JPH0199221A - Cleaning method for semiconductor substrate - Google Patents

Cleaning method for semiconductor substrate

Info

Publication number
JPH0199221A
JPH0199221A JP25770187A JP25770187A JPH0199221A JP H0199221 A JPH0199221 A JP H0199221A JP 25770187 A JP25770187 A JP 25770187A JP 25770187 A JP25770187 A JP 25770187A JP H0199221 A JPH0199221 A JP H0199221A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
cleaning
supplied
pure water
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25770187A
Other languages
Japanese (ja)
Inventor
Mikio Tsuji
幹生 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25770187A priority Critical patent/JPH0199221A/en
Publication of JPH0199221A publication Critical patent/JPH0199221A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent fine particles from adhering onto a semiconductor substrate by introducing ammonia into pure water as alkaline solution, dipping the substrate while introducing ozone to the aqueous solution, and cleaning it. CONSTITUTION:Pure water heated to a predetermined temperature (e.g., 60 deg.C) is supplied to a treating tank 1. After the pure water is supplied, gas, such as ammonia is supplied from a gas supply unit to the tank 1. The supplied ammonia gas is partly absorbed to the pure water, becoming ammonium hydroxide and hence alkaline cleaning solution 5. A semiconductor substrate 10 is dipped in the solution 5. Simultaneously, ozone is supplied by an ozone supply unit 3. The substrate 10 is cleaned in this state for a predetermined period of time, and rinsed with pure water. Thus, it can prevent fine particles form adhering onto the substrate 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造に用いられる半導体基板の洗
浄方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of cleaning a semiconductor substrate used in manufacturing a semiconductor device.

〔従来の技術〕[Conventional technology]

従来、この池の半導体基板の洗浄方法は、半導体基板を
酸あるいはアルカリ性薬品と過酸化水素水との混合溶液
中に浸漬し処理をする、いわゆるデイ、プ式洗浄方法が
主流とな・うていた。
Traditionally, the mainstream method for cleaning semiconductor substrates has been the so-called dip-type cleaning method, in which the semiconductor substrate is immersed in a mixed solution of acid or alkaline chemicals and hydrogen peroxide. Ta.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のデイツプ式洗浄方法では、半導体基板を
直接洗浄液中に浸漬するために、洗浄液中に微粒子が存
在すると、この微粒子が半導体基板表面に付着するとい
う問題がある。そのため、洗浄液供給時、処理槽内の洗
浄液をテ遇することによって微粒子を除去する方法が採
用されている。
In the above-described conventional dip-type cleaning method, since the semiconductor substrate is directly immersed in the cleaning liquid, there is a problem that if fine particles are present in the cleaning liquid, the fine particles will adhere to the surface of the semiconductor substrate. Therefore, a method has been adopted in which the fine particles are removed by shaking the cleaning liquid in the processing tank when the cleaning liquid is supplied.

しかしながら、洗浄に用いられる酸・アルカリの薬品溶
液では、純水あるいはガスと比較して濾過により微粒子
が除去され難いため、半導体基板への微粒子の付着を完
全に防ぐことはできない。
However, with acid/alkaline chemical solutions used for cleaning, it is difficult to remove fine particles through filtration compared to pure water or gas, and therefore it is not possible to completely prevent fine particles from adhering to the semiconductor substrate.

また、従来のデ、プ式洗浄方法においては、使用される
薬品中に含まれる不純物による汚染が問題となる。半導
体装置製造工程ではいわゆる電子工業用と呼ばれる低粒
子、低不純物の薬品が一般的に使用されているが、この
ような電子工業用の薬品といえども、薬品中にかなりの
無機不純物が含まれている。特に過酸化水素水中には多
量のアルミニウム(、A4)が含まれている。
Further, in the conventional dip-and-dip cleaning method, contamination due to impurities contained in the chemicals used is a problem. In the semiconductor device manufacturing process, so-called electronic industry chemicals with low particles and low impurities are generally used, but even these chemicals for the electronic industry contain a considerable amount of inorganic impurities. ing. In particular, hydrogen peroxide water contains a large amount of aluminum (A4).

一般的に、半導体基板の洗浄には過酸化水素を含む洗浄
液を用いて、過酸化水素の酸化力を利用することにより
て半導体基板の洗浄を行表うと同時に、半導体基板の表
面に安定な保護wA(酸化シリコン膜)を形成する。し
かしながら、過酸化水素中のA7!はアンモニア水と過
酸化水素水混合液のようなアルカリ性溶液中において水
酸化アルミニウムAJ(OH)s’(r形成し、水に対
して不溶性と表るために1−度半導体基板表面に付着す
ると水洗を行なっても容易には除去さnず半導体基板表
面J/c残留する。このAIは半導体基板中で3価の不
純物として働き、半導体素子のしきい値電圧を変化させ
る。
Generally, a cleaning solution containing hydrogen peroxide is used to clean semiconductor substrates.The oxidizing power of hydrogen peroxide is used to clean the semiconductor substrate, while at the same time providing stable protection to the surface of the semiconductor substrate. Form wA (silicon oxide film). However, A7 in hydrogen peroxide! Aluminum hydroxide AJ(OH)s'(r) is formed in an alkaline solution such as a mixture of aqueous ammonia and hydrogen peroxide, and appears to be insoluble in water. Even if washed with water, it is not easily removed and remains on the surface of the semiconductor substrate.This AI acts as a trivalent impurity in the semiconductor substrate and changes the threshold voltage of the semiconductor element.

また、重金属等の汚染物質は接合リーク電流管増大させ
たシ、キャリアのライフタイムを低下させたル、結晶欠
陥を誘起する原因となる。
In addition, contaminants such as heavy metals increase junction leakage current, reduce carrier lifetime, and induce crystal defects.

一方、半導体基板表面に付着した微粒子は、例えば拡散
、酸化工程では異常拡散や酸化膜厚異常となシ、リング
ラフィ工程においてはパターン欠陥の原因となる。
On the other hand, fine particles adhering to the surface of a semiconductor substrate cause abnormal diffusion and abnormal oxide film thickness in, for example, diffusion and oxidation processes, and cause pattern defects in phosphorography processes.

このように1従来の洗浄方法では半導体基板表面への微
粒子の付着や洗浄液からの不純物の汚染によって、形成
される半導体素子の特性が劣化し、半導体装置の歩留り
の低下や品質の低下を招くという問題がありた。
In this way, 1. With conventional cleaning methods, the characteristics of the formed semiconductor elements deteriorate due to the adhesion of fine particles to the surface of the semiconductor substrate and the contamination of impurities from the cleaning solution, leading to a decrease in the yield and quality of semiconductor devices. There was a problem.

本発明の目的は、基板面上への微粒子の付着や洗浄液か
らの無機不純物による汚染を防止し、品質及び歩留りの
向上した半導体装置を製造することのできる半導体基板
の洗浄方法を提供することにある。
An object of the present invention is to provide a method for cleaning a semiconductor substrate, which prevents the adhesion of fine particles onto the surface of the substrate and contamination by inorganic impurities from the cleaning solution, and makes it possible to manufacture semiconductor devices with improved quality and yield. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体基板の洗浄方法は、純水中にアンモニア
(NH3)または塩化水素(Hel)または二酸化窒素
(No、)’を導入して酸性またはアルカリ性水溶液と
し、この水溶液中にオゾン(Os ) k導入しながら
半導体基板を浸漬して洗浄するものである。
The semiconductor substrate cleaning method of the present invention involves introducing ammonia (NH3), hydrogen chloride (Hel), or nitrogen dioxide (No. The semiconductor substrate is immersed and cleaned while introducing k.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例に用いる洗浄装置の断面図で
ある。処理槽IK所定の温度(例えば60℃)まで加熱
した純水を供給する。純水供給後、処理槽1にガス供給
装置2よシガス、例えばアンモニア(NH3)1c供給
する。供給されたアンモニアガスは一部純水に吸収され
、水酸化アンモニウム(NH40H)となりアルカリ性
の洗浄液5となる。
FIG. 1 is a sectional view of a cleaning device used in an embodiment of the present invention. Pure water heated to a predetermined temperature (for example, 60° C.) is supplied to the processing tank IK. After supplying pure water, a gas such as ammonia (NH3) 1c is supplied to the processing tank 1 from the gas supply device 2. A portion of the supplied ammonia gas is absorbed by pure water and becomes ammonium hydroxide (NH40H), forming an alkaline cleaning liquid 5.

また、ガスが塩化水素()icl)二酸化窒素(N02
)の場合には、それぞれ塩酸(HCl)、硝酸(HNO
,)が生成され、洗浄液5は酸性となる。
In addition, gases such as hydrogen chloride ()icl) nitrogen dioxide (N02
), hydrochloric acid (HCl) and nitric acid (HNO
, ) are generated, and the cleaning liquid 5 becomes acidic.

洗浄液中に導入されるガスは、水酸化アンモニウム、塩
酸、あるいは硝酸の濃度が所定の濃度になるまで供給す
る。吸収されなかったガスは回収され、′tfIt!!
された後、ガス供給装置2に戻される。
The gas introduced into the cleaning liquid is supplied until the concentration of ammonium hydroxide, hydrochloric acid, or nitric acid reaches a predetermined concentration. The unabsorbed gas is recovered and 'tfIt! !
After that, it is returned to the gas supply device 2.

このようにして生成されたアルカリ性または酸性の洗浄
液5中に半導体基板10’に浸漬する。それと同時に、
オゾン(O3)t−オゾン供給装置3よシ供給する。半
導体基板10はこの状態で所定の時間洗浄処理を施され
た後純水によシゆすがれる。。
The semiconductor substrate 10' is immersed in the alkaline or acidic cleaning liquid 5 thus generated. At the same time,
Ozone (O3) is supplied from the t-ozone supply device 3. The semiconductor substrate 10 is subjected to cleaning treatment in this state for a predetermined period of time, and then rinsed with pure water. .

アンモニア等のガスおよびオゾンはそれぞれ供給時にフ
ィルター4A、4Bを通して供給されるため、処理槽の
洗浄液中に紘常に微粒子を含まない清浄なガスが供給さ
nる。また、ガスは精製が容易であるため、従来の薬品
を混合する場合と比較して、洗浄液中の不純物濃度を低
減させることができる。
Since a gas such as ammonia and ozone are supplied through the filters 4A and 4B, respectively, a clean gas containing no particulates is always supplied to the cleaning liquid in the processing tank. Furthermore, since gas is easy to purify, the concentration of impurities in the cleaning liquid can be reduced compared to the case of mixing conventional chemicals.

第2図に1本実施例と比較例として従来の洗浄方法を用
いて半導体基板の洗浄を行なった場合の、少数キャリア
の再結合ライフタイムの測定結果を示す。清浄面t−露
出させた半導体基板を各洗浄液中に10分間浸漬した後
、純水によ、10分間ゆすぎを行なった。洗浄後の半導
体基板を950℃の酸化性雰囲気で熱処理した後、少数
キャリアの再結合ライフタイムを測定した。
FIG. 2 shows the measurement results of the recombination lifetime of minority carriers when semiconductor substrates were cleaned using a conventional cleaning method as one example and a comparative example. Cleaned Surface t - The exposed semiconductor substrate was immersed in each cleaning solution for 10 minutes, and then rinsed with pure water for 10 minutes. After the semiconductor substrate after cleaning was heat-treated in an oxidizing atmosphere at 950° C., the recombination lifetime of minority carriers was measured.

HCl 、NO2,NH,ガスを用いた本実施例はいず
れも再結合ライフタイムが比較例より長くなっており、
特にNH,ガスを用いた場合は比較例よシ再結合ライフ
タイムが約1桁向上している。再結合ライフタイムが低
いことは無機不純物(特に金属不純物)による汚染を反
映していることから、本実施例では半導体基板表面の無
機不純物による汚染が極助で少くなっていることが分る
In this example using HCl, NO2, NH, and gas, the recombination lifetime is longer than that of the comparative example.
In particular, when NH or gas is used, the recombination lifetime is improved by about one order of magnitude compared to the comparative example. Since a low recombination lifetime reflects contamination by inorganic impurities (particularly metal impurities), it can be seen that in this example, contamination by inorganic impurities on the surface of the semiconductor substrate is greatly reduced.

このことから、本発明による洗浄方法は従来法と比較し
て、洗浄液からの汚染を受けにくく、半導体基板表面は
清浄に保たれていることが明らかである。
From this, it is clear that the cleaning method according to the present invention is less susceptible to contamination from the cleaning liquid than the conventional method, and the semiconductor substrate surface is kept clean.

尚、比較例での薬品の混合比は、HCI 、NH。In addition, the mixing ratio of chemicals in the comparative example is HCI and NH.

OHに関してはHCI :HzOz :)(、Q= l
 : 1 : 5(HLl 1IkFK ’ 5 % 
) −NH40H: Hz Ox : Ht O=1 
: 1 : 5 (NH,OH9度:4%)であり、N
HO3に関してはHNOa : HzOz = 2 :
 5 (HNOs tlk度=20チ)であり、本実施
例では、洗浄液中のHCl 、HNO3,NH4OH濃
度が比較例の場合と同じになるようにガスを供給した。
For OH, HCI :HzOz :)(,Q=l
: 1 : 5(HLl 1IkFK' 5%
) -NH40H: Hz Ox: Ht O=1
: 1 : 5 (NH, OH 9 degrees: 4%), and N
Regarding HO3, HNOa: HzOz = 2:
5 (HNOs tlk degree = 20 degrees), and in this example, the gas was supplied so that the concentrations of HCl, HNO3, and NH4OH in the cleaning liquid were the same as in the comparative example.

第1図には示していないが、処理の均一性を高めるため
に揺動機構を設けてもよい。
Although not shown in FIG. 1, a swinging mechanism may be provided to improve uniformity of processing.

また、処理槽lを石英製とし、その側面に紫外線光源を
配置するとよシ洗浄力を高めることができる。すなわち
、洗浄液5中に供給されたオゾンは分解し、酸素ラジカ
ル(O)と酸素ガス(O2)となる。この酸素ラジカル
の酸化作用により半導体基板の洗浄が行なわれるが、こ
の酸素ラジカルは直ちに反応して酸素ガスと成る。この
時、処理槽1の側面に配置された紫外線光源から紫外線
を照射すると、この紫外線の働きによって酸素ガスは再
びオゾン化されるため洗浄力は高くなる。
Further, if the treatment tank l is made of quartz and an ultraviolet light source is placed on the side thereof, the cleaning power can be further improved. That is, the ozone supplied into the cleaning liquid 5 is decomposed and becomes oxygen radicals (O) and oxygen gas (O2). The semiconductor substrate is cleaned by the oxidizing action of these oxygen radicals, but these oxygen radicals immediately react to become oxygen gas. At this time, when ultraviolet rays are irradiated from an ultraviolet light source placed on the side of the processing tank 1, the oxygen gas is converted into ozone again by the action of the ultraviolet rays, thereby increasing the cleaning power.

第3図及び第4図は本発明の一実施例および従来の洗浄
方法(比較例)ヲ珀いて作製したMO8型ダイオードに
おける、ゲート酸化膜の絶縁破壊電界強度の分布を示す
。測定に用いた試料のゲート酸化膜の厚さは約xooi
であシ、ゲート電極形成以前の洗浄を本実施例による方
法と従来法の2通シで行なった。
FIGS. 3 and 4 show the distribution of dielectric breakdown field strength of the gate oxide film in MO8 type diodes manufactured using an embodiment of the present invention and a conventional cleaning method (comparative example). The thickness of the gate oxide film of the sample used for measurement was approximately xooi
Cleaning before forming the gate electrode was carried out in two ways: one according to this embodiment and the other conventional method.

本実施例としてはアンモニア・ガス金剛い、従来法とし
てはアンモニア水と過酸化水素水混合液を用いた。洗浄
液中のアンモニア濃度は共に4%である。
In this example, ammonia gas was used, and in the conventional method, a mixed solution of aqueous ammonia and aqueous hydrogen peroxide was used. The ammonia concentration in both cleaning solutions is 4%.

第4図に示した比較例の場合は初期不良が多発しておシ
、破壊電界強度も低電界側に分布している。これに対し
て、本実施例の場合は、初期不良の発生はほとんど見ら
れず、破壊電界強度も高電界側に分布しておシ、大部分
の試料で、いわゆる真性耐圧と呼ばれる3MV/I:I
n以上の電界強度を保っている。
In the case of the comparative example shown in FIG. 4, there were many initial failures, and the breakdown electric field strength was also distributed on the low electric field side. On the other hand, in the case of this example, almost no initial defects were observed, and the breakdown electric field strength was distributed on the high electric field side. :I
It maintains an electric field strength of n or more.

このように、本実施例を用いた場合、従来の洗浄方法の
場合と比較して絶縁耐圧は極めて良好となる。
As described above, when this embodiment is used, the dielectric breakdown voltage is extremely good compared to the conventional cleaning method.

ゲート酸化膜形成時に、半導体基板表面に微粒子が付着
していると、形成されたゲート酸化膜にピンホールが発
生し絶縁耐圧を低下させる一因となる。また、重金属等
の無機不純物による汚染があると、その汚染物質が核と
なって結晶欠陥を誘起する。これら、ピンホールや結晶
欠陥はいず詐も絶絶耐圧の劣化を引き起こす。このこと
から、本実施例の場合、従来の方法と比較して微粒子の
付着が少なくなり、また無機不純物による汚染も減少し
ていることが分かる。
If fine particles adhere to the surface of the semiconductor substrate during the formation of the gate oxide film, pinholes will occur in the formed gate oxide film, which will be a factor in lowering the dielectric breakdown voltage. Furthermore, if there is contamination with inorganic impurities such as heavy metals, the contaminants act as nuclei and induce crystal defects. These pinholes and crystal defects always cause deterioration of breakdown voltage. From this, it can be seen that in the case of this example, the adhesion of fine particles was reduced compared to the conventional method, and contamination by inorganic impurities was also reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の洗浄方法は、純水中に塩化
水素または二酸化窒素またはアンモニアを導入して酸性
またはアルカリ性溶液とし、この水溶液にオゾンを導入
しながら半導体基板を浸漬して洗浄することによシ、半
導体基板面上への微粒子の付着や洗浄液からの無機不純
物による汚染を防止することができるため、高品質、高
歩留りの半導体装置を製造することができる効果がある
As explained above, the cleaning method of the present invention involves introducing hydrogen chloride, nitrogen dioxide, or ammonia into pure water to make an acidic or alkaline solution, and cleaning the semiconductor substrate by immersing it in the aqueous solution while introducing ozone. Additionally, it is possible to prevent the adhesion of fine particles onto the surface of the semiconductor substrate and the contamination by inorganic impurities from the cleaning solution, thereby making it possible to manufacture semiconductor devices of high quality and high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用いる洗浄装置の断面図、
第2図は本発明の一実施例及び比較例における少数キャ
リアの再結合ライフタイムの測定結果を示す図、第3図
及び第4図は本発明の一実施例及び比較例を用いた場合
のMO8型ダイオードにおけるゲート酸化膜の絶縁破壊
電界強度の分布を示す図である。 1・−・・・・処理槽、2・・・・・・ガス供給装置、
3・・す・・オゾン供給装置、4A、4B・・・・・・
フィルター、5・・・”°°洗浄液、lO・・・・・・
半導体基板。 代理人 弁理士  内 原   音 第 1  図 茅 2 図
FIG. 1 is a sectional view of a cleaning device used in an embodiment of the present invention;
FIG. 2 is a diagram showing the measurement results of minority carrier recombination lifetime in an embodiment of the present invention and a comparative example, and FIGS. FIG. 3 is a diagram showing the distribution of dielectric breakdown field strength of a gate oxide film in an MO8 type diode. 1... Processing tank, 2... Gas supply device,
3...Ozone supply device, 4A, 4B...
Filter, 5...”°°Cleaning solution, lO...
semiconductor substrate. Agent Patent Attorney Uchihara Ondai 1 Figure Kaya 2 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)純水中にガスを導入し酸性またはアルカリ性水溶
液とし、該水溶液中にオゾン(O_3)を導入しながら
半導体基板を浸漬して洗浄することを特徴とする半導体
基板の洗浄方法。
(1) A method for cleaning a semiconductor substrate, which comprises introducing a gas into pure water to make an acidic or alkaline aqueous solution, and immersing and cleaning the semiconductor substrate while introducing ozone (O_3) into the aqueous solution.
(2)ガスはアンモニア(NH_3)または塩化水素(
HCl)または二酸化窒素(NO_2)である特許請求
の範囲第(1)項記載の半導体基板の洗浄方法。
(2) Gas is ammonia (NH_3) or hydrogen chloride (
The method for cleaning a semiconductor substrate according to claim (1), wherein the cleaning method is HCl) or nitrogen dioxide (NO_2).
JP25770187A 1987-10-12 1987-10-12 Cleaning method for semiconductor substrate Pending JPH0199221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25770187A JPH0199221A (en) 1987-10-12 1987-10-12 Cleaning method for semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25770187A JPH0199221A (en) 1987-10-12 1987-10-12 Cleaning method for semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH0199221A true JPH0199221A (en) 1989-04-18

Family

ID=17309912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25770187A Pending JPH0199221A (en) 1987-10-12 1987-10-12 Cleaning method for semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH0199221A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341729A (en) * 1989-07-07 1991-02-22 Tokyo Electron Ltd Substrate cleaning
JPH09255998A (en) * 1996-03-27 1997-09-30 Furontetsuku:Kk Cleaning method and apparatus
KR100509536B1 (en) * 2001-05-14 2005-08-23 가부시끼가이샤 도시바 Methods for Preparing Alkaline Solution, Alkaline Solution Prepared Thereby, Methods for Forming Pattern, Methods for Stripping Resist Film, Apparatus for Applying Liquid Chemical, Methods for Treating Substrate, and Methods for Supplying Liquid Chemical
WO2000007220A3 (en) * 1998-07-29 2007-11-22 Cfmt Inc Wet processing methods for the manufacture of electronic components using ozonated process fluids
JP2009141165A (en) * 2007-12-07 2009-06-25 Siltronic Japan Corp Method of etching silicon wafer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434751A (en) * 1977-08-24 1979-03-14 Hitachi Ltd Washing method for silicon wafer
JPS62117330A (en) * 1985-11-18 1987-05-28 Sanyo Electric Co Ltd Washing method for semiconductor wafer
JPS62198127A (en) * 1986-02-25 1987-09-01 Sanyo Electric Co Ltd Cleaning method for semiconductor wafer
JPS62213127A (en) * 1986-03-13 1987-09-19 Nec Corp Semiconductor wafer washing equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434751A (en) * 1977-08-24 1979-03-14 Hitachi Ltd Washing method for silicon wafer
JPS62117330A (en) * 1985-11-18 1987-05-28 Sanyo Electric Co Ltd Washing method for semiconductor wafer
JPS62198127A (en) * 1986-02-25 1987-09-01 Sanyo Electric Co Ltd Cleaning method for semiconductor wafer
JPS62213127A (en) * 1986-03-13 1987-09-19 Nec Corp Semiconductor wafer washing equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341729A (en) * 1989-07-07 1991-02-22 Tokyo Electron Ltd Substrate cleaning
JPH09255998A (en) * 1996-03-27 1997-09-30 Furontetsuku:Kk Cleaning method and apparatus
WO2000007220A3 (en) * 1998-07-29 2007-11-22 Cfmt Inc Wet processing methods for the manufacture of electronic components using ozonated process fluids
KR100509536B1 (en) * 2001-05-14 2005-08-23 가부시끼가이샤 도시바 Methods for Preparing Alkaline Solution, Alkaline Solution Prepared Thereby, Methods for Forming Pattern, Methods for Stripping Resist Film, Apparatus for Applying Liquid Chemical, Methods for Treating Substrate, and Methods for Supplying Liquid Chemical
JP2009141165A (en) * 2007-12-07 2009-06-25 Siltronic Japan Corp Method of etching silicon wafer

Similar Documents

Publication Publication Date Title
EP0701275B1 (en) Pre-thermal treatment cleaning process
US5932022A (en) SC-2 based pre-thermal treatment wafer cleaning process
JP2688311B2 (en) Method for removing metal-containing contaminants
JP2581268B2 (en) Semiconductor substrate processing method
JP3789083B2 (en) Method for removing contaminants from integrated circuit board using cleaning solution
US6146467A (en) Treatment method for semiconductor substrates
EP0859404B1 (en) Washing solution of semiconductor substrate and washing method using the same
US20050139230A1 (en) Method for cleaning semiconductor wafers
JPH01262627A (en) Washer for semiconductor substrate
US6416586B1 (en) Cleaning method
JPH03219000A (en) Etching method and washing method for silicon wafer
JP2643814B2 (en) Semiconductor substrate cleaning method
JPH0199221A (en) Cleaning method for semiconductor substrate
KR20010013000A (en) Process for the removal of copper and other metallic impurities from silicon
JPH02164035A (en) Cleaning of semiconductor substrate
JP2002329691A (en) Method of cleaning silicon wafer
JP2776583B2 (en) Semiconductor substrate processing solution and processing method
JPH104074A (en) Method of cleaning substrate or film and method of fabricating semiconductor device
JPH03208900A (en) Washing method for silicon wafer
JPS6072233A (en) Washing device for semiconductor wafer
JP2001326209A (en) Method for treating surface of silicon substrate
CN111009457A (en) Diffusion pretreatment method
KR900001065B1 (en) Surface treatment of semiconductor device
JPH0919661A (en) Method and apparatus for washing electronic parts and the like
JP3489329B2 (en) Silicon wafer surface treatment method