JP5066025B2 - Method for producing copper sulfate - Google Patents

Method for producing copper sulfate Download PDF

Info

Publication number
JP5066025B2
JP5066025B2 JP2008183338A JP2008183338A JP5066025B2 JP 5066025 B2 JP5066025 B2 JP 5066025B2 JP 2008183338 A JP2008183338 A JP 2008183338A JP 2008183338 A JP2008183338 A JP 2008183338A JP 5066025 B2 JP5066025 B2 JP 5066025B2
Authority
JP
Japan
Prior art keywords
copper
copper sulfate
sulfuric acid
solution
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008183338A
Other languages
Japanese (ja)
Other versions
JP2009051723A (en
Inventor
邦男 渡辺
徹 古田
敏文 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2008183338A priority Critical patent/JP5066025B2/en
Publication of JP2009051723A publication Critical patent/JP2009051723A/en
Application granted granted Critical
Publication of JP5066025B2 publication Critical patent/JP5066025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、硫酸銅の製造方法に関するものであり、さらに詳しく述べるならば銅の電解精製後液から硫酸銅を回収する方法に関するものである。 The present invention relates to a method for producing copper sulfate, and more particularly to a method for recovering copper sulfate from a solution after electrolytic purification of copper .

銅の電解精製においては、アノードから溶出する銅のほとんどは電気銅として回収されるが、一部は電解液中に蓄積する。この蓄積した銅は電解液中の銅濃度上昇を招き、製品電気銅に悪影響を及ぼすため、電解採取法や結晶化により系外へカットし、電解液中の銅濃度を一定に保っている。図1には、非特許文献1:資源と素材、1993, (Vol. 109), No.12, 「非鉄製錬号」第951頁に示されている本出願人「日立工場」における銅電解液の浄液処理フローを示す。   In the electrolytic purification of copper, most of the copper eluted from the anode is recovered as electrolytic copper, but a part of it accumulates in the electrolytic solution. The accumulated copper causes an increase in the copper concentration in the electrolytic solution and adversely affects the product electrolytic copper. Therefore, it is cut out of the system by electrolytic collection or crystallization, and the copper concentration in the electrolytic solution is kept constant. Fig. 1 shows copper electrolysis in the applicant "Hitachi Factory" shown in Non-Patent Document 1: Resources and Materials, 1993, (Vol. 109), No. 12, "Nonferrous Metals", page 951. The liquid purification process flow of a liquid is shown.

銅電解精製の電解液はCuSO4 +H2SO4系であり、1990年代の操業例では、Cu濃度:46 g/L, 遊離酸濃度 :193g/Lとなっている(非特許文献2:資源と素材、1993 (Vol. 109), No.12, 「非鉄製錬号」第940頁)。なお、銅の電解液浄液分野では硫酸銅5水塩は硫酸銅と言われることが多い。 The electrolytic solution for copper electrolytic purification is a CuSO 4 + H 2 SO 4 system. In an operation example in the 1990s, the Cu concentration was 46 g / L and the free acid concentration was 193 g / L (Non-patent Document 2: Resources and Materials, 1993 (Vol. 109), No. 12, “Nonferrous Metals”, p. 940). In the field of copper electrolyte purification, copper sulfate pentahydrate is often referred to as copper sulfate.

特許文献1:特開2001−31419号公報は、電解液を濃縮、冷却し、過飽和により沈澱する硫酸銅5水塩結晶に不純物として含まれるNi品位を少なくする方法を提案している。 この特許文献では、硫酸銅結晶を水に溶解し、濃縮により再結晶化している。   Patent Document 1: Japanese Patent Laid-Open No. 2001-31419 proposes a method of concentrating and cooling an electrolytic solution to reduce Ni quality contained as impurities in copper sulfate pentahydrate crystals precipitated by supersaturation. In this patent document, copper sulfate crystals are dissolved in water and recrystallized by concentration.

特許文献2;再公表特許第2004/022486号公報は、硫酸銅結晶を純水に溶解した後、蒸発濃縮を行い初期に沈澱する結晶を除去した後、さらに蒸発濃縮を行い、特に電子部品用として適した高純度硫酸銅を製造する方法を提案している。   Patent Document 2; Republished Patent No. 2004/022486 discloses a method in which copper sulfate crystals are dissolved in pure water, and then evaporated and concentrated to remove crystals that precipitate in the initial stage. Has proposed a method for producing high-purity copper sulfate suitable.

非特許文献3;資源と素材、2004(Vol.120), No,4,5第277〜279頁「最近の銅電解操業に改善について」で解説しているように、本出願人は平成14年に、ステンレス鋼を陰極板とするパーマネントカソード法(以下「PC法」という)を導入した。この文献に掲載されている浄液フローを図2に引用する。   Non-Patent Document 3; Resources and Materials, 2004 (Vol. 120), No. 4, 5, pp. 277-279, “Improvements in recent copper electrolysis operations” In 1980, the permanent cathode method (hereinafter referred to as “PC method”) using stainless steel as the cathode plate was introduced. The cleaning liquid flow published in this document is cited in FIG.

PC法においては、電流密度が高いため、陽極が不働態化するおそれがある。これを防止するため、硫酸濃度は180g/L以下、特に160〜180g/Lの範囲とし、また銅濃度は52g/L以下、特に45〜50g/Lの範囲としている。   In the PC method, since the current density is high, the anode may be passivated. In order to prevent this, the sulfuric acid concentration is 180 g / L or less, particularly 160 to 180 g / L, and the copper concentration is 52 g / L or less, particularly 45 to 50 g / L.

本出願人が最近採用している、PC電解後の浄液工程は、図1のフローシートに相当している。PC電解後液の濃縮と結晶化工程により硫酸銅を沈殿させ、Cu濃度を10g/L以下に下げる。この目的は、電解採取工程にてCuとともにAs,Sb,Bi電着させることにより不純物を除去するためである。
特開2001−31419号公報 再公表特許第2004/022486号公報 資源と素材、1993, (Vol. 109), No.12, 「非鉄製錬号」第951頁 資源と素材 1993(Vol. 109), No.12, 第940頁 資源と素材、2004(Vol.120), No,4,5第277〜279頁「最近の銅電解操業に改善について」
The liquid purification process after PC electrolysis recently adopted by the present applicant corresponds to the flow sheet of FIG. Copper sulfate is precipitated by the concentration and crystallization steps of the PC electrolysis solution, and the Cu concentration is lowered to 10 g / L or less. The purpose of this is to remove impurities by electrodepositing As, Sb and Bi together with Cu in the electrowinning process.
JP 2001-31419 A Republished Patent No. 2004/022486 Resources and Materials, 1993, (Vol. 109), No. 12, “Nonferrous Metals”, page 951 Resources and Materials 1993 (Vol. 109), No. 12, 940 Resources and materials, 2004 (Vol.120), No.4,5, pp.277-279 “Improving the recent copper electrolysis operation”

銅の電解精製におけるCu+HSO4系電解後液から過飽和状態の硫酸銅を沈澱させる方法で得られた硫酸銅結晶には硫酸が0.6%から5%程度吸着している。この吸着硫酸が硫酸銅結晶の表面を溶解して、液状の硫酸銅膜を作り、この膜を介して接触する硫酸銅粒子どうしが結合し、水が蒸発し液状膜が凝固すると粒子どうしは、数10個程度の粒子が塊状に結合していることが分かった。このような硫酸銅結晶にはCuSO4・5HO以外の物質が粒子の界面に存在して、塊状化を招いていると考えられる。硫酸銅結晶の取扱困難の問題を避けるために、硫酸を水噴霧で洗浄する方法を検討したが、洗浄効果が十分ではないために、硫酸銅結晶全体を水に再溶解すると同時に硫酸を除去し、後処理として硫酸銅を再結晶する方法の実験を行った。ところが、再結晶化した硫酸銅を水に溶解すると、水不溶解分が0.1%より高くなる場合があった。硫酸銅中の水不溶解分が0.1%より多いと、JIS規格の製品とならない。 The copper sulfate crystals obtained by the method of precipitating supersaturated copper sulfate from the Cu + H 2 SO 4 post-electrolysis solution in the electrolytic purification of copper adsorb about 0.6% to 5% sulfuric acid. This adsorbed sulfuric acid dissolves the surface of the copper sulfate crystal to form a liquid copper sulfate film, and the copper sulfate particles that come into contact with each other through this film are combined, and when the water film evaporates and the liquid film solidifies, the particles are It was found that several tens of particles were bound in a lump. In such a copper sulfate crystal, it is considered that substances other than CuSO 4 .5H 2 O are present at the interface of the particles, leading to agglomeration. In order to avoid the problem of difficult handling of copper sulfate crystals, we investigated a method of washing sulfuric acid with water spray, but because the washing effect was not enough, the entire copper sulfate crystals were re-dissolved in water and sulfuric acid was removed at the same time. Then, an experiment of a method of recrystallizing copper sulfate was performed as a post-treatment. However, when the recrystallized copper sulfate is dissolved in water, the water-insoluble content sometimes becomes higher than 0.1%. If the water insoluble content in copper sulfate is more than 0.1%, it will not be a JIS standard product.

従来は、粗銅中に随伴するCa等が硫酸銅中に取り込まれ、水不溶解分となるものと把握されていたが、意外にも、水不溶解分をX線回析(XRD)より調査したところ、微量のCu3(SO4)(OH)4(アントラー鉱)の結晶が検出された。この結晶は、アントレー鉱とも言われる斜方系硫酸塩鉱物であり、チリのチュカキマタ鉱山では主要銅鉱物である。このような物質が電解後液から結晶化した硫酸銅に付随して生成されることは、従来知られていなかった。
また、実験室レベルではCu3(SO4)(OH)4はpH=2〜4の条件でCu-SO4系水溶液が生成するとの論文があるが、硫酸製造工程でこの化合物の生成を防止する方法については知られていなかった。
Previously, it was understood that Ca accompanying entrained copper was taken into copper sulfate and became a water-insoluble component, but surprisingly, the water-insoluble component was investigated by X-ray diffraction (XRD). As a result, a very small amount of Cu 3 (SO 4 ) (OH) 4 (antlerite) crystals were detected. These crystals are orthorhombic sulfate minerals, also called antley ores, and are the main copper minerals in the Chikakimata mine in Chile. It has not been conventionally known that such a substance is produced accompanying copper sulfate crystallized from a solution after electrolysis.
In addition, although there is a paper at the laboratory level that Cu 3 (SO 4 ) (OH) 4 forms a Cu-SO 4 aqueous solution under the conditions of pH = 2-4, the formation of this compound is prevented in the sulfuric acid production process. How to do was not known.

したがって、本発明はPC電解法の電解後液を濃縮・冷却処理して得られた硫酸銅結晶の塊状化を防止するとともに、再結晶化する際のアントラー鉱の発生を防止することができる硫酸銅の製造方法を提供することを目的とする。   Therefore, the present invention prevents agglomeration of copper sulfate crystals obtained by concentrating and cooling the post-electrolysis solution of the PC electrolysis method, and also prevents sulfuric acid from being generated during recrystallization. It aims at providing the manufacturing method of copper.

本発明に係る方法は、電解精製工程における電解液中の硫酸濃度が180g/L以下であり、かつ 銅濃度が52g/L以下で操業するPC法による銅電解後液に、硫酸を添加し、該銅電解後液を加熱濃縮した後に硫酸濃度が300-350g/Lである状態から冷却を開始することにより硫酸銅結晶を沈殿させる第1回冷却結晶化を行い、続いて前記硫酸銅結晶を水中に溶解し、冷却結晶化工程を2回行い、第3回冷却結晶化工程の溶解液中の硫酸濃度を0.5‐5g/Lとすることを特徴とする。   In the method according to the present invention, the sulfuric acid concentration in the electrolytic solution in the electrolytic refining step is 180 g / L or less, and sulfuric acid is added to the post-copper electrolysis solution by the PC method operated at a copper concentration of 52 g / L or less. After the copper electrolysis solution is heated and concentrated, cooling is started from the state where the sulfuric acid concentration is 300 to 350 g / L, and then the first cooling crystallization is performed to precipitate the copper sulfate crystals, and then the copper sulfate crystals are added. Dissolve in water, perform the cooling crystallization step twice, and adjust the sulfuric acid concentration in the solution in the third cooling crystallization step to 0.5-5 g / L.

さらに、本発明の方法で製造された硫酸銅は、銅の電解精製のCu+H2SO4系電解後液から沈澱され、Cu3(SO4)(OH)4が検出されず、CuSO4・5H2Oからなることを特徴とする。以下、本発明を詳しく説明する。 Furthermore, the copper sulfate produced by the method of the present invention is precipitated from the Cu + H 2 SO 4 system post-electrolysis solution of copper electrolytic purification, Cu 3 (SO 4 ) (OH) 4 is not detected, CuSO 4 -It is characterized by consisting of 5H 2 O. The present invention will be described in detail below.

(1)PC電解法
PC電解法においては、一般に、硫酸濃度が180g/L以下、特に160〜180g/Lであり、かつ銅濃度が52g/L以下、特に45〜50g/Lの条件で操業される。
(1) PC electrolysis
In the PC electrolysis method, generally, the sulfuric acid concentration is 180 g / L or less, particularly 160 to 180 g / L, and the copper concentration is 52 g / L or less, particularly 45 to 50 g / L.

(2)硫酸添加
本発明方法においては、硫酸銅結晶を沈殿させる前後3回の冷却結晶化工程のうち第1回結晶化工程の冷却の前に、硫酸を添加することにより、硫酸濃度、即ち遊離硫酸濃度を加熱濃縮後に300-350g/Lの範囲となるようにし、この範囲の硫酸濃度が達成された状態で、第1回冷却結晶化工程の冷却を開始する。加熱濃縮後の硫酸濃度が300g/L未満であると、濃縮後の一次結晶化工程液中の硫酸濃度が低くなり過ぎるので精製工程においてアントラー鉱が生成する。一方、硫酸濃度が350g/Lを超えると、結晶化工程で生成する硫酸銅結晶に残る硫酸濃度が高くなり、製品硫酸銅が固化する恐れがある。PC電解及び硫酸銅結晶化の双方の観点から最も好ましい硫酸濃度、即ち遊離硫酸濃度は、添加前の180g/L、添加後冷却開始時点で220g/Lである。以下、この濃度がどのように変化するかを併せて説明する。
(2) Addition of sulfuric acid In the method of the present invention, sulfuric acid is added by adding sulfuric acid before the cooling of the first crystallization step among the three cooling crystallization steps before and after the copper sulfate crystals are precipitated. The free sulfuric acid concentration is adjusted to a range of 300 to 350 g / L after heating and concentration, and the cooling in the first cooling crystallization step is started in a state where the sulfuric acid concentration in this range is achieved. If the sulfuric acid concentration after heating and concentration is less than 300 g / L, the sulfuric acid concentration in the primary crystallization process liquid after concentration becomes too low, so that an antlerite is produced in the purification process. On the other hand, if the sulfuric acid concentration exceeds 350 g / L, the concentration of sulfuric acid remaining in the copper sulfate crystals produced in the crystallization step increases, and the product copper sulfate may solidify. The most preferable sulfuric acid concentration from the viewpoint of both PC electrolysis and copper sulfate crystallization, that is, the free sulfuric acid concentration, is 180 g / L before addition and 220 g / L at the start of cooling after addition. Hereinafter, how this density changes will be described together.

(3)水分揮発除去
所定の硫酸濃度に調節した銅電解後液を、好ましくは80〜85℃に加熱することにより、銅及び硫酸濃度をそれぞれ1.4〜1.7倍、好ましくは1.6倍に上昇させる。
好ましくは、シェル アンド チューブ加熱缶を使用し、熱源を蒸気として加熱し、次いで真空条件下で水分を揮発除去する。液温は80-85℃になる。この結果、Cu濃度は80g/L、硫酸濃度は350g/Lとなる。
(3) Removal of water volatilization The copper electrolysis solution adjusted to a predetermined sulfuric acid concentration is preferably heated to 80 to 85 ° C. to increase the copper and sulfuric acid concentrations by 1.4 to 1.7 times, preferably 1.6 times, respectively.
Preferably, a shell and tube heating can is used, the heat source is heated as steam, and then the water is volatilized off under vacuum conditions. The liquid temperature becomes 80-85 ° C. As a result, the Cu concentration is 80 g / L and the sulfuric acid concentration is 350 g / L.

(4)第1回冷却結晶化(電解後液からの結晶化)
続いて、液を結晶化を促進させる缶に送液し、約40〜45℃、好ましくは約40℃冷却する。工程に持ち込まれる銅分の約50-60%は硫酸銅として沈澱・結晶化する。
(4) 1st cooling crystallization (crystallization from post-electrolysis solution)
Subsequently, the liquid is sent to a can that promotes crystallization, and cooled to about 40 to 45 ° C., preferably about 40 ° C. About 50-60% of the copper content brought into the process precipitates and crystallizes as copper sulfate.

(5)一次固液分離
電解後液全体を一次遠心分離機に移し、硫酸銅結晶とろ液に分離し、ろ液は電解採取工程に送られる。
(5) Primary solid-liquid separation The entire post-electrolysis solution is transferred to a primary centrifuge and separated into copper sulfate crystals and filtrate, and the filtrate is sent to the electrowinning process.

(6)1次溶解槽(硫酸銅の1回目の溶解)
1次溶解槽では、硫酸銅結晶を精製するために結晶化缶で発生した硫酸銅結晶を
水に溶解することにより、硫酸銅結晶に付着した硫酸分を水中に除去する。1次溶解で
は、硫酸銅結晶を完全に溶解するに十分な水を使用することにより、結晶化した硫酸銅
の表面に付着している水分中に溶解している硫酸を洗浄する。一次溶解後溶液(温度
=約80℃)中のCu濃度は150g/L程度となる。なお、硫酸銅溶液中の硫酸濃度は第1回
冷却結晶化よりは低いが、第2回冷却結晶化よりは高く、これによりアントラー鉱の生
成が抑えられる。
(6) Primary dissolution tank (first dissolution of copper sulfate)
In the primary dissolution tank, the copper sulfate crystal generated in the crystallization can for refining the copper sulfate crystal is dissolved in water to remove the sulfuric acid adhering to the copper sulfate crystal in water. In the primary dissolution, the sulfuric acid dissolved in the water adhering to the surface of the crystallized copper sulfate is washed by using enough water to completely dissolve the copper sulfate crystals. The Cu concentration in the solution after primary dissolution (temperature = about 80 ° C.) is about 150 g / L. The sulfuric acid concentration in the copper sulfate solution is lower than that in the first cooling crystallization, but is higher than that in the second cooling crystallization, thereby suppressing the formation of the antlerite.

(7)第1冷却槽(第2回冷却結晶化)
第1回冷却結晶化と同様に、過飽和状態となった銅を硫酸銅として結晶化するために、1次溶解液を別の結晶化缶に移し、ジャケット式の間接冷却方式により、銅溶液を好ましくは40℃に冷却する。溶液中のCu濃度は150g/L程度である。
(7) First cooling tank (second cooling crystallization)
Similar to the first cooling crystallization, in order to crystallize the supersaturated copper as copper sulfate, the primary solution is transferred to another crystallization can, and the copper solution is added by the jacket-type indirect cooling method. Preferably it is cooled to 40 ° C. The Cu concentration in the solution is about 150 g / L.

(8)二次固液分離
第2回冷却結晶化によりスラリー状態となった被処理物を固液分離する。濾液は100g/L程度の銅を含有している。この銅は溶解度以下の銅分であり、電解工程内に繰り返される。
(8) Secondary solid-liquid separation The to-be-processed object which became the slurry state by the 2nd cooling crystallization is solid-liquid separated. The filtrate contains about 100 g / L of copper. This copper has a copper content below solubility and is repeated in the electrolysis process.

(9)再溶解槽(第2回結晶化した硫酸銅の再溶解)
1次溶解槽同様、二次固液分離により分離した結晶を再度水に溶解させ結晶付着硫酸分を洗浄する。目的は第2回冷却結晶化と同様に製品硫酸銅固化を防ぐことである。投入された結晶は、常時蒸気吹き込みにより好ましくは80−85℃で溶解される。溶解後の銅濃度は180-190g/L程度である。電解後液への硫酸添加が不十分であるために、第3回冷却結晶化工程に持ち込まれる硫酸量が少なくなると、溶解中に溶液のpHが上がり、アントラー鉱生成を誘発させる。具体的には、硫酸銅溶液中の硫酸濃度を0.5 − 5.0g/Lの範囲とする。硫酸濃度が0.5g/L以上であるとpHが2未満となりアントラー鉱が生成せず、また硫酸濃度が5.0g/L以下であると、製品硫酸銅が塊状化しない。
(9) Re-dissolution tank (second-time re-dissolution of copper sulfate crystallized)
Similar to the primary dissolution tank, the crystals separated by the secondary solid-liquid separation are dissolved again in water to wash the sulfuric acid adhering to the crystals. The purpose is to prevent the product copper sulfate solidification as well as the second cooling crystallization. The charged crystals are preferably dissolved at 80-85 ° C. by continuous steam blowing. The copper concentration after dissolution is about 180-190 g / L. If the amount of sulfuric acid brought into the third cooling and crystallization step decreases due to insufficient addition of sulfuric acid to the post-electrolysis solution, the pH of the solution rises during dissolution and induces the production of antlers. Specifically, the sulfuric acid concentration in the copper sulfate solution is in the range of 0.5 to 5.0 g / L. If the sulfuric acid concentration is 0.5 g / L or more, the pH will be less than 2 and no anthracite will be produced. If the sulfuric acid concentration is 5.0 g / L or less, the product copper sulfate will not be agglomerated.

(10)第二次冷却(第3回冷却結晶化)
第2回冷却結晶化と同様に、過飽和状態となった銅を高純度硫酸銅として結晶化するために、再溶解槽の上澄み液を別の結晶化缶に移し、ジャケット式の間接冷却方式により、銅溶液を好ましくは40℃に冷却する。溶液中のCu濃度は180-190g/Lである。
(10) Secondary cooling (third cooling crystallization)
Similar to the second cooling crystallization, in order to crystallize the supersaturated copper as high-purity copper sulfate, the supernatant of the remelting tank is transferred to another crystallization can, and the jacket-type indirect cooling method is used. The copper solution is preferably cooled to 40 ° C. The Cu concentration in the solution is 180-190 g / L.

(11)三次固液分離
第3回冷却結晶化によりスラリー状態となった被処理物を二次結晶同様に固液分離する。濾液は100g/L程度の銅を含有している。この銅は溶解度以下の銅分であり、電解工程内に繰り返される。第3回以上の冷却結晶化を行ってもよいが、純度及び結晶性は特に改良されない。
(11) Tertiary solid-liquid separation
The to-be-processed object which became the slurry state by the 3rd cooling crystallization is solid-liquid separated like a secondary crystal. The filtrate contains about 100 g / L of copper. This copper has a copper content below solubility and is repeated in the electrolysis process. Although the third or more cooling crystallizations may be performed, the purity and crystallinity are not particularly improved.

(12)乾燥工程
気流乾燥により硫酸銅結晶を乾燥し、必要により篩別を行い、用途に応じた粒度に揃えて製品とする。
(12) Drying process The copper sulfate crystals are dried by airflow drying and, if necessary, sieved to obtain a product with a particle size according to the application.

上述したように銅の電解精製後液について3回結晶化を行うことにより得られるCuSO4・5H2O硫酸銅結晶は、アントラー鉱を随伴していず、付着硫酸による固体化・塊状化も発生しない。 3 times CuSO 4 · 5H 2 O copper sulfate crystals obtained by performing crystallization for electrolytic refining after solution of copper as described above, Izu to entrain Antler ore, also solidified-agglomeration due to adhesion sulfate generated do not do.

本発明は硫酸銅精製時にアントラー鉱の発生阻止すなわち、水不溶解分を低くすることが可能となるため、硫酸銅製品率を高めることができる。さらに特許文献2で提案されたような精製方法を施すのにも適している。
続いて、実施例によりさらに詳しく本発明を説明する。
According to the present invention, it is possible to prevent the generation of anthracite ore, that is, to reduce the water-insoluble content during copper sulfate refining, so that the copper sulfate product rate can be increased. Furthermore, it is suitable for performing a purification method as proposed in Patent Document 2.
Subsequently, the present invention will be described in more detail with reference to examples.

実施例1
段落番号0014の条件で操業されている本出願人の製錬所において、硫酸を添加した後の結晶化缶(容量32.5m3)、1次遠心分離機、1次溶解槽(容量6m3)、第一次冷却槽(第2回冷却結晶化)2基(それぞれ容量6m3),第1固液分離機、再溶解槽(第3回冷却結晶化)(容量6m3)、第二次冷却槽(容量6m3),第2固液分離機を設置した。次の表に条件を示す操業を30日間行った。
Example 1
In the applicant's smelter operated under the conditions of paragraph 0014, the crystallization can (capacity: 32.5m 3 ) after adding sulfuric acid, primary centrifuge, primary dissolution tank (capacity: 6m 3 ) , 1st cooling tank (2nd cooling crystallization) 2 units (capacity 6m 3 each), 1st solid-liquid separator, remelting tank (3rd cooling crystallization) (capacity 6m 3 ), 2nd A cooling tank (capacity 6m 3 ) and a second solid-liquid separator were installed. The operations shown in the following table were conducted for 30 days.

Figure 0005066025
Figure 0005066025

硫酸銅結晶20gを200mLの水(常温)に添加し、十分に攪拌し、一晩沈降させた状態で発生する水不溶解分の質量割合が、硫酸銅結晶の重量に対して0.1%以下であることを合格基準として、上記した操業の成績を検査したところ、水不溶解分は0(測定限界以下) 〜0.02%となった。
さらに、図3に示す第3回冷却結晶化された硫酸銅結晶のXRDチャートから、硫酸銅5水塩の回折パターンが認められ、アントラー鉱の回折パターンは認められない。
Add 20 g of copper sulfate crystals to 200 mL of water (at room temperature), stir well, and the mass proportion of water-insoluble matter generated when allowed to settle overnight is 0.1% or less with respect to the weight of the copper sulfate crystals. When the results of the above-mentioned operation were inspected based on the acceptance criteria, the water-insoluble content was 0 (below the measurement limit) to 0.02%.
Furthermore, from the XRD chart of the copper sulfate crystal that has been cooled and crystallized for the third time shown in FIG. 3, the diffraction pattern of copper sulfate pentahydrate is observed, and the diffraction pattern of Antlerite is not observed.

比較例
上記した実施例の条件において硫酸を添加せず、電解後液の硫酸濃度を250 〜300g/Lの範囲で変動するにまかせ、その他は実施例と同一の条件により、硫酸銅を再々結晶化により回収する操業を1カ月行ったところ、水不溶解分は0.01〜0.18%の範囲で大きく変動した。即ち、水不溶解分は偶々合格基準を達成することはあったが、その原因は不明であり、合格基準を達成するような制御ができなかった。
図4のXRD回折パターンに示すように、この際に生産した製品硫酸銅5水塩中の水不溶解分の回折パターンを調べたところ、アントラー鉱の回折パターンが認められる。
Comparative Example The sulfuric acid concentration in the post-electrolysis solution was varied in the range of 250 to 300 g / L without adding sulfuric acid under the conditions of the above-described examples, and the copper sulfate was recrystallized under the same conditions as in the examples. When the operation of recovering by chemical conversion was carried out for one month, the water-insoluble content fluctuated greatly in the range of 0.01 to 0.18%. That is, although the water-insoluble matter happened to meet the acceptance criteria by chance, the cause was unknown and control could not be achieved to achieve the acceptance criteria.
As shown in the XRD diffraction pattern of FIG. 4, when the diffraction pattern of the water insoluble matter in the copper sulfate pentahydrate produced at this time was examined, the diffraction pattern of Antlerite was observed.

以上説明したように、本発明の方法により製造された硫酸銅結晶は、銅の電解精製の電解後液を出発物質として従来製造されたことがない高純度・高品質のものであるために、電解精製に繰り返す用途だけではなく、電子部品材料など各種用途に対しても好適である。 As described above, the copper sulfate crystals produced by the method of the present invention are of high purity and high quality that have not been produced in the past using the electrolytically purified solution of copper electrolytic purification as a starting material. It is suitable not only for uses that are repeated for electrolytic purification but also for various uses such as electronic component materials.

従来の銅電解精製の電解液の清浄液工程のフローシートである。It is a flow sheet of the cleaning solution process of the electrolyte solution of the conventional copper electrolytic purification. 従来の銅電解精製の電解液の清浄液工程のフローシートである。It is a flow sheet of the cleaning solution process of the electrolyte solution of the conventional copper electrolytic purification. 本発明の実施例により得られた硫酸銅結晶のXRD回折パターンである。It is a XRD diffraction pattern of the copper sulfate crystal obtained by the Example of this invention. 比較例により得られた水不溶解物質のXRD回折パターンである。It is an XRD diffraction pattern of the water insoluble substance obtained by the comparative example.

Claims (1)

電解精製工程における電解液中の硫酸濃度が180g/L以下であり、かつ 銅濃度が52g/L以下で操業するPC法による銅電解後液に、硫酸を添加し、該銅電解後液を加熱濃縮した後の硫酸濃度が300-350g/Lである状態から冷却を開始することにより硫酸銅結晶を沈殿させる第1回冷却結晶化を行い、続いて前記硫酸銅結晶を水中に溶解し、冷却結晶化する工程を2回行い、第3回冷却結晶化工程の溶解液中の硫酸濃度を0.5‐5g/Lとすることを特徴とする硫酸銅の製造方法。 The sulfuric acid concentration in the electrolytic solution in the electrolytic purification process is 180 g / L or less, and sulfuric acid is added to the post-copper electrolysis solution by the PC method operating at a copper concentration of 52 g / L or less, and the post-copper electrolysis solution is heated First cooling crystallization is performed to precipitate copper sulfate crystals by starting cooling from a state where the sulfuric acid concentration after concentration is 300-350 g / L, and then the copper sulfate crystals are dissolved in water and cooled. A method for producing copper sulfate, wherein the crystallization step is performed twice, and the sulfuric acid concentration in the solution in the third cooling crystallization step is 0.5-5 g / L.
JP2008183338A 2007-08-01 2008-07-15 Method for producing copper sulfate Active JP5066025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008183338A JP5066025B2 (en) 2007-08-01 2008-07-15 Method for producing copper sulfate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007200557 2007-08-01
JP2007200557 2007-08-01
JP2008183338A JP5066025B2 (en) 2007-08-01 2008-07-15 Method for producing copper sulfate

Publications (2)

Publication Number Publication Date
JP2009051723A JP2009051723A (en) 2009-03-12
JP5066025B2 true JP5066025B2 (en) 2012-11-07

Family

ID=40503139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008183338A Active JP5066025B2 (en) 2007-08-01 2008-07-15 Method for producing copper sulfate

Country Status (1)

Country Link
JP (1) JP5066025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10450667B2 (en) 2014-10-27 2019-10-22 International Business Machines Corporation System for treating solution for use in electroplating application and method for treating solution for use in electroplating application

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642987B2 (en) * 2010-03-31 2014-12-17 パンパシフィック・カッパー株式会社 Method for recovering nickel from copper electrolyte
JP5822959B2 (en) * 2014-02-03 2015-11-25 パンパシフィック・カッパー株式会社 Crude nickel sulfate recovery method and crude nickel sulfate recovery system from copper removal electrolyte
CN106498440B (en) * 2016-12-13 2018-04-03 云南锡业股份有限公司铜业分公司 A kind of copper electrolysis system fluid balance control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031419A (en) * 1999-07-22 2001-02-06 Sumitomo Metal Mining Co Ltd Purification of copper sulfate
KR20070086900A (en) * 2002-09-05 2007-08-27 닛코킨조쿠 가부시키가이샤 High purity copper sulfate and method for production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10450667B2 (en) 2014-10-27 2019-10-22 International Business Machines Corporation System for treating solution for use in electroplating application and method for treating solution for use in electroplating application
US11053604B2 (en) 2014-10-27 2021-07-06 International Business Machines Corporation System for treating solution for use in electroplating application and method for treating solution for use in electroplating application

Also Published As

Publication number Publication date
JP2009051723A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP6307709B2 (en) Method and apparatus for recovering indium or indium alloy
CN108624759B (en) Method for comprehensively recovering valuable metals from white smoke
JP5563093B2 (en) Method for removing chloride from zinc sulfate solution
JP5066025B2 (en) Method for producing copper sulfate
JP2002069684A (en) Method for recovering indium
JP5755572B2 (en) Method for producing bismuth anode for electrolytic purification
BRPI0701919B1 (en) pure metal indium production process from zinc oxide and / or metal-containing solution
JP5403224B2 (en) How to recover bismuth
JP3151182B2 (en) Copper electrolyte cleaning method
JP2001348632A (en) Method for recovering indium
JP2642230B2 (en) Manufacturing method of high purity tin
JP6985678B2 (en) Electrorefining method for low-grade copper anodes and electrolytes used for them
JP5482461B2 (en) Method for recovering copper from copper electrolysis waste liquid
JP2008106348A (en) Method of separating and recovering zinc
JP2777955B2 (en) Desilvering or silver recovery method
CN113355701A (en) Method for separating and recovering silver and gallium
JP4779163B2 (en) Method for producing copper sulfate solution
JP2004124115A (en) Method of recovering copper from copper electrolytic solution, and liquid purification method
JP2008019475A (en) Method for removing chlorine in electrodeposited copper
JP7359059B2 (en) Method for producing cadmium hydroxide
JP2007077418A (en) Method for electrolyzing tellurium-containing crude lead
JP6373772B2 (en) Method for recovering indium and gallium
JP2000226623A (en) METHOD FOR PURIFYING Ca-CONTAINING SOLUTION
JPS6035415B2 (en) Separation method for copper and arsenic
JP2019131838A (en) METHOD FOR REMOVING SiO2 FROM SLURRY CONTAINING SILVER AND SiO2, AND PURIFICATION METHOD OF SILVER

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

R150 Certificate of patent or registration of utility model

Ref document number: 5066025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250