JPH0199763A - Method for controlling molten steel discharging flow in mold for continuous casting - Google Patents

Method for controlling molten steel discharging flow in mold for continuous casting

Info

Publication number
JPH0199763A
JPH0199763A JP25478187A JP25478187A JPH0199763A JP H0199763 A JPH0199763 A JP H0199763A JP 25478187 A JP25478187 A JP 25478187A JP 25478187 A JP25478187 A JP 25478187A JP H0199763 A JPH0199763 A JP H0199763A
Authority
JP
Japan
Prior art keywords
molten steel
magnetic field
current
continuous casting
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25478187A
Other languages
Japanese (ja)
Inventor
Shigeo Tachibana
橘 茂夫
Yoji Miyazaki
宮崎 容治
Kazuyuki Sato
和之 佐藤
Tomoo Kayano
萱野 朋生
Katsuo Kinoshita
勝雄 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25478187A priority Critical patent/JPH0199763A/en
Publication of JPH0199763A publication Critical patent/JPH0199763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To reduce enclosing quantity of non-metallic inclusion and bubbling and to improve the product quality by giving forcedly current from outside toward crossing to static magnetic field direction to form the magnetic field and adjusting flow speed of molten steel discharging flow. CONSTITUTION:Magnetic pole 4 forms the static magnetic field and the forcedly current is given at interval between the electrode 5 submerged in meniscus and foot rolls 6a just below a mold. By dependently adjusting intensity and direction for this current and the magnetic field, respectively, speed of the molten steel discharging flow 3 is accelerated and reduced to be possible to freely control the flowing pattern. Magnetic flux density in the static magnetic field is made to the range of about 2500-3500G near the center of the magnetic field 4 so as to obtain molten steel braking effect, even in case the magnetic flux density is zero of the electric conductive current. Further, the forcedly current is made to about DC 1000-2000A at one side, so that the molten steel accelerated flow speed under the above magnetic flux density becomes equal to it in the case of being no static magnetic field.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、連鋳鋳型内へ注入されるf4鋼の吐出流速
を制御し、とくに溶鋼中に含まれる酸化物系非金属介在
物の巻き込みを防止し、もって鋼材の製品品質の向上を
図るのに有利な連続鋳造用鋳型内における溶鋼吐出流の
制御方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) This invention controls the discharge flow rate of F4 steel injected into a continuous casting mold, and particularly prevents the entrainment of oxide-based nonmetallic inclusions contained in molten steel. The present invention relates to a method for controlling the discharge flow of molten steel in a continuous casting mold, which is advantageous in preventing the above problems and thereby improving the product quality of steel materials.

(従来の技術) 鋼の連続鋳造では、溶鋼中に存在する酸化物系非金属介
在物が鋳型内で深く巻き込まれないようにすることが重
要である。特に彎曲型の連鋳機では深く巻き、込まれた
非金属介在物が浮上してもメニスカス部に出ることなく
凝固殻の下面に把えられて由々しい欠陥になることがあ
る。
(Prior Art) In continuous casting of steel, it is important to prevent oxide-based nonmetallic inclusions present in molten steel from being deeply entangled within the mold. In particular, in a curved continuous casting machine, even if non-metallic inclusions that are deeply rolled up and float up, they do not come out of the meniscus and are caught on the lower surface of the solidified shell, resulting in serious defects.

このような問題を解決する試みとして例えば、特開昭5
7−17356号公報には、連鋳モールド内の溶鋼流動
を静磁界で減速して分散させる技術が提案されている。
As an attempt to solve such problems, for example,
Japanese Patent No. 7-17356 proposes a technique for slowing down and dispersing the flow of molten steel in a continuous casting mold using a static magnetic field.

(発明が解決しようとする問題点) しかしながら上記の技術は、次の点に問題を残していた
。すなわち浸漬ノズルから出た吐出流を効果的に減速す
るためには極めて精巧な制御が必要であるが、 (1)  電磁力の大きさを決める誘導電流は溶鋼の吐
出流速に依存し、それ自体を制御することができない。
(Problems to be Solved by the Invention) However, the above technique still has the following problems. In other words, extremely sophisticated control is required to effectively slow down the discharge flow from the immersed nozzle, but (1) the induced current that determines the magnitude of the electromagnetic force depends on the discharge flow velocity of the molten steel; cannot be controlled.

また (2)連鋳モールド内で電流閉回路ができるため溶鋼流
が局部的に加速し、流れ全体が均一流となり(ハルトマ
ン流)かえって気泡の浮上を阻害するなどの弊害をもた
らすことがあった。
In addition, (2) a closed current circuit is created in the continuous casting mold, which accelerates the flow of molten steel locally, resulting in a uniform flow throughout (Hartmann flow), which can actually have negative effects such as inhibiting the floating of air bubbles. .

すなわち溶鋼流動分布と磁束密度分布により溶鋼内に発
生する起電力分布は一様でなく鋳型断面の一部における
起電力分布は厚さ中心部分の起電力が大きく、長辺界面
における起電力は溶鋼流速が小さいためほとんど零に近
くなる(第4図参照)。従って、これらの起電力と溶鋼
からなる電気回路を考えると厚さ中心部分は制動方向に
電流が流れ界面付近ではその逆となる。
In other words, the electromotive force distribution generated in the molten steel is not uniform due to the molten steel flow distribution and magnetic flux density distribution, and the electromotive force distribution in a part of the mold cross section is large at the center of the thickness, and the electromotive force at the long side interface is Since the flow velocity is small, it becomes almost zero (see Figure 4). Therefore, considering the electric circuit made up of these electromotive forces and molten steel, the current flows in the braking direction at the center of the thickness, and vice versa near the interface.

この発明は、上記の問題を解消するのに有利な溶鋼吐出
流の制御方法を提案することがH的である。
The main feature of this invention is to propose a method of controlling a molten steel discharge flow that is advantageous in solving the above problems.

(問題点を解決するための手段) この発明の解明経緯につきまず説明する。(Means for solving problems) First, the background to the elucidation of this invention will be explained.

発明者らは、静磁場による溶鋼の吐出流の制御に関して
種々の実験と検討を行った結果、溶鋼吐出流の流速を自
由に制御するためには、連鋳モールド内に形成した静磁
場に対して、電磁力(r’) oC磁束密度(B)×電
流(I)の如く、外部より強制電流を付加することが非
常に効果的であることを突き止めた。
The inventors conducted various experiments and studies regarding the control of the discharge flow of molten steel using a static magnetic field, and found that in order to freely control the flow velocity of the discharge flow of molten steel, it is necessary to We found that it is very effective to apply a forced current from the outside, as in the equation: electromagnetic force (r') oC magnetic flux density (B) x current (I).

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわち、この発明は、連続鋳造用鋳型の対向側壁内に
静磁場を形成させ、この磁場と溶鋼吐出流との相互作用
で生じる誘導電流に暴く電磁力によって溶鋼の流れを制
御する連続鋳造方法において、上記静磁場め方向と交差
する向きに、外部から強制電流を付加してこれに由来し
た磁場を形成させることにより、溶鋼吐出流の流速を調
整することを特徴とする連続鋳造用鋳型内における溶鋼
吐出流の制御方法である。
That is, the present invention provides a continuous casting method in which a static magnetic field is formed within the opposing side walls of a continuous casting mold, and the flow of molten steel is controlled by electromagnetic force generated by the induced current generated by the interaction between this magnetic field and the molten steel discharge flow. , in a continuous casting mold characterized in that the flow velocity of the molten steel discharge flow is adjusted by applying a forced current from the outside in a direction crossing the direction of the static magnetic field and forming a magnetic field derived from this. This is a method of controlling molten steel discharge flow.

以下、この発明を図面に基いて説明する。Hereinafter, this invention will be explained based on the drawings.

第1図に、この発明の実施に用いて好適な連続鋳造用鋳
型の断面を右側半分についで示す。同図における番号1
は浸漬ノズル、2は鋳型短辺、3は浸漬ノズル1からの
溶鋼吐出流、4は静磁場を形成させる磁極であり、また
、5は静磁場の方向と交差する向きに強制電流を付加す
るための電極、6はフットロール6aに取り付けた集電
ブラシ、そして7は直流電源である。
FIG. 1 shows the right half of a cross section of a continuous casting mold suitable for use in carrying out the present invention. Number 1 in the same figure
is an immersed nozzle, 2 is the short side of the mold, 3 is a flow of molten steel discharged from the immersed nozzle 1, 4 is a magnetic pole that forms a static magnetic field, and 5 is a forced current that is applied in a direction crossing the direction of the static magnetic field. 6 is a current collecting brush attached to the foot roll 6a, and 7 is a DC power source.

(作 用) さて、浸漬ノズル1から出た溶鋼吐出流3は磁極4を横
切るとき、誘導電流が発生して、普通この誘導電流と静
磁場の大きさで該吐出流3の制動力が決定されるが、従
来の技術では、上掲第1図に示すように鋳型内で誘導電
流の閉回路が構成されるために、該電流の分布や大きさ
が複雑で溶鋼吐出流3を制御するのは非常に難かしかっ
たのである。
(Function) Now, when the molten steel discharge stream 3 discharged from the immersion nozzle 1 crosses the magnetic pole 4, an induced current is generated, and the braking force of the discharge stream 3 is normally determined by this induced current and the magnitude of the static magnetic field. However, in the conventional technology, as shown in Fig. 1 above, a closed circuit of induced current is formed in the mold, so the distribution and magnitude of the current are complicated and it is difficult to control the molten steel discharge flow 3. It was extremely difficult.

この発明では静磁場の方向と交差する向きに、この例で
は、とくにメニスカスに浸漬させた電極5と鋳型直下の
フットロール6aとの間に強制電流を付加するようにし
てあり、この電流と磁場の大きさ及び方向をそれぞれ単
独に調整することで溶鋼吐出流を加速又は減速して流動
パターンを自由に制御できる。
In this invention, a forced current is applied in a direction intersecting the direction of the static magnetic field, in this example, between the electrode 5 immersed in the meniscus and the foot roll 6a directly below the mold, and this current and the magnetic field By individually adjusting the magnitude and direction of each, the flow pattern can be freely controlled by accelerating or decelerating the molten steel discharge flow.

ここに従来の如く単に静磁場を利用するのみでは溶鋼吐
出流速分布及び磁束密度分布による制動のみしか行えな
いため制動力が大きすぎると静磁場範囲外にう回して流
れる溶鋼により介在物、気泡の巻込み現象が発生するこ
とがあるが、この発明においては制動力のみならす加速
力を与えて溶鋼流動を制御するので上記の如き問題を有
利に解消できる。すなわちモールド内部における制動効
果及び加速効果を発生させうる制動装置兼電磁撹拌装置
として利用することができるのである。
If only a static magnetic field is used as in the past, braking can only be achieved by the molten steel discharge flow velocity distribution and magnetic flux density distribution, so if the braking force is too large, the molten steel flowing around outside the range of the static magnetic field will cause inclusions and bubbles to form. Although the entrainment phenomenon may occur, in the present invention, the flow of molten steel is controlled by applying not only a braking force but also an accelerating force, so that the above-mentioned problem can be advantageously solved. In other words, it can be used as a braking device and an electromagnetic stirring device that can generate a braking effect and an accelerating effect inside the mold.

ここで静磁場における磁束密度は通電電流がゼロの場合
でも溶鋼制動効果が得られる仕様とするため磁極4の中
心近傍で2500〜3500 G程度の範囲とするのが
、また強制電流は上記磁束密度下における溶鋼加速流速
が静磁場の無い場合と同等とするため片側でD C10
00〜 200OA程度とするのが好ましい。
Here, the magnetic flux density in the static magnetic field is set to be in the range of about 2500 to 3500 G near the center of the magnetic pole 4, in order to obtain the molten steel braking effect even when the current is zero, and the forced current is set to the above magnetic flux density. D C10 on one side to make the accelerated flow velocity of molten steel at the bottom equal to that without a static magnetic field.
It is preferable to set it to about 00 to 200OA.

なお強制電流を付加する際の電極としては、導電性がよ
くかつ溶鋼を汚さない耐火物例えばモリブデンサーミッ
トなどが好適であり、また集電ブラシとしては、フット
ロールを介してエアパージされたメタリック系ブラシな
どが好適である。なお、このような連鋳鋳型を用いる場
合漏れ電流を防止するため、ロール6aの軸受部を例え
ばドリル樹脂などの絶縁物で絶縁し、大地間との絶縁抵
抗を多少とも大きくしておくことが肝要である。
As an electrode when applying a forced current, a refractory material that has good conductivity and does not contaminate molten steel, such as molybdenum thermite, is suitable.As a current collector brush, a metallic brush that has been air purged via a foot roll is suitable. etc. are suitable. In addition, in order to prevent leakage current when using such a continuous casting mold, it is recommended to insulate the bearing part of the roll 6a with an insulating material such as drill resin to increase the insulation resistance between it and the ground. It is essential.

次に、第1図に示した連鋳鋳型を用いた小形実験設備に
よるシミュレーション結果を従来の鋳型を用いた場合の
結果とともに第2図(a) 、 (b)に示す。
Next, simulation results using a small experimental facility using the continuous casting mold shown in FIG. 1 are shown in FIGS. 2(a) and 2(b) together with results using a conventional mold.

磁極の大きさは(a) 、 (b)とも3000 G相
当に、また(b)の外部からの強制電流は1500A相
当に設定した。鋳型内に供給した溶鋼の各部分での流速
の大きさをベクトルで表わしたが、短辺下降流に相当す
るAおよびB部に着目すると、この発明を適用すれば溶
鋼の吐出流を減速する場合、流速を20cm/s相当か
ら5 cm / s相当以下に減少させることができる
The size of the magnetic pole was set to be equivalent to 3000 G in both (a) and (b), and the forced current from the outside in (b) was set to be equivalent to 1500 A. The magnitude of the flow velocity at each part of the molten steel supplied into the mold is expressed as a vector, and if we focus on parts A and B, which correspond to the downward flow on the short side, we can see that if this invention is applied, the discharge flow of molten steel will be decelerated. In this case, the flow velocity can be reduced from the equivalent of 20 cm/s to the equivalent of 5 cm/s or less.

この事実は極めて重要な意味をもっている。すなわち、
従来の連続鋳造においてはA、B部の如き短辺下降流付
近には、約0.5φllIn1程度の気泡が集積し易く
ブリスターなどの品質上の欠陥を引き起していたけれど
も、この発明ではとくに短辺下降流を極めて小さくでき
るので気泡の浮上が可能となる。また従来では、制動力
を大きくするためには、静磁極を太き(する必要があっ
たが、外部より強制電流を付加することにより小さな磁
場で大きな制動力を得ることが可能であることがゎが 
   ′った。
This fact has extremely important meaning. That is,
In conventional continuous casting, bubbles of about 0.5φllIn1 tend to accumulate near the downward flow on the short sides such as parts A and B, causing quality defects such as blisters, but in this invention, Since the downward flow on the short side can be made extremely small, it is possible for bubbles to float. In addition, in the past, in order to increase the braking force, it was necessary to make the static magnetic pole thicker, but it is now possible to obtain a large braking force with a small magnetic field by adding a forced current from the outside. Wow
It was.

なお、この発明では、とくに連鋳鋳型の上下方向におい
て強制電流を付加する場合について示したが、短辺下降
流を制動するという観点がら、短辺部分に上昇力を与え
ることを主とする場合には連鋳鋳型下部の両層辺間に、
すなわち連鋳鋳片、の幅方向に強制電流を付加してもよ
い(第3図参照)。
In addition, in this invention, the case where a forced current is applied in the vertical direction of the continuous casting mold is shown in particular, but from the viewpoint of braking the downward flow on the short side, a case where the upward force is mainly applied to the short side part is shown. Between the two layers at the bottom of the continuous casting mold,
In other words, a forced current may be applied in the width direction of the continuously cast slab (see Fig. 3).

(実施例) 厚さ200 n+m、幅1350〜1650mmの連鋳
鋳片を製造し得る設備の連鋳鋳型に設けた磁極(サイズ
300X300 m+++)の磁束密度および外部から
の強制電流を種々変更した操業を行い、得られた連鋳鋳
片をその後冷延鋼板に仕上げその表面品質の調査を行っ
た。
(Example) Operation in which the magnetic flux density of the magnetic pole (size 300 x 300 m+++) provided in the continuous casting mold of equipment capable of manufacturing continuously cast slabs with a thickness of 200 n+m and a width of 1350 to 1650 mm and external forced current were variously changed. The obtained continuously cast slabs were then finished into cold-rolled steel sheets and their surface quality was investigated.

その結果を、鋳造時における磁束密度および強制電流値
とともに表1に示す。
The results are shown in Table 1 along with the magnetic flux density and forced current value during casting.

(発明の効果) この発明によれば、溶鋼吐出流を自由に制御できるので
とくに連続鋳造によって得られる連鋳鋳片内部の非金属
介在物や気泡の巻込み■を大幅に低減でき、ひいては清
浄鋼が得られ製品品質の向上に役立つ。また、溶鋼の吐
出流の流速を加速することもできるので、To註場内に
おける溶mi動の制御性の向上が図れ、電磁撹拌装置と
して使用することも可能である。
(Effects of the Invention) According to the present invention, since the molten steel discharge flow can be freely controlled, it is possible to significantly reduce the entrainment of non-metallic inclusions and air bubbles inside the continuously cast slab obtained by continuous casting, and further improve the cleanliness. Steel is obtained and helps improve product quality. Further, since the flow velocity of the discharge flow of molten steel can be accelerated, controllability of the molten steel movement in the toner field can be improved, and it is also possible to use it as an electromagnetic stirring device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施に用いて好適な連鋳鋳型の断
面図、 第2図(a) 、 (b)は、この発明のシュミレーシ
ョン結果の説明図、 第3図は、この発明の実施に用いて好適な他の連鋳鋳型
の平面模式図、 第4図は、溶鋼流動分布、磁束密度分布および起電力分
布の関係を示す図である。 第1図 Jコ
FIG. 1 is a sectional view of a continuous casting mold suitable for carrying out the present invention, FIGS. 2(a) and (b) are explanatory diagrams of simulation results of the present invention, and FIG. 3 is a cross-sectional view of a continuous casting mold suitable for carrying out the present invention. FIG. 4 is a schematic plan view of another continuous casting mold suitable for use in practice, and is a diagram showing the relationship among the molten steel flow distribution, magnetic flux density distribution, and electromotive force distribution. Figure 1 J

Claims (1)

【特許請求の範囲】 1、連続鋳造用鋳型の対向側壁間に静磁場を形成させ、
この磁場と溶鋼吐出流との相互作用で生じる誘導電流に
基く電磁力によって溶鋼の流れを制御する連続鋳造方法
において、 上記静磁場の方向と交差する向きに、外部 から強制電流を付加してこれに由来した磁場を形成させ
ることにより、溶鋼吐出流の流速を調整することを特徴
とする連続鋳造用鋳型内における溶鋼吐出流の制御方法
。 2、静磁場の磁束密度が2500〜3500ガウスの範
囲であり、また強制電流が1000〜2000Aの範囲
である特許請求の範囲第1項記載の方法。
[Claims] 1. A static magnetic field is formed between opposing side walls of a continuous casting mold,
In a continuous casting method in which the flow of molten steel is controlled by electromagnetic force based on the induced current generated by the interaction between this magnetic field and the molten steel discharge flow, a forced current is applied from the outside in a direction that intersects with the direction of the static magnetic field. 1. A method for controlling a molten steel discharge flow in a continuous casting mold, the method comprising: adjusting the flow velocity of the molten steel discharge flow by forming a magnetic field derived from the molten steel discharge flow. 2. The method according to claim 1, wherein the magnetic flux density of the static magnetic field is in the range of 2,500 to 3,500 Gauss, and the forced current is in the range of 1,000 to 2,000 A.
JP25478187A 1987-10-12 1987-10-12 Method for controlling molten steel discharging flow in mold for continuous casting Pending JPH0199763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25478187A JPH0199763A (en) 1987-10-12 1987-10-12 Method for controlling molten steel discharging flow in mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25478187A JPH0199763A (en) 1987-10-12 1987-10-12 Method for controlling molten steel discharging flow in mold for continuous casting

Publications (1)

Publication Number Publication Date
JPH0199763A true JPH0199763A (en) 1989-04-18

Family

ID=17269793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25478187A Pending JPH0199763A (en) 1987-10-12 1987-10-12 Method for controlling molten steel discharging flow in mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH0199763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303663A (en) * 1989-05-16 1990-12-17 Sumitomo Metal Ind Ltd Method for controlling molten steel surface level in mold

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732859A (en) * 1980-08-06 1982-02-22 Nippon Steel Corp Method and device for removing foreign substance from molten metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732859A (en) * 1980-08-06 1982-02-22 Nippon Steel Corp Method and device for removing foreign substance from molten metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303663A (en) * 1989-05-16 1990-12-17 Sumitomo Metal Ind Ltd Method for controlling molten steel surface level in mold

Similar Documents

Publication Publication Date Title
US3656537A (en) Apparatus for producing continuously cast sections with agitation of the liquid core
US7628196B2 (en) Method and apparatus for continuous casting of metals
JP2726096B2 (en) Continuous casting method of steel using static magnetic field
JPH10305353A (en) Continuous molding of steel
JP2891417B2 (en) Method for stirring and damping molten metal and apparatus for implementing the method
EP0445328B1 (en) Method for continuous casting of steel
JPH03142049A (en) Method and apparatus for continuously casting steel using static magnetic field
JPS62254954A (en) Control method for molten steel flow in mold of continuous casting
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
JPH0199763A (en) Method for controlling molten steel discharging flow in mold for continuous casting
CN101720262A (en) Steel continuous casting method and in-mold molten steel fluidity controller
EP0489202B1 (en) Method of controlling flow of molten steel in mold
JPS63154246A (en) Continuous casting method for steel using static magnetic field
JPS61193755A (en) Electromagnetic stirring method
JP3253012B2 (en) Electromagnetic brake device for continuous casting mold and continuous casting method using the same
JPS61199557A (en) Device for controlling flow rate of molten steel in mold for continuous casting
JPH0810917A (en) Method for continuously casting molten metal and apparatus thereof
JPH01289543A (en) Continuous casting method for steel
JPH03118949A (en) Method and apparatus for continuous casting
JPH0579430B2 (en)
JP2773154B2 (en) Steel continuous casting method
JPS61140355A (en) Electromagnetic stirrer for controlling molten steel flow in casting mold
WO1999011404A1 (en) Method and device for continuous or semi-continuous casting of metal
JP3399627B2 (en) Flow control method of molten steel in mold by DC magnetic field
JPH04333353A (en) Method for continuously casting steel utilizing static magnetic field