JPH02102514A - Manufacture of semiconductor substrate - Google Patents

Manufacture of semiconductor substrate

Info

Publication number
JPH02102514A
JPH02102514A JP25475288A JP25475288A JPH02102514A JP H02102514 A JPH02102514 A JP H02102514A JP 25475288 A JP25475288 A JP 25475288A JP 25475288 A JP25475288 A JP 25475288A JP H02102514 A JPH02102514 A JP H02102514A
Authority
JP
Japan
Prior art keywords
wafer
semiconductor substrate
ingot
single crystal
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25475288A
Other languages
Japanese (ja)
Inventor
Yasuhiro Mochizuki
康弘 望月
Hironori Inoue
洋典 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25475288A priority Critical patent/JPH02102514A/en
Publication of JPH02102514A publication Critical patent/JPH02102514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To improve the coefficient of utilization of a semiconductor material by a method wherein the face of the ingot or the block of the semiconductor material of high quality, which becomes an active region, is processed into the state suitable for lamination, and on the other hand, the main surface of a water, which becomes a susceptor, is also processed so as to obtain the state suitable for lamination. CONSTITUTION:The edge face 11 of the ingot or the block 10 of a semiconductor substrate, forming an active region, is processed to obtain the surface suitable for lamination. On the other hand, one main surface of a water 20, which becomes a susceptor, is processed into the surface suitable for lamination. Then, after both of them are heat-treated and laminated, said ingot or block 10 is cut into the prescribed thickness, and the cut section is processed. As a result, the amount to be removed by grinding is reduced, the coefficient of utilization of the semiconductor material can be reduced. Also, the curve and the undulation of the laminated semiconductor substrate 30 can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路や化合物半導体薄膜デバイス用
の半導体基板の製造方法に係り、特に2種類のウェハが
貼合せて成る半導体基板の安価な製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor substrate for a semiconductor integrated circuit or a compound semiconductor thin film device, and in particular to an inexpensive method for manufacturing a semiconductor substrate formed by bonding two types of wafers. Regarding the manufacturing method.

〔従来の技術〕[Conventional technology]

半導体のウェハを直接結晶面同士又は酸化膜等の異種材
料を介して貼合せて半導体基板を作る方法が知られてい
る。
2. Description of the Related Art A method is known in which a semiconductor substrate is produced by bonding semiconductor wafers directly to each other with crystal planes or through dissimilar materials such as oxide films.

この種の方法として関連するものには例えば特開昭62
−226640号、特開昭62−229820号等が挙
げられる。
Related methods of this type include, for example, JP-A-62
-226640, JP-A No. 62-229820, and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の技術はいずれもウェハとウェハを貼合せてか
ら少なくとも一方のウェハを研磨して所定の厚みに薄片
化して半導体基板としている。特に主たる能動領域とな
るウェハの厚みは数10μm〜数μmであるため、貼合
せ後一方のウェハの大部分を研磨除去しており、半導体
材料の利用率が極めて低く、コスト高の原因の1つとな
っている。
In all of the above conventional techniques, after bonding wafers together, at least one of the wafers is polished to form a thin piece to a predetermined thickness to form a semiconductor substrate. In particular, since the thickness of the wafer, which is the main active area, is several tens of micrometers to several micrometers, most of one wafer is removed by polishing after bonding, which results in an extremely low utilization rate of semiconductor materials, which is one of the causes of high costs. It is one.

本発明の目的は、研磨によって除去する量を少なくし半
導体材料の利用率を高めることにより、コスト低減を画
ることにある。また、もう1つの目的は、貼合せた半導
体基板の湾曲やうねりを低減することにある。
An object of the present invention is to reduce costs by reducing the amount removed by polishing and increasing the utilization rate of semiconductor material. Another purpose is to reduce curvature and waviness of the bonded semiconductor substrates.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、能動領域となる高品位の半導体材料のイン
ゴット又はブロックの端面を貼合せに適する状態に加工
し、−力士として支持台となるウェハの一主表面も貼合
せに適する状態に加工し、そして両者を密着させて熱処
理することにより貼合せ、その後、インゴット又はブロ
ックを所定の厚みに切断することにより達成される。
The above purpose is to process the end faces of ingots or blocks of high-grade semiconductor material that will serve as active areas into a state suitable for bonding, and to process one main surface of a wafer that will serve as a support for sumo wrestlers into a state suitable for bonding. This is accomplished by bonding the two together by bringing them into close contact and heat-treating them, and then cutting the ingot or block to a predetermined thickness.

〔作用〕[Effect]

従来のウェハとウェハを貼合せる方式及び支持台ウェハ
と能動領域となる半導体材料ブロックを貼合せた後切断
する方式の半導体材料の利用率を6′φSi単結晶を例
に考えてみる。
The utilization rates of semiconductor materials in the conventional wafer-to-wafer bonding method and the method in which a support wafer and a semiconductor material block serving as an active region are bonded and then cut are considered using a 6'φ Si single crystal as an example.

まず従来の方式では、 ■ Si単結晶 ■ スライシング(ウェハ状とする。)■ 面取り ■ ラッピング、エツチング、ポリッシング(所定の厚
み(約500μm)、所定の表面仕上げのウェハが完成
する。) ■ 支持台用のウェハとの貼合せ ■ ラッピング、エツチング、ポリッシング(デバイス
用の所定の厚み(数10μm〜数μm)、所定の表面仕
上げの半導体基板が完成する。) ここにおいて、■で約400μm、■で50〜100μ
mのカーフロスが発生し、長さ1mのインゴットから厚
500μmのウェハは約1000枚しか作れない。更に
■で450〜500μrn除去され、合計約1mmがデ
バイスに用いられることなく捨て去られる。
First, in the conventional method, ■ Si single crystal ■ Slicing (to form a wafer) ■ Chamfering ■ Lapping, etching, and polishing (A wafer with a specified thickness (approximately 500 μm) and a specified surface finish is completed.) ■ Support stand Lamination with a wafer for use ■ Lapping, etching, polishing (A semiconductor substrate with a predetermined thickness (several tens of μm to several μm) and a predetermined surface finish for devices is completed.) Here, ■ is approximately 400 μm, and ■ is approximately 400 μm. 50~100μ
A kerf loss of 1 m is generated, and only about 1000 500 μm thick wafers can be made from a 1 m long ingot. In addition, 450 to 500 .mu.rn is removed in (2), and a total of about 1 mm is discarded without being used in the device.

一方、本発明の方式では、 ■ Si単結晶インゴット ■ ラッピング、エツチング、ポリッシング(一端面を
貼合せに適する様加工する。)■ 支持台用のウェハと
の貼合せ ■ スライシング ■ ラッピング、エツチング、ポリッシング(デバイス
用の所定の厚み(数10μm〜数μm)、所定の表面仕
上げの半導体基板が完成する。) Si単結晶インゴットのスライス面は■の工程に続く。
On the other hand, in the method of the present invention, ■ Si single crystal ingot ■ Wrapping, etching, polishing (one end surface is processed to make it suitable for lamination) ■ Lamination with a wafer for a support ■ Slicing ■ Wrapping, etching, polishing (A semiconductor substrate with a predetermined thickness (several tens of μm to several μm) and a predetermined surface finish for a device is completed.) The slicing surface of the Si single crystal ingot follows step (2).

ここにおいては、■で約35〜70μm(従来の方法に
比べて片面処理のためロスが少ない)、■で約400μ
m、■で約35〜70μm、合計約500μmのカーフ
ロスが発生するのみ゛で、従来法に比べて半導体インゴ
ットの捨て去る量は半減できる。
Here, ■ is approximately 35 to 70 μm (less loss due to single-sided processing compared to conventional methods), and ■ is approximately 400 μm.
Only kerf loss of about 35 to 70 .mu.m in m and 2, totaling about 500 .mu.m, is generated, and the amount of semiconductor ingots thrown away can be halved compared to the conventional method.

また、支持台用ウェハとの貼合せをインゴットで実施す
るため、インゴットはウェハに比べて変形し難く、貼合
せによる湾曲やうねりはほとんど発生しない。
Furthermore, since the ingot is bonded to the support wafer, the ingot is less likely to deform than the wafer, and almost no curvature or waviness occurs due to bonding.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

失立舅よ 第1図はSi集積回路用誘電体分離基板の製造工程の断
面模式図である。
Dear Father, Figure 1 is a schematic cross-sectional view of the manufacturing process of a dielectric isolation substrate for a Si integrated circuit.

第1図(a)は、能動領域となるSi単結晶のブロック
旦及び支持台となるSiウェハ封である。Si単結晶ブ
ロック10は、製法C7、導電型n型、ドーパントリン
、抵抗率30〜35Ω・口、結晶面方位(100)、直
径5′φである。
FIG. 1(a) shows a Si single crystal block serving as an active region and a Si wafer sealing serving as a support. The Si single crystal block 10 has a manufacturing method C7, an n-type conductivity, a dopant phosphorus, a resistivity of 30 to 35 Ω, a crystal plane orientation (100), and a diameter of 5'φ.

これはインゴットから両端を切断除去し、外周研削し、
オリエンテーションフラットを形成後、端面11を超ミ
ラー仕上げしたものである。支持台となるSiウェハ葺
は、上記と同様のブロックから切断したもので、表面仕
上げは片面超ミラー仕上げ、厚み500±5μmである
。その後、1150℃、3.5時間水蒸気気流中で酸化
し表面に厚み1.5μmの5iOz膜21を形成しであ
る。
This is done by cutting off both ends of the ingot, grinding the outer periphery,
After forming the orientation flat, the end face 11 is given a super mirror finish. The Si wafer roof serving as the support was cut from the same block as above, the surface finish was super mirror finish on one side, and the thickness was 500±5 μm. Thereafter, it was oxidized in a steam stream at 1150° C. for 3.5 hours to form a 5iOz film 21 with a thickness of 1.5 μm on the surface.

第1図(b)は、上記の両者↓立、主立を密着させ、支
持台ウェハ側から赤外線ランプ40で。
In FIG. 1(b), both the ↓ stand and the main stand are brought into close contact with each other, and an infrared lamp 40 is used from the wafer side of the support stand.

約650’Cまで加熱して貼合せた状態を示す。The state is shown after being heated to about 650'C and bonded.

第1図(c)はSi単結晶ブロック旦を切断後、切断の
両面を超ミラー仕上げした状態を示す。
FIG. 1(c) shows a state in which a Si single crystal block is cut and then both sides of the cut are finished with a super mirror finish.

Si単結晶ブロックの切断は、支持台ウェハの厚みを含
めて600μmの厚さに内周ブレードを用いてスライス
した。即ち能動領域となるSi単結晶の厚みは100μ
mである。その後、通常の方法で切断面をラッピング、
フッ酸硝酸の混合液によるエツチング、ミラーポリッシ
ングし、能動領域となるSi単結晶層12の厚みを35
±2μmとした。この時貼合せた半導体基板並の湾曲は
5μm以下である。またSi単結晶ブロック上立の切断
面11′も同様にラッピング、エツチング。
The Si single crystal block was sliced to a thickness of 600 μm, including the thickness of the support wafer, using an inner peripheral blade. In other words, the thickness of the Si single crystal that becomes the active region is 100μ.
It is m. Then wrap the cut surface in the usual way,
Etching with a mixture of hydrofluoric acid and nitric acid and mirror polishing were performed to reduce the thickness of the Si single crystal layer 12, which will become the active region, to 35 mm.
It was set to ±2 μm. At this time, the curvature of the bonded semiconductor substrate is 5 μm or less. Also, the cut surface 11' of the Si single crystal block is similarly lapped and etched.

ミラーポリッシングして、次の支持台の貼合せに適応で
きる様にした。
Mirror polishing was performed to make it suitable for the next attachment of the support base.

尖流孤又 集積化光デバイスに用いられるSi単結晶上にGaAs
Mを形成した基板を作成した。
GaAs on Si single crystal used in integrated optical devices
A substrate on which M was formed was created.

GaAs単結晶インゴットは3温度水平ブリッジマン法
で成長させたもので、断面積20aJの角形(D型)、
結晶方位<111>、ドーパントなし、エッチピット密
度I X 10’ca−2である。端面は#4000の
カーボランダムで研磨後、50〜70℃の硫酸−過酸化
水素混合液を用いてメカノケミカルポリッシュ仕上げし
た。
The GaAs single crystal ingot was grown using the three-temperature horizontal Bridgman method, and was square (D-shaped) with a cross-sectional area of 20 aJ.
Crystal orientation <111>, no dopant, etch pit density I x 10'ca-2. The end faces were polished with #4000 carborundum and then mechanochemically polished using a sulfuric acid-hydrogen peroxide mixture at 50 to 70°C.

支持台用ウェハはSi単結晶ウェハで、製法CZ、結晶
方位(100)、直径2′φ、厚み450μm2表面仕
上げ超ミラー仕上げである。
The wafer for the support stand is a Si single crystal wafer manufactured by CZ, crystal orientation (100), diameter 2'φ, thickness 450 μm2, and has a super mirror finish surface.

次にGaAs単結晶インゴットのポリッシングした端面
と、支持台用Si単結晶ウェハを密着させ、支持台用S
i単結晶ウェハ側から赤外線ランプで約600’Cに加
熱して貼合せた。
Next, the polished end face of the GaAs single crystal ingot was brought into close contact with the Si single crystal wafer for the support stand, and the S
i The single crystal wafer was heated to about 600'C from the side using an infrared lamp and bonded.

GaAs単結晶インゴットの切断は、加工ロスを少なく
するため、研磨剤として#4000のカーボランダムと
直径0.08φ のワイヤソーを用いた。この時、Si
単結晶ウェハの支持台に貼合せたG a A sの厚み
は60μmである。
For cutting the GaAs single crystal ingot, #4000 carborundum was used as the abrasive and a wire saw with a diameter of 0.08φ was used to reduce processing loss. At this time, Si
The thickness of the GaAs bonded to the single crystal wafer support is 60 μm.

GaAsの切断面は前記のインゴットの端面加工と同様
にメカノケミカルポリッシングした。これによりGaA
sの厚みは15±2μmとした。
The cut surface of the GaAs was mechanochemically polished in the same manner as the end face processing of the ingot described above. As a result, GaA
The thickness of s was 15±2 μm.

G a A sは(110)に襞間面を有し非常に割れ
やすいため、通常ウェハとする時は500〜700μm
の厚みが必要であり、利用効率が悪い。
Ga As has an interfold plane at (110) and is very easy to break, so it is usually made into a wafer with a thickness of 500 to 700 μm.
The thickness of the material is required, and the utilization efficiency is poor.

本発明では高価なG a A s単結晶インゴットの利
用率を著しく向上できる。
According to the present invention, the utilization rate of expensive GaAs single crystal ingots can be significantly improved.

〔発明の効果〕〔Effect of the invention〕

Si半導体集積回路用誘電体分離基板、5OI(Sil
icon on In5ulator) −L S I
、三次元素子、パワーデバイス、光−電気変換トランス
ジューサ等貼合せ半導体基板の用途は広く、低コスト化
が望まれている。
Dielectric isolation substrate for Si semiconductor integrated circuit, 5OI (Sil
icon on In5lator) -LSI
Bonded semiconductor substrates are widely used in applications such as , tertiary elements, power devices, and photo-electrical conversion transducers, and cost reduction is desired.

本発明によれば、高価な半導体単結晶インゴットの利用
率を2倍以上に向上させることができ、貼合せ半導体基
板の低コスト化に大きく寄与できる。また、貼合せ工程
におけるウェハの湾曲も防止できる。
According to the present invention, the utilization rate of expensive semiconductor single crystal ingots can be increased by more than double, and it can greatly contribute to cost reduction of bonded semiconductor substrates. Moreover, curvature of the wafer in the bonding process can also be prevented.

本発明の実施例においては、Si単結晶インゴット(ブ
ロック)と酸化膜を形成したSi単結晶ウェハ、GaA
s単結晶インゴットとSi単結晶ウェハの直接貼合せの
例を挙げたが、インゴットとして高価な化合物半導体、
支持台として一部能動素子を形成したウェハ、また貼合
せ方法として各種の無機・有機接着剤、金属鑞を用いる
ことも可能である。
In the embodiment of the present invention, a Si single crystal ingot (block), a Si single crystal wafer with an oxide film formed thereon, a GaA
Although we have given an example of direct bonding of an S single crystal ingot and a Si single crystal wafer, expensive compound semiconductors,
It is also possible to use a wafer partially formed with active elements as a support, and various inorganic/organic adhesives and metal solders as a bonding method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の工程を示す断面模式図であ
る。 10・・・半導体インボッ1〜.11・・・端面、20
・・・支持台用ウェハ、30・・・貼合せ半導体基板。
FIG. 1 is a schematic cross-sectional view showing the steps of an embodiment of the present invention. 10... Semiconductor inboard 1~. 11... end surface, 20
... Wafer for support stand, 30... Bonded semiconductor substrate.

Claims (1)

【特許請求の範囲】 1、能動領域となる厚みの薄い半導体と主としてそれを
支える支持台の機能を有する厚みの厚いウェハの両者を
貼合せて成る半導体基板の製造方法において、 (1)能動領域を形成する半導体材料のインゴット又は
ブロックの一端面を貼合せに適する表面状態に加工する
工程、 (2)主として支持台となるウェハの一主表面を貼合せ
に適する表面状態に加工する工程、 (3)上記の両者を貼合せる工程、 (4)上記のインゴット又はブロックを所定の厚みに切
断し、切断面を加工する工程 から成ることを特徴とする半導体基板の製造方法。
[Scope of Claims] 1. A method for manufacturing a semiconductor substrate comprising bonding together a thin semiconductor serving as an active region and a thick wafer mainly functioning as a support for supporting the thin semiconductor, comprising: (1) an active region; (2) Processing one main surface of the wafer, which will mainly serve as a support base, to a surface condition suitable for bonding; A method for manufacturing a semiconductor substrate, comprising the steps of: 3) bonding the above two together; and (4) cutting the above ingot or block to a predetermined thickness and processing the cut surface.
JP25475288A 1988-10-12 1988-10-12 Manufacture of semiconductor substrate Pending JPH02102514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25475288A JPH02102514A (en) 1988-10-12 1988-10-12 Manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25475288A JPH02102514A (en) 1988-10-12 1988-10-12 Manufacture of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH02102514A true JPH02102514A (en) 1990-04-16

Family

ID=17269388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25475288A Pending JPH02102514A (en) 1988-10-12 1988-10-12 Manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH02102514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533396A (en) * 2002-07-17 2005-11-04 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ Method for manufacturing a substrate, especially in optics, electronics or optoelectronics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533396A (en) * 2002-07-17 2005-11-04 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ Method for manufacturing a substrate, especially in optics, electronics or optoelectronics
JP4708185B2 (en) * 2002-07-17 2011-06-22 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ Method for manufacturing a substrate, especially in optics, electronics or optoelectronics

Similar Documents

Publication Publication Date Title
US5340435A (en) Bonded wafer and method of manufacturing it
JP4388741B2 (en) Method for transferring semiconductor thin layer and method for manufacturing donor wafer used therefor
EP0854500B1 (en) Method of manufacturing a bonded substrate
JPH03280538A (en) Fabrication method for semiconductor device formation substrate
JP3352129B2 (en) Semiconductor substrate manufacturing method
US10559471B2 (en) Method of manufacturing bonded wafer
JP3480480B2 (en) Method for manufacturing SOI substrate
JPH07335511A (en) Bonded wafer
WO2015074478A1 (en) Method for preparing low-warpage semiconductor substrate
JPH02102514A (en) Manufacture of semiconductor substrate
JP2721265B2 (en) Semiconductor substrate manufacturing method
JPH07249573A (en) Manufacture of semiconductor substrate
JPH04226031A (en) Manufacture of semiconductor wafer and semiconductor device
JP2766417B2 (en) Manufacturing method of bonded dielectric separation wafer
JPH0389519A (en) Manufacture of semiconductor substrate
JPH056883A (en) Manufacture of semiconductor substrate
KR0180622B1 (en) Method of manufacturing soi wafer having a multi-layer structure by silicon wafer junction at low temperature and soi wafer manufactured by this method
JPH0387012A (en) Adhered wafer and manufacture thereof
JPH0342814A (en) Manufacture of semiconductor substrate
JP2779954B2 (en) Semiconductor substrate manufacturing method
JPH09213593A (en) Bonded substrate and manufacture thereof
JPH1126337A (en) Manufacture of laminated substrate
JPH06349887A (en) Compound semiconductor substrate and its manufacture
JPH06216136A (en) Semiconductor substrate and manufacture
JP2608443B2 (en) Method for manufacturing semiconductor wafer