円筒の形状をしている。第1真空蒸気缶12内に供給された電解尾液は缶の底部に蓄えられる。第1真空蒸気缶12の底部に蓄えられた電解尾液は、第1ポンプ13により、第1真空蒸気缶12の天井部に設けられた散布ノズル14へ運ばれる。散布ノズル14は、電解尾液を伝熱管19へ向かって散布するように配置されている。散布ノズル14から散布された伝熱管19の外表面の電解尾液は、伝熱管19内を流れる蒸気から熱を受け取ることにより温度が上昇し、溶液中の水分が蒸発して濃縮される。こうして濃縮された電解尾液は、再び、第1真空蒸気缶12内の底部に溜まる。第1真空蒸気缶12内の底部に溜まった電解尾液は、再度、散布ノズル14へ運ばれて伝熱管19へ散布され、熱を受け取ることを繰り返し、さらに濃縮される。このように、第1濃縮器10は電解尾液を濃縮する第1濃縮工程を行う。第1真空蒸気缶12の内部は大気圧よりも減圧した状態に調整されているため、大気圧で加熱する場合よりも電解尾液中の水分が蒸発しやすく、電解尾液を濃縮するのに適している。また、この場合、水分が蒸発しやすいため、大気圧で蒸発させる場合に比べて蒸気の温度が低くてもよい。このため、熱源において蒸気へ付与する熱量を少なくできる。第1真空蒸気缶12内で発生した蒸気は、熱交換器30へ供給される。   The first vacuum steam can 12 is a water tank on a sealed structure that prevents intrusion of outside air. For example, SUS836L or NAS254N is used as the material of the first vacuum steam can 12. The first vacuum steam can 12 has a semi-cylindrical shape in which a cylinder having a diameter of 2400 mm and a depth of 2000 mm is divided in half by a plane passing through the axis in a state where the axis of the cylinder is tilted so as to be horizontal. The electrolytic tail solution supplied into the first vacuum steam can 12 is stored at the bottom of the can. The electrolytic tail liquor stored at the bottom of the first vacuum steam can 12 is conveyed by the first pump 13 to the spray nozzle 14 provided at the ceiling of the first vacuum steam can 12. The spray nozzle 14 is disposed so as to spray the electrolytic tail solution toward the heat transfer tube 19. The electrolytic tail liquor on the outer surface of the heat transfer tube 19 sprayed from the spray nozzle 14 rises in temperature by receiving heat from the steam flowing in the heat transfer tube 19, and the water in the solution is evaporated and concentrated. The electrolytic tail liquor thus concentrated again accumulates at the bottom in the first vacuum steam can 12. The electrolytic tail liquor collected at the bottom in the first vacuum steam can 12 is again transported to the spray nozzle 14 and sprayed to the heat transfer tube 19, repeatedly receiving heat, and further concentrated. Thus, the 1st concentrator 10 performs the 1st concentration process which concentrates electrolytic tail liquid. Since the inside of the first vacuum steam can 12 is adjusted to a state where the pressure is lower than the atmospheric pressure, moisture in the electrolytic tail liquor is easier to evaporate than when heating at atmospheric pressure, and the electrolytic tail liquid is concentrated. Is suitable. Further, in this case, since water easily evaporates, the temperature of the vapor may be lower than in the case of evaporating at atmospheric pressure. For this reason, the amount of heat imparted to the steam in the heat source can be reduced. The steam generated in the first vacuum steam can 12 is supplied to the heat exchanger 30.

第1濃縮器10を循環する電解尾液の一部は、供給管15を介して第2濃縮器20の第2真空蒸気缶22へ供給される。第2真空蒸気缶22も第1真空蒸気缶12と同様に、外気の侵入を防止する密封構造上の水槽である。第2真空蒸気缶22は、第1真空蒸気缶12と同様の材質からなり、同様の大きさ、形状である。第2真空蒸気缶22内に供給された電解尾液は缶の底部に蓄えられる。第2真空蒸気缶22の底部に蓄えられた電解尾液は、第2ポンプ23により、熱交換器30へ供給される。   A part of the electrolytic tail liquor circulating in the first concentrator 10 is supplied to the second vacuum steam can 22 of the second concentrator 20 through the supply pipe 15. Similar to the first vacuum steam can 12, the second vacuum steam can 22 is a water tank on a sealed structure that prevents the intrusion of outside air. The second vacuum steam can 22 is made of the same material as the first vacuum steam can 12 and has the same size and shape. The electrolytic tail solution supplied into the second vacuum steam can 22 is stored at the bottom of the can. The electrolytic tail liquor stored at the bottom of the second vacuum steam can 22 is supplied to the heat exchanger 30 by the second pump 23.

熱交換器30は、沸点未満で電解尾液を加熱する加熱器である。熱交換器30は、内部が空洞の本体31内に小断面の配管32を平行に複数設けた構成をしている。本体31内には、第1真空蒸気缶12内で発生した蒸気が取り込まれる。配管32には、第2ポンプ23により圧送された電解尾液が流れ込む。熱交換器30内において、配管32の外側の蒸気から配管32内を流れる電解尾液へ熱が伝達され、蒸気が液体(水)に凝縮するとともに、電解尾液の温度が上昇する。このように、熱交換器30は第1濃縮工程後の電解尾液を沸点未満で加熱する加熱工程を行う。また、第1真空蒸気缶12で発生した蒸気が熱交換器30において液体に凝縮することにより負圧となり、第1真空蒸気缶12の内部が減圧される。   The heat exchanger 30 is a heater that heats the electrolytic tail liquor below the boiling point. The heat exchanger 30 has a configuration in which a plurality of small-section pipes 32 are provided in parallel in a hollow body 31. Steam generated in the first vacuum steam can 12 is taken into the main body 31. The electrolytic tail solution pumped by the second pump 23 flows into the pipe 32. In the heat exchanger 30, heat is transferred from the steam outside the pipe 32 to the electrolytic tail liquor flowing in the pipe 32, the steam condenses into a liquid (water), and the temperature of the electrolytic tail liquid rises. Thus, the heat exchanger 30 performs the heating process which heats the electrolytic tail liquor after the first concentration process below the boiling point. Further, the vapor generated in the first vacuum steam can 12 is condensed into a liquid in the heat exchanger 30 to become a negative pressure, and the inside of the first vacuum steam can 12 is decompressed.

熱交換器30において加熱された電解尾液は、第2真空蒸気缶22の天井部に設けられた散布ノズル24へ送られ、散布ノズル24から第2真空蒸気缶22内へ散布される。第2真空蒸気缶22には、蒸気を引き込む真空ポンプ25が設けられており、第2真空蒸気缶22内を大気圧よりも減圧している。このように、第2真空蒸気缶22内は大気圧よりも減圧されているうえに、内部に散布された電解尾液が熱交換器30において加熱されているため、水分の蒸発が促進され、電解尾液の濃度が上昇する。こうして濃縮された電解尾液は、再度、第2ポンプ23により熱交換器30へ供給されて加熱され、減圧された第2濃縮器20内を循環しながら、さらに濃縮される。このように、第2濃縮器20は、加熱工程後の電解尾液を減圧して水分を蒸発させ、濃縮する第2濃縮工程を行う。こうして濃縮された電解尾液の一部は、第2ポンプ23の下流側から取り出し、次工程へ送られる。また、真空ポンプ25と第2真空蒸気缶22との間には、コンデンサ26が設けられており、コンデンサ26において、真空ポンプ25により第2真空蒸気缶22から引き込まれた蒸気が液体(水)に凝縮する。   The electrolytic tail liquor heated in the heat exchanger 30 is sent to the spray nozzle 24 provided on the ceiling of the second vacuum steam can 22 and sprayed from the spray nozzle 24 into the second vacuum steam can 22. The second vacuum steam can 22 is provided with a vacuum pump 25 for drawing steam, and the inside of the second vacuum steam can 22 is depressurized from the atmospheric pressure. Thus, since the inside of the second vacuum steam can 22 is depressurized from the atmospheric pressure and the electrolytic tail liquor sprayed inside is heated in the heat exchanger 30, the evaporation of moisture is promoted, The concentration of the electrolytic tail solution increases. The electrolytic tail liquor thus concentrated is supplied again to the heat exchanger 30 by the second pump 23, heated, and further concentrated while circulating in the decompressed second concentrator 20. Thus, the 2nd concentrator 20 performs the 2nd concentration process which decompresses the electrolytic tail liquid after a heating process, evaporates a water | moisture content, and concentrates. A part of the electrolytic tail solution thus concentrated is taken out from the downstream side of the second pump 23 and sent to the next step. A condenser 26 is provided between the vacuum pump 25 and the second vacuum steam can 22, and the steam drawn from the second vacuum steam can 22 by the vacuum pump 25 in the condenser 26 is liquid (water). Condenses to

(比較の形態の構成)
次に、比較の形態の構成を説明する。図4は比較の形態の硫酸酸性液の濃縮装置(以下、単に「濃縮装置」という。)200を示した図である。濃縮装置200は第1濃縮器210、第2濃縮器220を備えている。第1濃縮器210は上記実施の形態の第1濃縮器10と同様の構成である。したがって、図4中において、第1濃縮器10と同様の構成について、同一の参照番号を付し、その詳細な説明は省略する。
(Configuration of comparison form)
Next, the configuration of the comparative form will be described. FIG. 4 is a diagram showing a sulfuric acid acid concentration apparatus (hereinafter simply referred to as “concentration apparatus”) 200 of a comparative form. The concentrating device 200 includes a first concentrator 210 and a second concentrator 220. The 1st concentrator 210 is the structure similar to the 1st concentrator 10 of the said embodiment. Therefore, in FIG. 4, the same reference numerals are assigned to the same components as those of the first concentrator 10, and detailed description thereof is omitted.

濃縮装置200は上記実施の形態における熱交換器30に相当する装置を備えていない。代わりに、第2濃縮器220が、第2伝熱部221を第2真空蒸気缶222内に備えている。第2伝熱部221は、小径の伝熱管229を複数備えている。伝熱管229を構成する材質の一例として、SUS316J1Lが挙げられる。伝熱管229はφ19mm、2035mmの長さがあり、第2伝熱部221は480本の伝熱管219を備えていてもよい。伝熱管229内には、第1真空蒸気缶12内で発生した蒸気が取り込まれる。第2真空蒸気缶222は、外気の侵入を防止する密封構造上の水槽である。第2真空蒸気缶222は、第1真空蒸気缶12と同様の材質からなり、同様の大きさ、形状である。   The concentrating device 200 does not include a device corresponding to the heat exchanger 30 in the above embodiment. Instead, the second concentrator 220 includes the second heat transfer unit 221 in the second vacuum steam can 222. The second heat transfer unit 221 includes a plurality of small-diameter heat transfer tubes 229. SUS316J1L is mentioned as an example of the material which comprises the heat exchanger tube 229. The heat transfer tube 229 has a length of φ19 mm and 2035 mm, and the second heat transfer unit 221 may include 480 heat transfer tubes 219. Steam generated in the first vacuum steam can 12 is taken into the heat transfer tube 229. The second vacuum steam can 222 is a water tank on a sealed structure that prevents intrusion of outside air. The second vacuum steam can 222 is made of the same material as the first vacuum steam can 12 and has the same size and shape.

第2真空蒸気缶222内には、第1濃縮器210において濃縮された電解尾液が供給され、缶の底部に蓄えられる。第2真空蒸気缶222の底部に蓄えられた電解尾液は、第2ポンプ223により、第2真空蒸気缶222の天井部に設けられた散布ノズル224へ運ばれる。散布ノズル224は、電解尾液を伝熱管229へ向かって散布するように配置されている。散布ノズル224から散布された伝熱管229の外表面の電解尾液は、伝熱管229内を流れる蒸気から熱を受け取ることで温度が上昇し、電解尾液中の水分が蒸発して濃縮される。こうして濃縮された電解尾液は、再び、第2真空蒸気缶222内の底部に溜まり、再度、散布ノズル224へ運ばれて伝熱管229へ散布され、熱を受け取ることを繰り返し、さらに濃縮される。   The electrolytic tail solution concentrated in the first concentrator 210 is supplied into the second vacuum steam can 222 and stored in the bottom of the can. The electrolytic tail liquor stored at the bottom of the second vacuum steam can 222 is transported by the second pump 223 to the spray nozzle 224 provided at the ceiling of the second vacuum steam can 222. The spray nozzle 224 is arranged to spray the electrolytic tail solution toward the heat transfer tube 229. The electrolytic tail liquor on the outer surface of the heat transfer tube 229 sprayed from the spray nozzle 224 rises in temperature by receiving heat from the steam flowing in the heat transfer tube 229, and the water in the electrolytic tail solution is evaporated and concentrated. . The electrolytic tail liquor thus concentrated again accumulates at the bottom of the second vacuum steam can 222, is again transported to the spray nozzle 224, sprayed onto the heat transfer tube 229, and repeatedly receives heat, and further concentrated. .

第2真空蒸気缶222には、蒸気を引き込む真空ポンプ225が設けられており、第2真空蒸気缶222内を大気圧よりも減圧している。したがって、第2真空蒸気缶222内の電解尾液中の水分が大気圧で加熱する場合よりも蒸発しやすく、電解尾液がより濃縮されやすい。また、真空ポンプ225と第2真空蒸気缶222との間には、コンデンサ226が設けられており、コンデンサ226において、真空ポンプ225により第2真空蒸気缶222から引き込まれた蒸気が液体(水)に凝縮する。   The second vacuum steam can 222 is provided with a vacuum pump 225 for drawing steam, and the inside of the second vacuum steam can 222 is depressurized from the atmospheric pressure. Therefore, the water in the electrolytic tail liquor in the second vacuum steam can 222 is more likely to evaporate than when heated at atmospheric pressure, and the electrolytic tail liquor is more likely to be concentrated. Further, a condenser 226 is provided between the vacuum pump 225 and the second vacuum steam can 222, and the steam drawn from the second vacuum steam can 222 by the vacuum pump 225 in the condenser 226 is a liquid (water). Condenses to

以上説明した通り、比較の形態の濃縮装置200は、減圧した室内で加熱濃縮する濃縮器を直列配置した構造である。この構成は、前段で発生した蒸気を後段で使用するため、濃縮に利用するエネルギー量を抑えることができるため効率的であるが、下記実施例で説明する点で改良の余地がある。   As described above, the concentrator 200 of the comparative form has a structure in which concentrators that heat and concentrate in a decompressed room are arranged in series. This configuration is efficient because the steam generated in the previous stage is used in the subsequent stage, so that the amount of energy used for concentration can be suppressed. However, there is room for improvement in the points described in the following examples.

(実施例)
次に、実施の形態と比較の形態とを比較しながら、本発明の実施例について説明する。
(Example)
Next, examples of the present invention will be described while comparing the embodiment and the comparative embodiment.

本実施の形態の濃縮装置1及び比較の形態の濃縮装置200において濃縮する電解尾液の液性は、濃縮前の硫酸濃度が250〜280g/L、Ni濃度が20g/L、Cu濃度が0.5g/Lであり、この他にも、カルシウムCaが0.35g/L含まれている。濃縮装置1及び濃縮装置200の一日の処理量は55m、電解尾液の濃縮倍率は2.0倍である。本実施の形態の濃縮装置1では、第1濃縮器10内の伝熱部11における電解尾液の温度が60〜80℃、熱交換器30における電解尾液の温度が50〜70℃である。比較の形態の濃縮装置200では、第1濃縮器210内の伝熱部11における電解尾液の温度が60〜80℃、第2濃縮器220の第2伝熱部221における電解尾液の温度が50〜70℃である。 The liquidity of the electrolytic tail solution to be concentrated in the concentration apparatus 1 of the present embodiment and the concentration apparatus 200 of the comparative form is that the sulfuric acid concentration before concentration is 250 to 280 g / L, the Ni concentration is 20 g / L, and the Cu concentration is 0. In addition to this, 0.35 g / L of calcium Ca is contained. The daily processing amount of the concentration apparatus 1 and the concentration apparatus 200 is 55 m 3 , and the concentration ratio of the electrolytic tail solution is 2.0 times. In the concentration apparatus 1 of this Embodiment, the temperature of the electrolytic tail liquid in the heat transfer part 11 in the 1st concentrator 10 is 60-80 degreeC, and the temperature of the electrolytic tail liquid in the heat exchanger 30 is 50-70 degreeC. . In the concentration device 200 of the comparative form, the temperature of the electrolytic tail liquor in the heat transfer section 11 in the first concentrator 210 is 60 to 80 ° C., and the temperature of the electrolytic tail liquor in the second heat transfer section 221 of the second concentrator 220. Is 50-70 degreeC.

上記説明した実施の形態でも、比較の形態でも、電解尾液は、第1濃縮器10,210において濃縮されているため、第2濃縮器20,220で濃縮を行うと、電解尾液中のカルシウム濃度と、硫酸濃度とが上昇し、硫酸カルシウムの析出限界を超える。すなわち、電解尾液中の硫酸カルシウムが溶解度積以上に濃縮されて硫酸カルシウムが析出する。   In both the embodiment described above and the comparative example, the electrolytic tail solution is concentrated in the first concentrators 10 and 210. Therefore, if the second concentrators 20 and 220 concentrate the electrolytic tail solution, Calcium concentration and sulfuric acid concentration increase and exceed the precipitation limit of calcium sulfate. That is, calcium sulfate in the electrolytic tail solution is concentrated to a solubility product or more, and calcium sulfate is precipitated.

比較の形態の濃縮装置200を約3ヶ月の間操業したところ、第2濃縮器220の第2伝熱部221の伝熱管229に腐食が生じた。比較の形態では、第2濃縮器220内において電解尾液が沸点に達する条件が満たされるため、これにより、電解尾液が過剰に濃縮される。このように、硫酸濃度が過剰に上昇したことが伝熱管229に腐食が生じた原因である。伝熱管229の腐食は第2伝熱部221全体におよび、約40%の伝熱管229に蒸気のリークが発生していた。伝熱管229から蒸気がリークしてしまうと、電解尾液の濃縮処理を妨げ、第2伝熱部221の交換を余儀なくされる。なお、第1濃縮器210においては、硫酸カルシウムのスケールや腐食は生じていなかった。すなわち、脱銅、清浄の処理後の電解尾液を濃縮した後に、さらに、減圧した状態で沸点以上となる温度で加熱濃縮する場合、電解尾液の濃度が過度に上がり過ぎて熱交換部の問題が生じる。   When the concentrating device 200 of the comparative form was operated for about three months, corrosion occurred in the heat transfer tube 229 of the second heat transfer section 221 of the second concentrator 220. In the comparative form, the condition in which the electrolytic tail solution reaches the boiling point is satisfied in the second concentrator 220, so that the electrolytic tail solution is excessively concentrated. Thus, the excessive increase in the sulfuric acid concentration is the cause of the corrosion in the heat transfer tube 229. Corrosion of the heat transfer tube 229 occurred throughout the second heat transfer portion 221 and steam leakage occurred in about 40% of the heat transfer tube 229. If steam leaks from the heat transfer tube 229, the concentration process of the electrolytic tail solution is hindered, and the second heat transfer unit 221 must be replaced. In the first concentrator 210, calcium sulfate scale and corrosion did not occur. That is, after concentrating the electrolytic tail liquor after the copper removal and cleaning treatment, and further heating and concentrating at a temperature that is equal to or higher than the boiling point in a reduced pressure state, the concentration of the electrolytic tail liquid is excessively increased, and Problems arise.

比較の形態では、第2濃縮器220の第2伝熱部221において、電解尾液が濃縮され、電解尾液中のカルシウム濃度と硫酸濃度とが硫酸カルシウムの溶解度積以上になり、この結果、伝熱管229周りに硫酸カルシウムのスケールが形成された。さらに、比較の形態では、第2濃縮器220において減圧した状態で加熱濃縮するため、硫酸溶液が沸点に達することになり、電解尾液中の水分の蒸発が促進され、電解尾液が過剰に濃縮されてしまった。   In the comparative form, in the second heat transfer section 221 of the second concentrator 220, the electrolytic tail solution is concentrated, and the calcium concentration and the sulfuric acid concentration in the electrolytic tail solution are equal to or higher than the solubility product of calcium sulfate. A scale of calcium sulfate was formed around the heat transfer tube 229. Furthermore, in the comparative form, since the second concentrator 220 is heated and concentrated in a reduced pressure state, the sulfuric acid solution reaches the boiling point, the evaporation of water in the electrolytic tail liquid is promoted, and the electrolytic tail liquid becomes excessive. It has been concentrated.

ここで、ステンレス鋼(SUS316J1L)の硫酸による腐食度の検証試験について説明する。ステンレス鋼(SUS316J1L)は、濃縮装置1の伝熱部11の伝熱管19や熱交換器30の配管32、及び濃縮装置200の第2伝熱部221の伝熱管229を形成する材料の一例である。図5は、腐食度の検証試験結果を示した図である。腐食度の検証試験は、SUS316J1Lのテストピースを用いて行った。テストピースの浸漬時間は120時間であり、硫酸の温度60℃、80℃の2点について試験を行った。硫酸の濃度は、上記装置で濃縮する前の電解尾液の2.0倍、2.5倍、3.0倍、3.5倍に相当する580g/L、686g/L、844g/L、922g/Lの4段階に変えて試験を行った。腐食度の検証試験結果において、年間あたりの腐食量が0.05mm以下で、伝熱管の完全耐食性が保たれ、0.07mm以下で伝熱管の使用が可能であると判断する。年間あたりの腐食量が0.07mmを超えている場合には、伝熱管の損傷の危険性があると判断する。   Here, a verification test of the corrosion degree of stainless steel (SUS316J1L) with sulfuric acid will be described. Stainless steel (SUS316J1L) is an example of a material that forms the heat transfer tube 19 of the heat transfer unit 11 of the concentrator 1, the pipe 32 of the heat exchanger 30, and the heat transfer tube 229 of the second heat transfer unit 221 of the concentrator 200. is there. FIG. 5 is a diagram showing the result of the corrosion degree verification test. The verification test of the corrosion degree was performed using a test piece of SUS316J1L. The immersion time of the test piece was 120 hours, and the test was performed on two points of sulfuric acid temperature of 60 ° C. and 80 ° C. The concentration of sulfuric acid is 580 g / L, 686 g / L, 844 g / L corresponding to 2.0 times, 2.5 times, 3.0 times, and 3.5 times of the electrolytic tail solution before being concentrated in the above apparatus, The test was conducted by changing to four stages of 922 g / L. As a result of the verification test of the degree of corrosion, it is judged that the corrosion amount per year is 0.05 mm or less, the complete corrosion resistance of the heat transfer tube is maintained, and the heat transfer tube can be used at 0.07 mm or less. If the amount of corrosion per year exceeds 0.07 mm, it is determined that there is a risk of damage to the heat transfer tubes.

この検証試験により、全ての硫酸濃度において、温度が60℃の場合に比べて温度が80℃の場合の腐食度が高いという結果となった。そして、硫酸濃度が844g/L、922g/Lの場合には、伝熱管が損傷する危険があるとの結果となった。この結果に基づいた考察によると、比較の形態の第2濃縮器220の伝熱管229周りで電解尾液が濃縮された結果、伝熱管229の損傷の危険があるとする硫酸の濃度まで電解尾液が濃縮されたと考えられる。   This verification test resulted in a higher degree of corrosion when the temperature was 80 ° C. than when the temperature was 60 ° C. at all sulfuric acid concentrations. When the sulfuric acid concentration was 844 g / L or 922 g / L, the heat transfer tube was damaged. According to the consideration based on this result, the electrolytic tail solution is concentrated around the heat transfer tube 229 of the second concentrator 220 of the comparative form, and as a result, the electrolytic tail is concentrated up to the concentration of sulfuric acid at which there is a risk of damage to the heat transfer tube 229. It is thought that the liquid was concentrated.

一方、本実施の形態では、熱交換器30が沸点未満で電解尾液を加熱する。このため、比較の形態のように沸点以上の温度で加熱する場合に比べ、熱交換器30における電解尾液の水分の蒸発が抑制されている。このため、熱交換器30の配管32を構成する配管内で電解尾液の濃度が過剰に上昇することが抑制される。このため、電解尾液が配管を損傷させる危険な濃度まで濃縮されないため、熱交換器の損傷が防止される。なお、熱交換器30内で加熱された電解尾液は、熱交換器30の下流に位置する、減圧された第2真空蒸気缶22内において電解尾液の水分が蒸発し、電解尾液が濃縮する。このとき、第2真空蒸気缶22内で電解尾液中のカルシウムと硫酸の濃度が硫酸カルシウムの析出限界濃度を超え、第2真空蒸気缶22内に硫酸カルシウムが析出する。ただし、第2真空蒸気缶22内には伝熱管を配置していないため、硫酸カルシウムのスケール形成による管の損傷を考慮する必要がない。   On the other hand, in the present embodiment, the heat exchanger 30 heats the electrolytic tail liquor below the boiling point. For this reason, compared with the case where it heats at the temperature more than a boiling point like a comparative form, evaporation of the water | moisture content of the electrolytic tail liquid in the heat exchanger 30 is suppressed. For this reason, it is suppressed that the density | concentration of electrolytic tail liquid rises excessively in the piping which comprises the piping 32 of the heat exchanger 30. FIG. For this reason, since the electrolytic tail solution is not concentrated to a dangerous concentration that damages the pipe, damage to the heat exchanger is prevented. The electrolytic tail solution heated in the heat exchanger 30 evaporates in the second vacuum steam can 22, which is located downstream of the heat exchanger 30, and the electrolytic tail solution is evaporated. Concentrate. At this time, the concentration of calcium and sulfuric acid in the electrolytic tail liquor in the second vacuum steam can 22 exceeds the precipitation limit concentration of calcium sulfate, and calcium sulfate is deposited in the second vacuum steam can 22. However, since the heat transfer tube is not arranged in the second vacuum steam can 22, it is not necessary to consider the tube damage due to the calcium sulfate scale formation.

以上説明したように、本実施形態によると、銅の電解尾液を濃縮する電解尾液の濃縮装置において、電解尾液を濃縮する第1濃縮器10と、第1濃縮器10において濃縮された電解尾液を沸点未満で加熱する熱交換器30と、加熱後の電解尾液を減圧して水分を蒸発させ、濃縮する第2濃縮器20と、を備え、電解尾液を沸点未満で加熱することにより、熱交換器30内において電解尾液が蒸発することを抑制する。これにより、電解尾液の硫酸濃度が配管を損傷させる濃度となることが抑制される。この結果、熱交換器30の配管の損傷を抑制できる。   As described above, according to the present embodiment, in the electrolytic tail solution concentrating device for concentrating the electrolytic tail solution of copper, the first concentrator 10 for concentrating the electrolytic tail solution and the first concentrator 10 are concentrated. A heat exchanger 30 that heats the electrolytic tail liquor below the boiling point, and a second concentrator 20 that depressurizes the heated electrolytic tail liquor to evaporate and concentrate the water, and heats the electrolytic tail liquor below the boiling point. By doing this, it is possible to suppress evaporation of the electrolytic tail liquor in the heat exchanger 30. Thereby, it is suppressed that the sulfuric acid density | concentration of electrolytic tail liquid becomes the density | concentration which damages piping. As a result, damage to the piping of the heat exchanger 30 can be suppressed.

このようにニッケルを含む電解尾液の濃縮が不具合なく行われることにより、粗硫酸ニッケルの回収を効率よく行うことができる。この結果、電解液中のニッケル濃度を低下し、銅精錬工程における電解液中の液抵抗を減少し、銅の電解精錬を安定操業できる。また、粗硫酸ニッケル販売による収益を増加できる。   Thus, the concentration of the electrolytic tail solution containing nickel is performed without any trouble, whereby the recovery of the crude nickel sulfate can be performed efficiently. As a result, the nickel concentration in the electrolytic solution is reduced, the liquid resistance in the electrolytic solution in the copper refining process is reduced, and the electrolytic refining of copper can be stably operated. In addition, profit from sales of crude nickel sulfate can be increased.

なお、上記実施の形態における濃縮装置1は、図6に示すように、製錬工程廃熱回収蒸気を熱交換器30に供給することとしてもよい。製錬工程廃熱回収蒸気は、銅製錬において発生した廃熱から発生した蒸気である。例えば、銅製錬における自溶炉、転炉、その他の製錬炉から排出される廃熱から発生させた蒸気でもよい。また、自溶炉や転炉の排ガスから硫酸を製造するときに発生する熱をボイラで回収して発生した蒸気であってもよい。また、第1濃縮器10は、減圧状態で加熱濃縮する濃縮器でなくてもよい。例えば、液中燃焼を行う濃縮器であってもよい。   In addition, the concentration apparatus 1 in the said embodiment is good also as supplying the smelting process waste heat recovery steam to the heat exchanger 30, as shown in FIG. Smelting process waste heat recovery steam is steam generated from waste heat generated in copper smelting. For example, steam generated from waste heat discharged from a flash smelting furnace, converter, or other smelting furnace in copper smelting may be used. Moreover, the steam which generate | occur | produced by collect | recovering the heat | fever which generate | occur | produces when manufacturing a sulfuric acid from the exhaust gas of a flash smelting furnace or a converter with a boiler may be sufficient. Further, the first concentrator 10 may not be a concentrator that performs heat concentration in a reduced pressure state. For example, a concentrator that performs submerged combustion may be used.

上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、さらに本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。   The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited thereto. Various modifications of these embodiments are within the scope of the present invention. It is apparent from the above description that various other embodiments are possible within the scope.

1 濃縮装置
10 第1濃縮器
20 第2濃縮器
30 熱交換器(加熱器)
DESCRIPTION OF SYMBOLS 1 Concentrator 10 First concentrator 20 Second concentrator 30 Heat exchanger (heater)

Claims (11)

少なくともカルシウムを含む硫酸酸性液の濃縮装置において、
前記硫酸酸性液を濃縮する第1濃縮器と、
前記第1濃縮器において濃縮された前記硫酸酸性液を沸点未満で加熱する加熱器と、
加熱後の前記硫酸酸性液を減圧して水分を蒸発させ、濃縮する第2濃縮器と、
を備えたことを特徴とする硫酸酸性液の濃縮装置。
In the sulfuric acid acid concentration apparatus containing at least calcium,
A first concentrator for concentrating the sulfuric acid acidic solution;
A heater that heats the acidic sulfuric acid solution concentrated in the first concentrator below a boiling point;
A second concentrator for evaporating and condensing the sulfuric acid acidic solution after heating to evaporate the water;
An apparatus for concentrating sulfuric acid acidic liquid, comprising:
前記硫酸酸性液は銅の電解尾液であることを特徴とする請求項1記載の硫酸酸性液の濃縮装置。   2. The sulfuric acid acidic liquid concentrator according to claim 1, wherein the sulfuric acid acidic liquid is an electrolytic tail solution of copper. 前記第1濃縮器は、減圧した室内で加熱濃縮することを特徴とした請求項1または2記載の硫酸酸性液の濃縮装置。   The concentration apparatus for an acidic sulfuric acid solution according to claim 1 or 2, wherein the first concentrator performs heat concentration in a decompressed room. 前記加熱器は、前記第1濃縮器における前記硫酸酸性液の加熱濃縮時に発生した蒸気を利用して前記硫酸酸性液を加熱することを特徴とする請求項3記載の硫酸酸性液の濃縮装置。   The apparatus for concentrating a sulfuric acid acidic liquid according to claim 3, wherein the heater heats the sulfuric acid acidic liquid using steam generated during the heat concentration of the sulfuric acid acidic liquid in the first concentrator. 前記加熱器は、銅製錬工程の廃熱から発生した蒸気を利用して前記硫酸酸性液を加熱することを特徴とする請求項1から4のいずれか一項に記載の硫酸酸性液の濃縮装置。   5. The sulfuric acid acidic liquid concentrating device according to claim 1, wherein the heater heats the sulfuric acid acidic liquid using steam generated from waste heat of a copper smelting process. 6. . 少なくともカルシウムを含む硫酸酸性液の濃縮方法において、
前記硫酸酸性液を濃縮する第1濃縮工程後に、加熱工程において前記硫酸酸性液を沸点未満で加熱し、前記加熱工程後に第2濃縮工程において前記硫酸酸性液を減圧して水分を蒸発させ、濃縮することを特徴とする硫酸酸性液の濃縮方法。
In a method for concentrating a sulfuric acid acidic solution containing at least calcium,
After the first concentration step of concentrating the sulfuric acid acidic solution, the sulfuric acid acidic solution is heated below the boiling point in the heating step, and after the heating step, the sulfuric acid acidic solution is depressurized in the second concentration step to evaporate water, and concentrated. A method of concentrating a sulfuric acid acidic liquid characterized by comprising:
前記硫酸酸性液は銅の電解尾液であることを特徴とする請求項6記載の硫酸酸性液の濃縮方法。   The method for concentrating a sulfuric acid acidic solution according to claim 6, wherein the sulfuric acid acidic solution is an electrolytic tail solution of copper. 前記第1濃縮工程では、前記硫酸酸性液を減圧しながら加熱濃縮することを特徴とする請求項6または7記載の硫酸酸性液の濃縮方法。   The method for concentrating a sulfuric acid acidic solution according to claim 6 or 7, wherein, in the first concentration step, the sulfuric acid acidic solution is concentrated by heating while reducing the pressure. 前記加熱工程では、前記第1濃縮工程で加熱濃縮した際に前記硫酸酸性液から発生した蒸気を利用して、前記硫酸酸性液を加熱することを特徴とする請求項8記載の硫酸酸性液の濃縮方法。   9. The sulfuric acid acidic liquid according to claim 8, wherein, in the heating step, the sulfuric acid acidic liquid is heated using steam generated from the sulfuric acid acidic liquid when heated and concentrated in the first concentration step. Concentration method. 前記加熱工程は、銅製錬工程の廃熱から発生した蒸気を利用して前記硫酸酸性液を加熱することを特徴とする請求項6から9のいずれか一項に記載の硫酸酸性液の濃縮方法。   The said heating process heats the said sulfuric acid acidic liquid using the vapor | steam generated from the waste heat of a copper smelting process, The concentration method of the sulfuric acid acidic liquid as described in any one of Claim 6 to 9 characterized by the above-mentioned. . ニッケルを含んだ銅の電解尾液を濃縮した後、冷却して析出させた粗硫酸ニッケルを固液分離することにより回収する粗硫酸ニッケルの回収方法において、
前記電解尾液を濃縮した後に、前記電解尾液を沸点未満で加熱し、減圧して水分を蒸発させ、さらに濃縮することを特徴とする粗硫酸ニッケルの回収方法。
In the method for recovering crude nickel sulfate, after concentrating the electrolytic tail solution of copper containing nickel, the crude nickel sulfate recovered by cooling and solid-liquid separation is collected.
A method for recovering crude nickel sulfate, comprising concentrating the electrolytic tail liquor, heating the electrolytic tail liquor below the boiling point, depressurizing to evaporate water, and further concentrating.
JP2012117813A 2012-05-23 2012-05-23 Sulfuric acid acidic liquid concentration apparatus, sulfuric acid acidic liquid concentration method, and crude nickel sulfate recovery method Active JP6001328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012117813A JP6001328B2 (en) 2012-05-23 2012-05-23 Sulfuric acid acidic liquid concentration apparatus, sulfuric acid acidic liquid concentration method, and crude nickel sulfate recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012117813A JP6001328B2 (en) 2012-05-23 2012-05-23 Sulfuric acid acidic liquid concentration apparatus, sulfuric acid acidic liquid concentration method, and crude nickel sulfate recovery method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016133630A Division JP2016180187A (en) 2016-07-05 2016-07-05 Concentrating apparatus of sulfuric acid acidic solution, concentrating method of sulfuric acid acidic solution, and recovery method of crude nickel sulfate

Publications (2)

Publication Number Publication Date
JP2013245119A true JP2013245119A (en) 2013-12-09
JP6001328B2 JP6001328B2 (en) 2016-10-05

Family

ID=49845183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012117813A Active JP6001328B2 (en) 2012-05-23 2012-05-23 Sulfuric acid acidic liquid concentration apparatus, sulfuric acid acidic liquid concentration method, and crude nickel sulfate recovery method

Country Status (1)

Country Link
JP (1) JP6001328B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024688A (en) * 2012-07-25 2014-02-06 Sumitomo Metal Mining Co Ltd Method for crystallizing nickel sulfate
CN108751147A (en) * 2018-09-18 2018-11-06 攀枝花学院 The solar energy titanium white waste acid enrichment facility complementary with air energy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389410A (en) * 1986-09-25 1988-04-20 バイエル・アクチエンゲゼルシヤフト Concentration of sulfuric acid
JPH03146408A (en) * 1989-10-27 1991-06-21 Metallges Ag Method and device for concentrating liquid containing sulfuric acid and water
JPH04260603A (en) * 1990-09-20 1992-09-16 Metallges Ag Method for concentration of dilute acid by three stage pressure reducing forced circulation evaporating device
JPH0724202A (en) * 1993-07-12 1995-01-27 Sasakura Eng Co Ltd Vapor-compression vacuum-evaporation concentrator
JP2002521301A (en) * 1998-07-30 2002-07-16 テイオキサイド・グループ・サービシズ・リミテツド Concentration method of dilute sulfuric acid solution
JP2011213502A (en) * 2010-03-31 2011-10-27 Pan Pacific Copper Co Ltd Method of recovering nickel from copper electrolyte

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389410A (en) * 1986-09-25 1988-04-20 バイエル・アクチエンゲゼルシヤフト Concentration of sulfuric acid
JPH03146408A (en) * 1989-10-27 1991-06-21 Metallges Ag Method and device for concentrating liquid containing sulfuric acid and water
JPH04260603A (en) * 1990-09-20 1992-09-16 Metallges Ag Method for concentration of dilute acid by three stage pressure reducing forced circulation evaporating device
JPH0724202A (en) * 1993-07-12 1995-01-27 Sasakura Eng Co Ltd Vapor-compression vacuum-evaporation concentrator
JP2002521301A (en) * 1998-07-30 2002-07-16 テイオキサイド・グループ・サービシズ・リミテツド Concentration method of dilute sulfuric acid solution
JP2011213502A (en) * 2010-03-31 2011-10-27 Pan Pacific Copper Co Ltd Method of recovering nickel from copper electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024688A (en) * 2012-07-25 2014-02-06 Sumitomo Metal Mining Co Ltd Method for crystallizing nickel sulfate
CN108751147A (en) * 2018-09-18 2018-11-06 攀枝花学院 The solar energy titanium white waste acid enrichment facility complementary with air energy

Also Published As

Publication number Publication date
JP6001328B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
US10857478B2 (en) Stacked type falling film evaporator, zero liquid discharge system comprising the same, and zero liquid discharging method using the same
CN205974126U (en) Contain salt wastewater resource recycling processed system
JP4688842B2 (en) Wastewater treatment method
CN104926011B (en) The evaporative crystallization zero-discharge treatment system and processing method of a kind of high-COD waste water
JP6841481B2 (en) Method for treating polarizing plate manufacturing waste liquid
CN104085933A (en) High-salinity and high organic matter wastewater treatment process
CN102171148B (en) Catholyte heat recovery evaporator and method of use
US20170306799A1 (en) Method And Arrangement For Operating A Steam Turbine Plant In Combination With Thermal Water Treatment
JP5642987B2 (en) Method for recovering nickel from copper electrolyte
CN101318716A (en) Film evaporating concentration liquid processing system and processing method
CN111003865A (en) Method and system for treating high-concentration waste sulfuric acid
CN111115735A (en) Two-stage forced circulation evaporation system and process for landfill leachate
US9962664B2 (en) Method for recovering process wastewater from a steam power plant
JP6001328B2 (en) Sulfuric acid acidic liquid concentration apparatus, sulfuric acid acidic liquid concentration method, and crude nickel sulfate recovery method
JP4264950B2 (en) Evaporative concentration apparatus for aqueous waste liquid and aqueous cleaning apparatus using the same
CN214693739U (en) A recovery processing device for steel product hydrochloric acid pickling waste liquid
CN207046880U (en) Hydrochloric acid pickling waste liquor recovery and processing system
JP2016180187A (en) Concentrating apparatus of sulfuric acid acidic solution, concentrating method of sulfuric acid acidic solution, and recovery method of crude nickel sulfate
CN210974281U (en) High-concentration waste sulfuric acid treatment system
CN211871447U (en) Two-stage forced circulation evaporation system for landfill leachate
CN210764815U (en) Useless mixed acid recovery processing device of stainless steel pickling
CN208087250U (en) The device that high-salt wastewater low-temperature evaporation is concentrated using hot industry waste water
JP2005270902A (en) Aqueous waste liquid treatment apparatus and washing method therefor
CN108249499A (en) The method and device concentrated using hot industry waste water to high-salt wastewater low-temperature evaporation
CN203890082U (en) Waste heat recovery device for evaporation and crystallization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160901

R150 Certificate of patent or registration of utility model

Ref document number: 6001328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250