JPH0919661A - Method and apparatus for washing electronic parts and the like - Google Patents

Method and apparatus for washing electronic parts and the like

Info

Publication number
JPH0919661A
JPH0919661A JP17195995A JP17195995A JPH0919661A JP H0919661 A JPH0919661 A JP H0919661A JP 17195995 A JP17195995 A JP 17195995A JP 17195995 A JP17195995 A JP 17195995A JP H0919661 A JPH0919661 A JP H0919661A
Authority
JP
Japan
Prior art keywords
cleaning
water
electronic parts
ultrapure water
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17195995A
Other languages
Japanese (ja)
Inventor
Koji Yamanaka
山中弘次
Takayuki Imaoka
今岡孝之
Takashi Futatsuki
二ツ木高志
Kofuku Yamashita
山下幸福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP17195995A priority Critical patent/JPH0919661A/en
Publication of JPH0919661A publication Critical patent/JPH0919661A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to wash the ultraclean surfaces of electronic parts, etc., with the min. required consumption of a medicinal liquid by washing the wash, such as semiconductor substrates, glass substrates and electronic parts, with a washing soln. prepd. by dissolving gaseous chlorine into high-purity water. SOLUTION: The water fed from a branched piping 6 from circulating piping 5 of ultra-pure water producing apparatus 1 to 4 is partly sent by a water feed piping 61 to a washing tank 71. The liquid prepd. by dissolving the gaseous chlorine from a gaseous chlorine soln. tank 74 in which the gaseous chlorine is dissolved via a gas permeable membrane is added into the ultra-pure water during the course of this feeding by a pump 75. The ultra-pure water is partly fed as rinsing water from the branch piping through a water feed piping 62 to a rinsing tank 72. The gaseous chlorine dissolved in the liquid forms hypochlorous acid at the time of washing the wash in the washing tank 71, thereby exhibiting an excellent washing effect. As a result, the consumption of chemicals and pure water in the washing stage and the waste water load from the washing stage are drastically reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば超清浄な表
面を得ることが求められる電子部品等の被洗浄物の洗浄
方法及び洗浄装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for cleaning an object to be cleaned such as an electronic component which is required to have an ultraclean surface.

【0002】[0002]

【従来の技術】本発明の従来例を、超清浄な表面が求め
られる電子部品の一つであるLSI製造に用いられるシ
リコンウエハの洗浄を例にして説明する。
2. Description of the Related Art A conventional example of the present invention will be described by taking as an example the cleaning of a silicon wafer used in the manufacture of an LSI, which is one of electronic components required to have an ultraclean surface.

【0003】LSI製造プロセスにおいては、シリコン
ウエハ上に例えばSiO2 の絶縁膜を形成し、この絶縁
膜に所定のパターンの窓あけを行い、絶縁膜下の金属シ
リコンを露出させた後洗浄し、目的に応じてp−型ある
いはn−型の元素を導人し、例えばAlなどの金属配線
を埋め込む工程を繰り返して素子を形成する。
In the LSI manufacturing process, an insulating film of, for example, SiO 2 is formed on a silicon wafer, a window of a predetermined pattern is formed in this insulating film, and metal silicon under the insulating film is exposed and then washed. Depending on the purpose, a p-type or n-type element is introduced, and a step of burying a metal wiring such as Al is repeated to form an element.

【0004】このp−型あるいはn−型の元素の導入時
あるいは金属配線を埋め込む工程において、露出した金
属シリコン表面に例えば微粒子などの異物、金属、有機
物、自然酸化膜などの不純物が付着していると、金属−
シリコンの配線不良、コンタクト抵抗の増大などの素子
特性の不良を生じる問題を招くことからウエハ表面の付
着不純物を可能な限り取り除く必要があり、特に高性能
な素子を製造するためにこのシリコンウエハ(半導体用
ウエハ)の表面洗浄は非常に重要な工程とされている。
During the introduction of the p-type or n-type element or the step of embedding the metal wiring, foreign matter such as fine particles, impurities such as metal, organic matter and natural oxide film adhere to the exposed metal silicon surface. If there is a metal-
It is necessary to remove impurities adhering to the surface of the wafer as much as possible because it causes defects in device characteristics such as wiring defects of silicon and increase in contact resistance. In particular, in order to manufacture high-performance devices, this silicon wafer ( Surface cleaning of semiconductor wafers is considered to be a very important step.

【0005】半導体ウエハについて行われている従来の
洗浄法は、例えば以下の技術を用いて行われている。す
なわち、硫酸過酸化水素水混合溶液、塩酸過酸化水素水
混合溶液、アンモニア過酸化水素水混合溶液、フッ酸溶
液、フッ化アンモニウム溶液等の溶液、及び超純水を組
み合わせて用い、半導体表面の原子レベルでの平坦性を
損なうことなく、半導体表面に付着している有機物、微
粒子、金属、自然酸化膜を除去する工程、例えば下記に
一例的に示す(1)〜(13)の工程が行なわれる。
The conventional cleaning method performed on a semiconductor wafer is performed using the following technique, for example. That is, a mixed solution of sulfuric acid / hydrogen peroxide solution, hydrochloric acid / hydrogen peroxide solution, ammonia / hydrogen peroxide solution, hydrofluoric acid solution, ammonium fluoride solution, and ultrapure water are used in combination to form The steps of removing organic substances, fine particles, metals, and natural oxide films adhering to the semiconductor surface without impairing the flatness at the atomic level, for example, the steps (1) to (13) shown below as an example are performed. Be done.

【0006】(1)硫酸過酸化水素洗浄 (硫酸:過酸化水素水=4:l、体積比) 130℃、
10分 (2)超純水洗浄 l0分 (3)フッ酸洗浄(フッ酸0.5%) l分 (4)超純水洗浄 l0分 (5)アンモニア過酸化水素洗浄 (アンモニア水:過酸化水素水:超純水=0.05:
l:5、体積比) 80℃、10分 (6)超純水洗浄 10分 (7)フッ酸洗浄(フッ酸0.5%) l分 (8)超純水洗浄 10分 (9)塩酸過酸化水素洗浄 (塩酸:過酸化水素水:超純水=l:l:6、体積比)
80℃、10分 (10)超純水洗浄 10分 (11)フッ酸洗浄(フッ酸0.5%) l分 (12)超純水洗浄 10分 (13)スピン乾燥またはIPA蒸気乾燥 この複数段階に分けられている洗浄の各工程の役割を説
明すると、(1)の硫酸過酸化水素洗浄は主に表面の付
着有機物の除去を行なうためのものであり、上記(5)
のアンモニア過酸化水素洗浄は主に表面の付着微粒子の
除去を行ためのもの、(9)の塩酸過酸化水素洗浄は主
に表面の付着金属不純物の除去を行ためのもの、
(3),(7),(11)のフッ酸洗浄は表面の自然酸
化膜を除去するためのものである。
(1) Sulfuric acid / hydrogen peroxide cleaning (sulfuric acid: hydrogen peroxide solution = 4: 1, volume ratio) 130 ° C.
10 minutes (2) Ultrapure water cleaning 10 minutes (3) Hydrofluoric acid cleaning (hydrofluoric acid 0.5%) 1 minute (4) Ultrapure water cleaning 10 minutes (5) Ammonia hydrogen peroxide cleaning (Ammonia water: peroxide) Hydrogen water: Ultrapure water = 0.05:
(1: 5, volume ratio) 80 ° C., 10 minutes (6) Ultrapure water cleaning 10 minutes (7) Hydrofluoric acid cleaning (hydrofluoric acid 0.5%) 1 minute (8) Ultrapure water cleaning 10 minutes (9) Hydrochloric acid Hydrogen peroxide cleaning (hydrochloric acid: hydrogen peroxide solution: ultra pure water = 1: 1: 6, volume ratio)
80 ° C., 10 minutes (10) Ultrapure water cleaning 10 minutes (11) Hydrofluoric acid cleaning (hydrofluoric acid 0.5%) 1 minute (12) Ultrapure water cleaning 10 minutes (13) Spin drying or IPA vapor drying Explaining the role of each step of the cleaning, which is divided into stages, the sulfuric acid / hydrogen peroxide cleaning of (1) is mainly for removing organic substances adhering to the surface.
The ammonia hydrogen peroxide cleaning in (1) is mainly for removing fine particles adhering to the surface, and the hydrochloric acid hydrogen peroxide cleaning in (9) is mainly for removing adhered metal impurities on the surface.
The hydrofluoric acid cleaning of (3), (7) and (11) is for removing the natural oxide film on the surface.

【0007】なお上記各洗浄工程の主目的は上述の通り
であるが、各洗浄溶液には主目的以外の汚染物質除去能
力がある場合が多く、例えば上記(1)で用いる硫酸過
酸化水素水混合溶液は、付着有機物の除去の他に強力な
金属付着物除去能力をもっている。このため、上述した
一例的洗浄方式の他に、一つの洗浄液に複数の汚染対象
物質の除去を行わせるようにした方法もある。
The main purpose of each cleaning step is as described above, but each cleaning solution often has the ability to remove contaminants other than the main purpose. For example, the sulfuric acid hydrogen peroxide solution used in (1) above. The mixed solution has a strong ability to remove metal deposits in addition to the removal of deposited organic substances. Therefore, in addition to the above-described exemplary cleaning method, there is also a method in which one cleaning liquid is used to remove a plurality of contaminants.

【0008】半導体ウエハ等の洗浄のために洗浄用薬品
を含む洗浄用薬品溶液(以下、単に「薬液」という場合
がある)や超純水を該ウエハの表面に接触させる方法と
しては、一般にバッチ洗浄法と呼ばれる薬液(又は超純
水)を貯めた洗浄槽に複数のウエハをまとめて浸漬させ
る方法が多用されているが、洗浄中の汚染防止のために
洗浄槽内の薬液を循環ろ過したり、すすぎ(リンス)方
式としては、超純水によるすすぎ時に槽底部から超純水
を供給して槽上部から溢れさせるオーバーフローリン
ス、一旦ウエハ全面が超純水に浸漬するまで超純水を貯
めて一気に槽底部から排水するクイックダンプリンス等
の工夫もなされている。また近時においてはバッチ洗浄
法の他に、ウエハ表面に薬液や超純水をシャワー状に掛
ける方法や、ウエハを高速回転させてその中央に薬液や
超純水を掛けて洗浄する方法等のいわゆる枚葉洗浄法も
採用されている。
As a method for bringing a cleaning chemical solution containing cleaning chemicals (hereinafter sometimes simply referred to as “chemical solution”) or ultrapure water into contact with the surface of the wafer for cleaning semiconductor wafers, etc., a batch method is generally used. A method called a cleaning method, in which multiple wafers are immersed together in a cleaning tank containing a chemical solution (or ultrapure water), is often used, but the chemical solution in the cleaning tank is circulated and filtered to prevent contamination during cleaning. Or, as a rinsing method, when rinsing with ultrapure water, overflow rinse is used to supply ultrapure water from the bottom of the tank to overflow from the top of the tank, and store ultrapure water until the entire wafer surface is immersed in ultrapure water. It has also been devised such as a quick dump rinse that drains water from the bottom of the tank all at once. Recently, in addition to the batch cleaning method, a method of showering a chemical solution or ultrapure water on the wafer surface, a method of rotating the wafer at a high speed and applying a chemical solution or ultrapure water to the center of the wafer to perform cleaning, etc. The so-called single-wafer cleaning method is also adopted.

【0009】以上の薬液による付着物除去工程のための
洗浄の後に実施されるすすぎ処理は、ウエハ表面に残留
する薬液のすすぎ(リンス)を行うためのものであっ
て、リンス用水には超純水製造装置によって製造された
超純水をすすぎ水として用いるのが普通である。これ
は、薬液による付着物除去工程の後つまりウエハ表面が
すでに付着不純物のない超清浄な状態となった後に、す
すぎの結果として汚染物質が再びウエハ表面に付着した
りすることがあっては洗浄の意義が失われるからであ
る。このため、薬液除去に用いるリンス用水としては、
微粒子、コロイダル物質、有機物、金属、陰イオン、溶
存酸素等を極限レベルまで除去した高純度な水、すなわ
ち超純水が従来用いられる場合が多い。
The above-described rinsing process performed after the cleaning for the deposit removing step with the chemical liquid is for rinsing (rinsing) the chemical liquid remaining on the wafer surface, and the rinse water is extremely pure. It is common to use ultrapure water produced by a water production device as rinse water. This is because after the step of removing deposits with a chemical solution, that is, after the wafer surface is already in an ultra-clean state with no deposit impurities, contaminants may adhere to the wafer surface again as a result of rinsing. Because the meaning of is lost. Therefore, as the rinse water used for removing the chemical,
High-purity water obtained by removing fine particles, colloidal substances, organic substances, metals, anions, dissolved oxygen, etc. to an extreme level, that is, ultrapure water is often used conventionally.

【0010】超純水(2次純水)は、l次純水をl次純
水槽に貯留し、紫外線照射装置、混床式ポリッシャー、
限外ろ過膜装置や逆浸透膜装置のような膜処理装置を用
いて順次2次処理し、前記1次純水中に残留する微粒
子、コロイダル物質、有機物、金属、陰イオンなどを極
限レベルまで取り除いて製造されるものである。なお、
上記2次純水処理系の膜処理装置の透過水である超純水
は、一般的には、循環ラインの途中からユースポイント
に分岐して送水し、残余の超純水はこの循環ラインのリ
ターン配管(戻し配管)を通って上記l次純水槽に戻す
のが普通であり、リターン配管を通ってl次純水槽に戻
される水量は、適常、膜処理装置からの送水量の10〜
30%程度である揚合が多い。
Ultrapure water (secondary pure water) is prepared by storing first-order pure water in a first-order pure water tank, using an ultraviolet irradiation device, a mixed-bed polisher,
Secondary treatment is carried out sequentially using a membrane treatment device such as an ultrafiltration membrane device or a reverse osmosis membrane device, and the fine particles, colloidal substances, organic substances, metals, anions, etc. remaining in the primary pure water are brought to an extreme level. It is manufactured by removing it. In addition,
The ultrapure water, which is the permeated water of the membrane treatment device of the secondary pure water treatment system, is generally branched from the middle of the circulation line to the point of use for water supply, and the remaining ultrapure water is supplied to this circulation line. The water is usually returned to the above-mentioned primary pure water tank through a return pipe (return pipe), and the amount of water returned to the primary pure water tank through the return pipe is usually 10 to 10 times the amount of water sent from the membrane treatment apparatus.
Most of them are about 30%.

【0011】現在水準の技術においては、サブミクロン
デザインルールのLSI製造用の一般的な超純水製造装
置で製造される超純水は、例えば以下の表lに示す水質
を有しており、このような超純水水質が達成されれば超
純水によるすすぎ工程中で超純水由来の汚染物質が表面
に付着することは無いとされている。
In the state-of-the-art technology, ultrapure water produced by a general ultrapure water producing apparatus for producing LSIs of the submicron design rule has, for example, the water quality shown in Table 1 below. If such ultrapure water quality is achieved, it is said that contaminants derived from ultrapure water will not adhere to the surface during the rinsing process with ultrapure water.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明が解決しようとする課題】ところで、電子部品等
製造分野では、製品の高性能化と共により低コストに製
品を製造することが重要な課題となってきている。LS
I製造工程について言えば、大量の液を消費する洗浄工
程のコストに占める比率は大きく、このため洗浄工程の
改善が強く求められている。
By the way, in the field of manufacturing electronic components and the like, it has become an important subject to manufacture the products at a lower cost as well as to improve the performance of the products. LS
As for the I manufacturing process, the cleaning process, which consumes a large amount of liquid, accounts for a large proportion of the cost, and therefore there is a strong demand for improvement in the cleaning process.

【0014】この観点から、以下のような問題が指摘さ
れる。すなわち、上記した(1)〜(13)の工程をな
す従来技術では、洗浄溶液は以前から使用されている組
成・濃度の液が基本的に変更されることなく現在も使わ
れているのであるが、例えば付着金属不純物除去用に用
いられる塩酸過酸化水素洗浄液はハロゲン酸と酸化剤の
混合溶液であるため、反応により溶液中には原料である
塩酸と過酸化水素以外の化学種が発生していると理解さ
れるものの、洗浄効果がこれらのいずれの化学種に依存
するのかは必ずしも明らかとされていない。この結果、
化学的な組成・比率の最適化ができずに前例を頼りに効
果上の余裕をみて洗浄薬液を調整しているというのが現
状であった。しかしこれでは、使用薬液の無駄が多い、
不必要に高濃度の薬液で洗浄するためその後のすすぎ用
水の使用量も多くなることが避けられない。このため
に、洗浄工程全体として薬液量、すすぎ用水量の過剰消
費、洗浄工程からの排水量の増大を招き、運転費用の無
用な負担増につながっていた。
From this point of view, the following problems are pointed out. That is, in the prior art which performs the above steps (1) to (13), the cleaning solution is still used without changing the composition and concentration of the solution that has been used before. However, for example, the hydrochloric acid-hydrogen peroxide cleaning solution used to remove adhered metal impurities is a mixed solution of a halogen acid and an oxidizing agent, so that the reaction produces chemical species other than the raw materials hydrochloric acid and hydrogen peroxide. However, it is not always clear which of these chemical species the cleaning effect depends on. As a result,
The current situation is that the chemical composition / ratio cannot be optimized, and the cleaning chemicals are adjusted by relying on the precedent to allow for a margin of effectiveness. However, with this, there is a lot of waste of the used chemicals,
Since the cleaning is performed with an unnecessarily high concentration chemical solution, it is inevitable that the amount of rinse water used thereafter will increase. For this reason, the amount of chemicals and the amount of rinsing water are excessively consumed in the entire cleaning process, and the amount of drainage water from the cleaning process is increased, resulting in an unnecessary increase in operating costs.

【0015】本発明は、以上のような極めて清浄な表面
を得ることが求められる電子部品等の被洗浄物を洗浄す
る際に、必要最小限の薬液使用量で洗浄する電子部品等
の洗浄方法及び装置を提供することを目的とする。
The present invention is a method for cleaning an electronic component or the like, in which an object to be cleaned, which is required to obtain an extremely clean surface as described above, is cleaned with a minimum necessary amount of chemical solution. And to provide a device.

【0016】[0016]

【課題を解決するための手段】本発明の電子部品等の洗
浄方法の特徴は、超清浄な表面が要求される被洗浄物
を、高純度水に塩素ガスを溶解した洗浄溶液を用いて洗
浄するところにある。溶解された塩素ガスは次亜塩素酸
を生成して優れた洗浄効果を発揮し、洗浄工程における
薬品及び純水使用量、並びに洗浄工程からの排水負荷を
飛躍的に減少させることができる。
A feature of the method for cleaning electronic parts and the like of the present invention is that an object to be cleaned requiring an ultra-clean surface is cleaned with a cleaning solution in which chlorine gas is dissolved in high-purity water. There is a place to do it. The dissolved chlorine gas produces hypochlorous acid to exert an excellent cleaning effect, and it is possible to dramatically reduce the amount of chemicals and pure water used in the cleaning process and the drainage load from the cleaning process.

【0017】本発明において「次亜塩素酸」というの
は、塩素ガスを溶解させて生成する次亜塩素酸が水中に
溶解したときの当該溶液のpHに応じて次亜塩素酸が取
り得る形態、すなわち塩素(Cl2 )、次亜塩素酸(H
ClO)、次亜塩素酸イオン(ClO- )の溶解形態の
いずれかが単独または共存した全ての状態を含む。また
「次亜塩素酸濃度」とは、上記の全ての溶存形態を塩素
(Cl)に換算して示したものをいう。
In the present invention, "hypochlorous acid" means a form that hypochlorous acid can take in accordance with the pH of the solution when the hypochlorous acid produced by dissolving chlorine gas is dissolved in water. , Namely chlorine (Cl 2 ), hypochlorous acid (H
ClO) or a dissolved form of hypochlorite ion (ClO ) is included alone or in all coexisting states. Further, the "hypochlorous acid concentration" refers to all of the above dissolved forms converted into chlorine (Cl).

【0018】上記において用いられる高純度水とは、例
えば、原水を凝集沈澱処理、砂ろ過処理、活性炭ろ過処
理、逆浸透膜処理、2床3塔式イオン交換処理、混床式
イオン交換処理、精密フィルタによる膜処理などの処理
を行なう純水製造装置を用いて製造された純水、あるい
は原水を凝集沈澱処理、砂ろ過処理、蒸留処理などの処
理を行なう装置を用いた純水製造装置で製造された純水
などを例示することができるが、これらの他、シリコン
ウエハ等の極めて清浄な表面が要求される被洗浄物を対
象とするような場合には、上記のように製造された純水
を、紫外線照射装置、混床式ポリッシャー、限外ろ過膜
装置を用いて順次処理することで残留する微粒子、コロ
イダル物質、有機物、金属、陰イオンなどを可及的に取
り除いて所謂超純水と称される高純度な水を製造する超
純水製造装置を特に代表的なものとして挙げることがで
きる。但し、これらの純水製造装置等で製造される高純
度水は、純水製造装置等を構成する各段階の処理装置の
種類や構造により限定されるものではない。また、純水
製造装置の最終段の処理(膜処理装置による処理である
場合が多い)が行なわれた純水を洗浄溶液の希釈水ない
しすすぎ用水とする場合のみならず、少なくともイオン
交換装置,膜処理装置,蒸留装置のいずれかによる処理
が行なわれた処理水(これも純水)を後段の純水処理装
置に通すことなく分岐して、洗浄溶液の希釈水としても
よい。
The high-purity water used in the above means, for example, coagulation sedimentation treatment of raw water, sand filtration treatment, activated carbon filtration treatment, reverse osmosis membrane treatment, two-bed three-column type ion exchange treatment, mixed bed type ion exchange treatment, A pure water production system that uses a device that performs coagulation-sedimentation process, sand filtration process, distillation process, etc. on pure water produced using a pure water production device that performs processing such as membrane treatment with a precision filter, or raw water. The pure water produced can be exemplified, but in addition to these, in the case of an object to be cleaned requiring an extremely clean surface such as a silicon wafer, it is produced as described above. By treating pure water in sequence using an ultraviolet irradiation device, a mixed-bed polisher, and an ultrafiltration membrane device, residual particles such as colloidal substances, organic substances, metals, and anions are removed as much as possible. Can be mentioned ultrapure water manufacturing apparatus for producing high-purity water called a particularly typical. However, the high-purity water produced by these pure water producing devices or the like is not limited by the type and structure of the treatment device at each stage constituting the pure water producing device or the like. Further, not only when the pure water that has been subjected to the final stage treatment of the pure water production apparatus (often a membrane treatment apparatus) is used as dilution water or rinsing water for the cleaning solution, at least an ion exchange device, Treated water (also pure water) that has been treated by either the membrane treatment device or the distillation device may be branched without passing through the pure water treatment device in the subsequent stage, and may be used as dilution water for the cleaning solution.

【0019】本発明方法により洗浄される対象物は、超
清浄な表面が求められる半導体基板、ガラス基板、電子
部品の製品又は製品素材、あるいはこれらの製造装置用
部品等の電子部品製造分野等において用いられる種々の
材料,部品等を挙げることができ、より具体的には例え
ばシリコンウエハ,III −V族半導体ウエハなどの半導
体基板、液晶用ガラス基板等の基板材料、メモリ素子,
CPU,センサ素子などの電子部品等の完成品及びその
半製品、あるいは石英反応管、洗浄槽、ウエハキャリヤ
等の製造装置用部品などが例示される。「超清浄な表
面」というのは、上述したLSI等で代表される電子部
品等において、微粒子などの異物、金属、有機物、自然
酸化膜などの不純物の付着を可及的にゼロに近付けるこ
とが求められる表面をいい、一般的には超純水を用いて
すすぎ処理することが求められているものをいう。
The object to be cleaned by the method of the present invention is a semiconductor substrate, a glass substrate, a product of an electronic component or a material of an electronic component for which an ultraclean surface is required, or an electronic component manufacturing field such as a component for a manufacturing apparatus of these. Examples thereof include various materials and parts used. More specifically, for example, semiconductor substrates such as silicon wafers and III-V semiconductor wafers, substrate materials such as glass substrates for liquid crystals, memory devices,
Examples include finished products such as electronic parts such as CPUs and sensor elements and semi-finished products thereof, or parts for manufacturing equipment such as quartz reaction tubes, cleaning tanks, and wafer carriers. The term "ultra-clean surface" means that in electronic components such as the above-mentioned LSI, etc., adhesion of foreign substances such as fine particles, impurities such as metals, organic substances, and natural oxide films can be made as close to zero as possible. The surface required is generally referred to as a surface that is required to be rinsed with ultrapure water.

【0020】洗浄方法は特に限定されるものではなく、
例えば既知のバッチ洗浄法、フロー洗浄法、シャワー状
にかける方法、枚薬洗浄法などいずれの方法も採用でき
る。高純度水に塩素ガスを溶解させる方法としては、水
中に直接注入する方法、散気管を用いる方法、気体透過
膜を介して溶解させる方法等の方法を用いることができ
るが、特に気体透過膜を用いる方法が微粒子発生を防止
できるという理由で好ましい。なお、塩化物イオンと酸
化剤を高純度水に添加することによっても次亜塩素酸を
含有した洗浄溶液を製造することはできるが、この場合
には、塩化物イオンと酸化物が完全に反応しないので余
剰の塩化物イオン,酸化剤が必要になること、および次
亜塩素酸濃度のコントロールが難しいという問題がある
ので塩素ガスを溶解させる本発明方法がより好ましい。
The cleaning method is not particularly limited,
For example, any of known methods such as a batch cleaning method, a flow cleaning method, a showering method, and a single plate cleaning method can be adopted. As a method of dissolving chlorine gas in high-purity water, a method of directly injecting into water, a method of using an air diffusing tube, a method of dissolving through a gas permeable membrane, or the like can be used. The method used is preferable because it can prevent the generation of fine particles. It is possible to produce a cleaning solution containing hypochlorous acid by adding chloride ions and an oxidizing agent to high-purity water, but in this case, chloride ions and oxides are completely reacted. Therefore, the method of the present invention in which chlorine gas is dissolved is more preferable because there is a problem that excess chloride ions and an oxidant are required and it is difficult to control the concentration of hypochlorous acid.

【0021】塩素ガスの溶解により洗浄溶液中に含有さ
れる次亜塩素酸の濃度は、好ましくは10ppm以上と
することで目的とする洗浄を有効に達成することがで
き、より好ましくは15〜30ppmとするのがよい場
合が多い。
When the concentration of hypochlorous acid contained in the cleaning solution by dissolving chlorine gas is preferably 10 ppm or more, the desired cleaning can be effectively achieved, and more preferably 15 to 30 ppm. It is often better to say

【0022】次亜塩素酸を含有する洗浄溶液には、次亜
塩素酸以外の酸を共存させることができる。酸の添加に
より当該溶液のpHを2.5以下、好ましくはpH1〜
2として用いる場合には、pHが2.5を越える次亜塩
素酸含有の洗浄溶液を用いる場合に比べ、酸化還元電位
をより高くして高い酸化力を得ることができ、洗浄能力
を更に向上させることができる。この場合、次亜塩素酸
を含有する洗浄溶液に共存させる次亜塩素酸以外の酸
は、特に限定されるものではないが、例えば塩酸、硫
酸、硝酸等を用いることができる。またこのようにpH
2.5以下とした場合には、次亜塩素酸濃度5〜10p
pmの範囲においても、上記pH2.5を越える次亜塩
素酸含有の洗浄溶液と同等の洗浄力を得ることができ
る。
An acid other than hypochlorous acid can coexist in the cleaning solution containing hypochlorous acid. The pH of the solution is 2.5 or less, preferably pH 1 to 1 by addition of an acid.
When used as 2, the redox potential can be made higher and a higher oxidizing power can be obtained, and the cleaning ability can be further improved, as compared with the case where a cleaning solution containing hypochlorous acid having a pH of more than 2.5 is used. Can be made. In this case, the acid other than hypochlorous acid to be coexisted in the cleaning solution containing hypochlorous acid is not particularly limited, but hydrochloric acid, sulfuric acid, nitric acid, or the like can be used. Also like this
When it is 2.5 or less, hypochlorous acid concentration is 5-10p
Even in the pm range, a cleaning power equivalent to that of the cleaning solution containing hypochlorous acid having a pH of more than 2.5 can be obtained.

【0023】また、上記の洗浄溶液には、次亜塩素酸以
外の酸化剤を共存させることができ、これにより、当該
洗浄溶液の洗浄効果を更に高める作用が得られる。この
ように超純水に加えられる次亜塩素酸以外の酸化剤とし
ては、洗浄の目的に悪影響を与えないものであれば特に
限定されることなく用いることができるが、特にオゾン
が好ましい。オゾンは本発明の目的の一つである排水処
理時の負荷低減を容易にすることができる。この場合、
混合後の洗浄溶液における濃度が3ppm以上、好まし
くは5〜10ppmの範囲でオゾンを添加することがよ
い。
In addition, an oxidizing agent other than hypochlorous acid can coexist in the above-mentioned cleaning solution, whereby an effect of further enhancing the cleaning effect of the cleaning solution can be obtained. As such an oxidizing agent other than hypochlorous acid added to ultrapure water, any oxidizing agent may be used without particular limitation as long as it does not adversely affect the purpose of cleaning, but ozone is particularly preferable. Ozone can facilitate the reduction of load during wastewater treatment, which is one of the objects of the present invention. in this case,
It is preferable to add ozone in a concentration of 3 ppm or more, preferably 5 to 10 ppm in the cleaning solution after mixing.

【0024】本発明の洗浄溶液は、上述した(1)〜
(13)の洗浄工程において用いられている従来の洗浄
溶液それぞれに代えて用いることができるが、洗浄工程
の順序がこれに限定されるものではない。
The cleaning solution of the present invention has the above-mentioned (1) to
It can be used in place of each of the conventional cleaning solutions used in the cleaning step (13), but the order of the cleaning steps is not limited to this.

【0025】本発明は、上記の洗浄溶液を製造する装置
を提供することを別の特徴とする。具体的には、イオ
ン,微粒子,有機物,ガスの除去手段が多段階に設けれ
た超純水製造装置と、半導体基板,ガラス基板,電子部
品の製品又は製品素材あるいはこれらの製造装置用部品
等の被洗浄物の超清浄表面を洗浄用溶液で洗浄し次いで
超純水ですすぎ処理する洗浄装置と、該洗浄装置に洗浄
溶液を送液する洗浄溶液供給手段と、超純水製造装置で
製造された超純水を洗浄装置に送水するすすぎ水送水配
管と、を備えた電子部品等の洗浄装置において、上記洗
浄溶液供給手段を、上記超純水製造装置で製造された超
純水に塩素ガスを溶解させた液を送液するように構成し
たところにある。
Another feature of the present invention is to provide an apparatus for producing the above cleaning solution. Specifically, ultrapure water production equipment provided with means for removing ions, fine particles, organic substances, and gas in multiple stages, and semiconductor substrates, glass substrates, electronic component products or product materials, or components for these production equipment, etc. A cleaning device for cleaning the ultra-clean surface of the object to be cleaned with a cleaning solution and then rinsing with ultrapure water, a cleaning solution supply means for feeding the cleaning solution to the cleaning device, and an ultrapure water manufacturing device In a cleaning device for electronic parts, etc., which is provided with a rinse water supply pipe for supplying the purified ultrapure water to the cleaning device, the cleaning solution supply means is used to supply chlorine to the ultrapure water manufactured by the ultrapure water manufacturing device. It is configured to send a liquid in which a gas is dissolved.

【0026】塩素ガスを溶解させた洗浄溶液を製造する
手段としては、限定されるものではないが、溶解時の微
粒子発生量が少ないという理由で気体透過膜等を特に好
ましいものとして挙げることができる。
The means for producing a cleaning solution in which chlorine gas is dissolved is not limited, but a gas permeable membrane or the like can be mentioned as a particularly preferable one because the amount of fine particles generated during dissolution is small. .

【0027】上記洗浄装置には、塩素ガスを溶解させる
手段に加えて、pHをより低く酸化還元電位をより高く
することで洗浄力高めるように、液体、溶液ないし気体
状態の酸、例えば塩酸、硫酸、硝酸、及びこれらの酸の
水溶液等を添加する機構を付設することも好ましい。ま
た上記の洗浄装置には、上述の洗浄溶液に次亜塩素酸を
含有させる機構及び酸の添加機構に加えて、過酸化水
素、オゾン等の酸化剤を添加する横構を付設することも
好ましい。
In addition to the means for dissolving chlorine gas, the above-mentioned cleaning apparatus includes a liquid, a solution or a gaseous acid such as hydrochloric acid to enhance the cleaning power by lowering the pH and increasing the redox potential. It is also preferable to additionally provide a mechanism for adding sulfuric acid, nitric acid, and aqueous solutions of these acids. Further, in addition to the mechanism for adding hypochlorous acid and the mechanism for adding acid to the above-mentioned cleaning solution, it is also preferable to attach a horizontal frame for adding an oxidizing agent such as hydrogen peroxide or ozone to the above-mentioned cleaning device. .

【0028】上記の超純水製造装置は、一般的には、凝
集沈殿装置、砂ろ過装置、活性炭ろ過装置、逆浸透膜装
置、2床3塔イオン交換装置、混床式イオン交換装置、
精密フィルター等を多段に設けた前処理装置及びl次純
水処理装置で原水を処理してl次純水を得、次いで被洗
浄物の洗浄を行うユースポイントの直前で、前記純水を
更に2次純水処理系で紫外線照射装置、混床式ポリッシ
ャー、限外ろ過膜装置等で処理して2次純水(超純水)
を製造する超純水製造装置を言うが、必ずしも処理手順
により定義されるものではなく、本発明の目的とする半
導体基板のような超清浄な表面を得ることが求められる
電子部品等の洗浄用水として適当な用水(高純度な水)
できるものであればよい。
The above ultrapure water producing apparatus is generally a coagulating sedimentation apparatus, a sand filtration apparatus, an activated carbon filtration apparatus, a reverse osmosis membrane apparatus, a two-bed three-column ion exchange apparatus, a mixed bed type ion exchange apparatus,
Immediately before the point of use where raw water is processed by a pretreatment device equipped with multiple stages of precision filters and the primary water treatment device to obtain primary water, and then the object to be cleaned is washed, the pure water is further added. Secondary pure water (ultra pure water) treated with an ultraviolet irradiation device, mixed bed polisher, ultrafiltration membrane device, etc. in the secondary pure water treatment system
An ultrapure water producing apparatus for producing a water, which is not necessarily defined by a processing procedure, and is a cleaning water for electronic parts etc. which is required to obtain an ultraclean surface such as a semiconductor substrate which is an object of the present invention. Suitable water as (high-purity water)
Anything can be used.

【0029】[0029]

【作用】本発明の電子部品等の洗浄方法及び装置は、半
導体基板、ガラス基板、電子部品及びこれらの製造装置
部品等の被洗浄物を、低濃度の次亜塩素酸を含有する洗
浄溶液により効果的に洗浄することができる他、従来塩
酸過酸化水素洗浄液でないと除去不可能であるとされて
きた銅汚染を含む全ての種類の付着金属汚染物質を除去
できる。
The method and apparatus for cleaning electronic parts and the like according to the present invention uses a cleaning solution containing a low concentration of hypochlorous acid to clean objects to be cleaned such as semiconductor substrates, glass substrates, electronic parts and parts of their manufacturing equipment. In addition to being able to be effectively cleaned, it is capable of removing all types of adherent metal contaminants, including copper contaminants, which were previously considered impossible to remove without a hydrochloric acid / hydrogen peroxide cleaning solution.

【0030】一般的に液中に存在する金属元素は、酸
性、酸化性条件でイオン化、溶解しやすく、一方、固体
表面に対する金属の付着形態は、塩、酸化物或いは水酸
化物としての析出、または固体表面との電子の授受によ
る原子状析出であるので、洗浄液が酸性、酸化性である
ほど洗浄能力は強い。このため従来の金属除去には酸性
で且つ酸化性の洗浄液である塩酸過酸化水素洗浄溶液が
用いられているが、しかし、塩酸過酸化水素洗浄液の使
用条件、即ち濃度(例えば、塩酸:過酸化水素:超純水
=1:l:6、体積比)や温度(例えば80℃)等は、
安定な洗浄効果を得ることを優先しながら経験的に決定
されたものであるために薬剤溶液の使用量が多いことは
前述の通りである。
Generally, the metal element present in the liquid is easily ionized and dissolved under acidic and oxidizing conditions, while the form of adhesion of the metal to the solid surface is precipitation as a salt, oxide or hydroxide. Alternatively, since the deposition is atomic deposition by giving and receiving electrons to and from the solid surface, the more acidic and oxidizing the cleaning liquid, the stronger the cleaning ability. For this reason, a hydrochloric acid-hydrogen peroxide cleaning solution, which is an acidic and oxidizing cleaning solution, has been used for conventional metal removal. However, the use condition of the hydrochloric acid-hydrogen peroxide cleaning solution, that is, the concentration (for example, hydrochloric acid: peroxidation) Hydrogen: Ultrapure water = 1: 1: 6, volume ratio), temperature (for example, 80 ° C.), etc.
As described above, the amount of the drug solution used is large because it is empirically determined while giving priority to obtaining a stable cleaning effect.

【0031】これに対し、本発明の次亜塩素酸を有効成
分として含む洗浄溶液は、上記従来の塩酸過酸化水素洗
浄溶液等の薬剤溶液濃度に比べ、非常に希薄な水溶液で
目的を達成し得る。
On the other hand, the cleaning solution of the present invention containing hypochlorous acid as an active ingredient achieves the purpose as an extremely dilute aqueous solution as compared with the concentration of the chemical solution such as the conventional hydrochloric acid / hydrogen peroxide cleaning solution. obtain.

【0032】具体的には、1012atoms/cm2
度の銅を付着させたシリコンウエハを過酸化水素、次亜
塩素酸、塩素酸を100ppm含有する水溶液で洗浄し
た結果を比較すると、次亜塩素酸水溶液のみが、シリコ
ンウエハー表面に付着した銅を1010atoms/cm
2 以下にまで除去することができる。更に、上記と同様
の銅汚染シリコンウエハーを用いて、銅を除去するのに
必要な次亜塩素酸の濃度を確認したところ、銅残留量を
1010atoms/cm2 以下とするのに必要な次亜塩
素酸の濃度は10ppmであり、また更に当該洗浄溶液
のpHを2.5に調整することによりより強力な除去効
果が得られる。
Specifically, comparing the results of cleaning a silicon wafer to which copper of about 10 12 atoms / cm 2 is adhered with an aqueous solution containing hydrogen peroxide, hypochlorous acid, and 100 ppm of chloric acid is compared. Only the aqueous solution of chloric acid removes the copper adhering to the surface of the silicon wafer at 10 10 atoms / cm 2.
Up to 2 or less can be removed. Furthermore, using the same copper-contaminated silicon wafer as above, the concentration of hypochlorous acid necessary for removing copper was confirmed, and it was found that the amount of residual copper was required to be 10 10 atoms / cm 2 or less. The concentration of hypochlorous acid is 10 ppm, and more powerful removal effect can be obtained by adjusting the pH of the cleaning solution to 2.5.

【0033】これらにより、本発明は有効成分である次
亜塩素酸によって飛躍的な薬剤溶液使用量の低減、リン
ス用超純水使用量の低減、排水処理コストの削減が可能
となる。
As a result, the present invention makes it possible to dramatically reduce the amount of chemical solution used, the amount of ultrapure water used for rinsing, and the cost of wastewater treatment by using hypochlorous acid as an active ingredient.

【0034】[0034]

【発明の実施の形態】以下、本発明を適用した電子部品
等の洗浄装置の実施の態様を示した図1及び図2に基づ
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a cleaning apparatus for electronic parts and the like to which the present invention is applied will be described below with reference to FIGS. 1 and 2.

【0035】図2は本例における超純水製造装置の概要
をブロック図により示したものであり、原水は、凝集沈
澱処理,砂ろ過処理,活性炭ろ過処理の各処理を行う前
処理装置1に通された後、2床3塔式イオン交換処理,
混床式イオン交換処理,精密フィルタ,逆浸透膜処理に
よる膜処理などの1次純水処理装置2を通して1次純水
とされ、1次純水槽3に貯水される。
FIG. 2 is a block diagram showing an outline of the ultrapure water production system in this example. Raw water is supplied to a pretreatment system 1 for performing each of coagulation sedimentation treatment, sand filtration treatment and activated carbon filtration treatment. After being passed, two-bed, three-column type ion exchange treatment,
It is made into primary pure water through a primary pure water treatment device 2 such as a mixed bed type ion exchange treatment, a precision filter, and a membrane treatment by a reverse osmosis membrane treatment, and is stored in a primary pure water tank 3.

【0036】次にこの1次純水は、紫外線照射装置4
1、非再生式混床型イオン交換樹脂塔(混床式ポリッシ
ャー)42、限外ろ過膜装置43からなる2次純水装置
4を通って残留する微粒子、コロイダル物質、有機物、
金属、陰イオンなどが可及的に取り除かれた2次純水
(超純水)とされ、循環配管5を介して1次純水槽3に
循環されると共に、途中分岐されて分岐配管6からユー
スポイント7である洗浄装置に送水される。
Next, this primary pure water is used as an ultraviolet irradiation device 4
1. Non-regeneration type mixed bed type ion exchange resin tower (mixed bed type polisher) 42, fine particles, colloidal substance, organic matter remaining after passing through the secondary pure water device 4 including the ultrafiltration membrane device 43.
Secondary pure water (ultra pure water) from which metals, anions and the like have been removed as much as possible is circulated to the primary pure water tank 3 through the circulation pipe 5, and is branched on the way from the branch pipe 6. Water is sent to the cleaning device, which is the point of use 7.

【0037】図1は、洗浄装置の一部を示し、バッチ式
シリコンウエハ用洗浄槽71の後段にすすぎ槽72を配
置し、シリコンウエハ8を上記洗浄槽71、次いですす
ぎ槽72の順に通して洗浄した後、乾燥を行なうスピン
乾燥器73に該ウエハを移送する洗浄装置を示してい
る。
FIG. 1 shows a part of the cleaning apparatus, in which a rinsing tank 72 is arranged after the batch type silicon wafer cleaning tank 71, and the silicon wafer 8 is passed through the cleaning tank 71 and then the rinsing tank 72 in this order. A cleaning device for transferring the wafer to a spin dryer 73 that performs cleaning after cleaning is shown.

【0038】そして本例の装置は、超純水製造装置1〜
4の循環配管5からの分岐配管6からの送水の一部は、
送水配管61により上記洗浄槽71に送水されるように
なっていると共に、この途中で、塩素ガスを溶解した液
が塩素ガス溶解液槽74からポンプ75により添加され
るように設けられている。これにより、洗浄槽71には
塩素ガスを溶解した液が洗浄溶液として送液される。な
お、塩素ガス溶解液槽74は、超純水を用水としてこれ
に塩素ガスを気体透過膜を介して溶解させるようになっ
ている。
The apparatus of this example is composed of ultrapure water producing apparatuses 1 to 1.
4 part of the water supply from the branch pipe 6 from the circulation pipe 5
Water is supplied to the cleaning tank 71 through a water supply pipe 61, and a liquid in which chlorine gas is dissolved is added from a chlorine gas solution tank 74 by a pump 75 during this process. As a result, a liquid in which chlorine gas is dissolved is sent to the cleaning tank 71 as a cleaning solution. The chlorine gas solution bath 74 uses ultrapure water as a water source and dissolves chlorine gas in the water through a gas permeable membrane.

【0039】また、上記分岐配管は送水配管62によ
り、超純水を上記すすぎ槽72にすすぎ水として送水す
るように構成されている。
Further, the branch pipe is configured to send ultrapure water to the rinse tank 72 as rinse water by a water supply pipe 62.

【0040】[0040]

【実施例】以上の図1及び図2で説明される構成をなし
た装置を用いて、以下の実施試験を行った。
EXAMPLES The following practical tests were conducted using the apparatus having the configuration described in FIGS. 1 and 2 above.

【0041】実施例l 本例においては、以下の(1)〜(4)のように予備洗
浄して清浄な表面を得た直径150mmのP型シリコン
ウエハに銅(5),(6)のように強制汚染させ、この
銅汚染したシリコンウエハ8を、過酸化水素、次亜塩素
酸、塩素酸を含有する水溶液を洗浄槽71に充填して、
各々洗浄する方法で試験を行った。
Example 1 In this example, a P-type silicon wafer having a diameter of 150 mm and having a clean surface obtained by preliminary cleaning as described in (1) to (4) below was coated with copper (5) and (6). As described above, the cleaning tank 71 is filled with an aqueous solution containing hydrogen peroxide, hypochlorous acid, and chloric acid.
The test was performed by the method of washing each.

【0042】(l)フッ酸洗浄 0.5%フッ酸、室温、浸漬 l分 (2)超純水洗浄 室温、オーバーフローリンス 10分 (3)塩酸過酸化水素洗浄 塩酸:過酸化水素水:超純水=1:1:6(体積比)、
80℃、浸漬 10分 (4)超純水洗浄室温 オーバーフローリンス 10分 以上の予備洗浄を行った後のシリコンウエハの表面に付
着していた銅付着量は、0.3×1010atoms/c
2 以下であった。尚、シリコンウエハ上の銅付着量の
測定は、すべて全反射蛍光X線法によった。
(L) Hydrofluoric acid cleaning 0.5% hydrofluoric acid, room temperature, immersion 1 minute (2) Ultrapure water cleaning room temperature, overflow rinse 10 minutes (3) Hydrochloric acid hydrogen peroxide cleaning Hydrochloric acid: Hydrogen peroxide solution: super Pure water = 1: 1: 6 (volume ratio),
80 ° C, immersion 10 minutes (4) Ultrapure water cleaning room temperature Overflow rinse 10 minutes The amount of copper deposited on the surface of the silicon wafer after the preliminary cleaning is 0.3 × 10 10 atoms / c
m 2 or less. Incidentally, all the amounts of copper deposited on the silicon wafer were measured by the total reflection fluorescent X-ray method.

【0043】次に以下の手順によつて銅汚染シリコンウ
エハを作成した。
Next, a copper-contaminated silicon wafer was prepared by the following procedure.

【0044】(5)銅汚染 Cu 1ppm含有の10%フッ酸、室温、浸漬 10
分 (6)超純水洗浄 室温、オーバーフローリンス 10分 上記汚染操作後のシリコンウエハの銅付着量は、2〜1
0×1012atoms/cm2 の範囲であった。
(5) Copper contamination 10% hydrofluoric acid containing 1 ppm of Cu, room temperature, immersion 10
Minute (6) Ultrapure water cleaning Room temperature, overflow rinse 10 minutes The copper adhesion amount of the silicon wafer after the above contamination operation is 2 to 1
It was in the range of 0 × 10 12 atoms / cm 2 .

【0045】上記のように作成した銅汚染シリコンウエ
ハを用い、下記表2に示した3種類の酸化剤水溶液によ
る洗浄試験を行った。
Using the copper-contaminated silicon wafer prepared as described above, a cleaning test was performed using the three types of oxidant aqueous solutions shown in Table 2 below.

【0046】3種類の酸化剤水溶液の調整は、以下の手
順によった。即ち、過酸化水素洗浄溶液は、約30%濃
度の高純度試薬を超純水で希釈し、過マンガン酸カリウ
ム滴定法によって、調整後の濃度を検定した。次亜塩素
酸洗浄溶液は、高純度塩素ガスを超純水中に曝気して塩
素を溶解させ、ヨウ素滴定法によって濃度を検定した。
塩素酸洗浄溶液は、規定量の塩素酸ナトリウムを超純水
に溶解させて調整し、イオンクロマトグラフィー法によ
って塩素酸の濃度を検定した。尚、調整後の次亜塩素酸
洗浄溶液が、塩素ガスの溶解時に次亜塩素酸の自己分解
によって発生した塩化物イオンのためにpH2.8を示
したので、過酸化水素洗浄溶液、及び塩素酸洗浄溶液に
おいても塩酸を用いてpH2.8に調整した後、洗浄試
験に供した。
The three kinds of oxidant aqueous solutions were prepared by the following procedure. That is, in the hydrogen peroxide cleaning solution, a highly pure reagent having a concentration of about 30% was diluted with ultrapure water, and the adjusted concentration was assayed by the potassium permanganate titration method. The hypochlorous acid cleaning solution was aerated with high-purity chlorine gas in ultrapure water to dissolve chlorine, and the concentration was tested by the iodine titration method.
The chloric acid cleaning solution was prepared by dissolving a specified amount of sodium chlorate in ultrapure water, and the concentration of chloric acid was tested by the ion chromatography method. The adjusted hypochlorous acid cleaning solution had a pH of 2.8 due to chloride ions generated by the self-decomposition of hypochlorous acid when chlorine gas was dissolved. The acid cleaning solution was adjusted to pH 2.8 with hydrochloric acid and then subjected to a cleaning test.

【0047】(7)薬剤溶液洗浄 室温(25℃)、浸漬10分 (8)超純水洗浄 室温、オーバーフローリンス10分 (9)スピン乾燥またはIPA蒸気乾燥 洗浄後のシリコンウエハ上の銅残留量測定結果を表2に
示す。表2において、過酸化水素、次亜塩素酸、塩素酸
の各100ppm水溶液の銅除去効果を比較すると、次
亜塩素酸水溶液のみが、洗浄後の銅残留量をl.0×1
10atoms/cm2 以下とすることが可能で、今日
の半導体製造工程において求められる清浄度を達成して
いる。即ち、次亜塩素酸がシリコンウエハ表面における
金属除去に有効に利用でき、その際、薬剤溶液使用量を
大幅に低減できることが示された。しかも、この洗浄効
果は室温においてシリコンウエハを次亜塩素酸水溶液に
浸潰するのみで得られたものであるので、従来例えば8
0℃等に加温して用いられていた塩酸過酸化水素洗浄溶
液などと比較して、加温のためのエネルギー費や、また
高温の濃厚薬剤溶液を扱うために必要とされる設備費を
も低減できることが示された。
(7) Chemical solution cleaning: room temperature (25 ° C.), immersion 10 minutes (8) Ultrapure water cleaning: room temperature, overflow rinse 10 minutes (9) Spin drying or IPA vapor drying Copper residual amount on silicon wafer after cleaning The measurement results are shown in Table 2. In Table 2, when the copper removal effects of 100 ppm aqueous solutions of hydrogen peroxide, hypochlorous acid, and chloric acid are compared, only the hypochlorous acid aqueous solution has a copper residual amount after cleaning of 1%. 0x1
It is possible to set it to 0 10 atoms / cm 2 or less, and the cleanliness level required in today's semiconductor manufacturing process is achieved. That is, it was shown that hypochlorous acid can be effectively used for removing metals on the surface of a silicon wafer, and at that time, the amount of the chemical solution used can be significantly reduced. Moreover, this cleaning effect is obtained only by immersing the silicon wafer in the aqueous solution of hypochlorous acid at room temperature.
Compared to the hydrochloric acid / hydrogen peroxide cleaning solution used after heating to 0 ° C, etc., the energy cost for heating and the equipment cost required for handling the concentrated hot chemical solution are increased. It was also shown that it can be reduced.

【0048】[0048]

【表2】 [Table 2]

【0049】実施例2 次亜塩素酸洗浄溶液を用いてシリコンウエハ表面に付着
した銅を除去する場合に必要な次亜塩素酸の濃度を調べ
た。
Example 2 The concentration of hypochlorous acid required for removing copper adhering to the surface of a silicon wafer using a hypochlorous acid cleaning solution was investigated.

【0050】すなわち、次亜塩素酸濃度を3、5、1
0、100ppmに調整する以外は、実施例lと同様に
銅汚染シリコンウエハの洗浄を行い、pH未調整時にお
ける洗浄試験とした。この際の各濃度の次亜塩素酸洗浄
溶液が示したpHを表3に記した。
That is, the hypochlorous acid concentration is 3, 5, 1
A copper-contaminated silicon wafer was washed in the same manner as in Example 1 except that the concentration was adjusted to 0 and 100 ppm, and the washing test was performed when the pH was not adjusted. Table 3 shows the pH values of the hypochlorous acid cleaning solutions having the respective concentrations at this time.

【0051】また、次亜塩素酸洗浄溶液における次亜塩
素酸濃度を各々上記と同様に調整した後、塩酸を用いて
pHを2.5とした洗浄溶液で銅除去試験を行って銅除
去効果を調べた。結果を表3に示す。
Further, after adjusting the concentration of hypochlorous acid in the hypochlorous acid cleaning solution in the same manner as described above, a copper removal test was conducted with a cleaning solution having a pH of 2.5 with hydrochloric acid to carry out a copper removal effect. I checked. The results are shown in Table 3.

【0052】これらの結果から、pH未調整のときに
は、次亜塩素酸濃度10ppm以上でシリコンウエハ上
の銅残留量をl.0×1010atoms/cm2 以下と
することができ、今日の半導体製造工程において要求さ
れる表面清浄度を得ることができる。また、洗浄溶液の
pHを2.5に調整することにより、更に次亜塩素酸の
洗浄効果を高め、次亜塩素酸濃度5ppm以上で所定の
洗浄効果を得ることが可能となることが確認された。
From these results, when the pH was not adjusted, the amount of copper remaining on the silicon wafer was adjusted to 1% or less when the hypochlorous acid concentration was 10 ppm or more. It can be set to 0 × 10 10 atoms / cm 2 or less, and the surface cleanliness required in today's semiconductor manufacturing process can be obtained. It was also confirmed that by adjusting the pH of the cleaning solution to 2.5, the cleaning effect of hypochlorous acid can be further enhanced, and a predetermined cleaning effect can be obtained at a hypochlorous acid concentration of 5 ppm or more. It was

【0053】[0053]

【表3】 [Table 3]

【0054】実施例3 洗浄溶液の調整を以下の方法によった以外は、実施例l
に記したと同様の方法によって、シリコンウエハ上の付
着銅の除去試験を行った。
Example 3 Example 1 except that the washing solution was prepared as follows:
The removal test of the deposited copper on the silicon wafer was conducted by the same method as described in 1.

【0055】洗浄溶液の調整は、まず、超純水に塩酸を
添加してpHを2.5とした後、当該塩酸水溶液にオゾ
ンガスを曝気してオゾン濃度を1ppmとし、洗浄溶液
を得た。次亜塩素酸の濃度は2.9ppmであった。上
記の濃度測定において、洗浄溶液中の溶存オゾン濃度の
測定は、洗浄溶液の一部を採取して塩酸でpHを1.0
に調整し、波長255nmにおける吸光度を測定して行
い、また、次亜塩素酸濃度は、洗浄溶液の一部を採取し
て水酸化ナトリウムでpHを8.0とし、波長294n
mにおける吸光度を測定して行った。
To adjust the cleaning solution, first, hydrochloric acid was added to ultrapure water to adjust the pH to 2.5, and then ozone gas was aerated to the hydrochloric acid aqueous solution to adjust the ozone concentration to 1 ppm to obtain a cleaning solution. The concentration of hypochlorous acid was 2.9 ppm. In the above concentration measurement, the dissolved ozone concentration in the cleaning solution is measured by collecting a part of the cleaning solution and adjusting the pH to 1.0 with hydrochloric acid.
The measurement was performed by measuring the absorbance at a wavelength of 255 nm, and the hypochlorous acid concentration was adjusted to pH 8.0 with sodium hydroxide by collecting a portion of the washing solution, and the wavelength was 294n.
The absorbance at m was measured.

【0056】上記洗浄溶液による銅汚染ウエハの洗浄の
結果、シリコンウエハ上の銅はl.0×1010atom
s/cm2 にまで低減され、良好な洗浄効果が得られる
ことが示された。更に、本実施例においては、洗浄溶液
中における次亜塩素酸濃度が2.9ppmであったにも
かかわらず、その銅除去効果は、実施例2における次亜
塩素酸濃度5ppmの洗浄液と同等であり、同実施例に
おける次亜塩素酸濃度3ppmの洗浄溶液を上回ってい
る。
As a result of cleaning the copper-contaminated wafer with the cleaning solution, the copper on the silicon wafer was 0 × 10 10 atom
It was shown that the cleaning effect was reduced to s / cm 2 and a good cleaning effect was obtained. Further, in this example, although the hypochlorous acid concentration in the cleaning solution was 2.9 ppm, its copper removing effect was equivalent to that of the cleaning solution in Example 2 having a hypochlorous acid concentration of 5 ppm. Yes, it exceeds the cleaning solution with a hypochlorous acid concentration of 3 ppm in the same example.

【0057】本実施例により、次亜塩素酸と次亜塩素酸
以外の酸化剤を共存させることで金属除去効果を更に高
めることができることが示された。
This example shows that the coexistence of hypochlorous acid and an oxidizing agent other than hypochlorous acid can further enhance the metal removing effect.

【0058】実施例4 ポリプロピレン製ボックスに3ヶ月間保管された直径1
5Ommのシリコンウエハを、次亜塩素酸洗浄溶液で洗
浄したところ、上記実施例1乃至3に示した金属除去効
果に加えて、この洗浄溶液が良好な有機物除去効果を有
していることが示された。
Example 4 Diameter 1 stored in polypropylene box for 3 months
When a 5Omm silicon wafer was washed with a hypochlorous acid cleaning solution, it was found that this cleaning solution has a good organic substance removing effect in addition to the metal removing effect shown in Examples 1 to 3 above. Was done.

【0059】次亜塩素酸洗浄溶液は、超純水に塩素ガス
を溶解させて次亜塩素酸濃度を10ppmとした後、塩
酸でpH2.5に調整して作成した。洗浄は、スピナー
を用いてシリコンウエハを回転速度300rpmで回転
させ、上記洗浄溶液をシリコンウエハ表面及び裏面に各
々1リットル/minの流速で流出させて行った。洗浄
溶液の温度は室温であり、洗浄時間は10分間であっ
た。洗浄溶液による洗浄の後、引き続き10分間室温の
超純水を流出させてリンスを行い、更に超純水を停止
し、スピン乾操させて洗浄ウエハを得た。
The hypochlorous acid cleaning solution was prepared by dissolving chlorine gas in ultrapure water to adjust the hypochlorous acid concentration to 10 ppm, and then adjusting the pH to 2.5 with hydrochloric acid. The cleaning was performed by rotating the silicon wafer at a rotation speed of 300 rpm using a spinner and allowing the cleaning solution to flow to the front and back surfaces of the silicon wafer at a flow rate of 1 liter / min. The temperature of the washing solution was room temperature and the washing time was 10 minutes. After the cleaning with the cleaning solution, ultrapure water at room temperature was continuously flown out for 10 minutes for rinsing, the ultrapure water was stopped, and spin drying was performed to obtain a cleaned wafer.

【0060】洗浄前と洗浄後のウエハの有機物付着量
を、加熱脱離ガスクロマトグラフ質量分析法によって測
定し、次亜塩素酸洗浄溶液の有機物除去効果を評価し
た。
The amount of organic substances attached to the wafer before and after cleaning was measured by thermal desorption gas chromatography mass spectrometry to evaluate the organic substance removal effect of the hypochlorous acid cleaning solution.

【0061】洗浄前、230ngを示したシリコンウエ
ハの有機物付着量は、上記の次亜塩素酸洗浄溶液による
洗浄により、3ngにまで減少され、次亜塩素酸洗浄溶
液には、金属除去効果に加えて、良好な有機物除去効果
があることが示された。
Before cleaning, the amount of organic substances deposited on the silicon wafer, which showed 230 ng, was reduced to 3 ng by the above-mentioned cleaning with the hypochlorous acid cleaning solution. It was shown that it has a good organic substance removing effect.

【0062】[0062]

【効果】本発明の塩素ガスを溶解した洗浄溶液を用いる
電子部品等の洗浄方法及び装置によれば、金属除去や有
機物除去に有効な成分を効率よく利用することができ、
その結果、高濃度の薬液を使用しなくてすむので、無用
な薬液の消費がなく、しかも、不必要に高濃度の薬液で
洗浄しないので洗浄後のすすぎ用水(超純水)の使用量
も低減することができ、全体としてのランニングコスト
の低減、資源の無駄使いを防止できるという効果が奏さ
れる。
[Effect] According to the method and apparatus for cleaning electronic parts and the like using the cleaning solution in which chlorine gas is dissolved according to the present invention, it is possible to efficiently use components effective for removing metals and organic substances,
As a result, there is no need to use high-concentration chemicals, so there is no unnecessary consumption of chemicals, and since unnecessary high-concentration chemicals are not used for cleaning, the amount of rinse water (ultra pure water) used after cleaning is also high. It is possible to reduce the cost, reduce the running cost as a whole, and prevent waste of resources.

【0063】さらに、すすぎ用水量の低減は洗浄工程か
らの排水量の低減につながり、排水中薬剤溶液量の減少
と相侯って、排水処理の負担を軽減し、周辺環境への影
響も少ないという利点がある。
Further, the reduction of the amount of rinsing water leads to the reduction of the amount of waste water from the washing process, and in combination with the reduction of the amount of chemical solution in the waste water, the burden of waste water treatment is reduced and the influence on the surrounding environment is also small. There are advantages.

【0064】更に、洗浄溶液のpHを2.5以下として
用いる発明によれば、より優れた洗浄効果が得られ、こ
れにより一層の洗浄溶液量の削減が実現されるという効
果が奏される。
Further, according to the invention in which the pH of the cleaning solution is set to 2.5 or less, a more excellent cleaning effect can be obtained, thereby further reducing the amount of the cleaning solution.

【0065】また更に、洗浄溶液にオゾンを含有させる
ようにした発明によれば、更に一層の優れた洗浄効果が
奏されるという効果が得られる。
Furthermore, according to the invention in which ozone is contained in the cleaning solution, an effect of further excellent cleaning effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】超純水製造装置から洗浄装置に洗浄溶液を供給
する装置の構成概要一例を示した図。
FIG. 1 is a diagram showing an example of a schematic configuration of a device that supplies a cleaning solution from an ultrapure water producing device to a cleaning device.

【図2】超純水製造装置の構成概要一例を示した図。FIG. 2 is a diagram showing an example of a schematic configuration of an ultrapure water production system.

【符号の説明】[Explanation of symbols]

1・・・前処理装置、2・・・1次純水装置、3・・・
1次純水槽、4・・・2次純水装置、5・・・循環配
管、6・・・分岐配管、7・・・ユースポイント(洗浄
装置)、8・・・シリコンウエハ、61,62・・・送
水配管、41・・・紫外線照射装置、42・・・非再生
式混床型イオン交換樹脂塔(混床式ポリッシャー)、4
3・・・限外ろ過膜装置、71・・・洗浄槽、72・・
・すすぎ槽、73・・・スピン乾燥器、74・・・塩素
ガス溶解液槽、75・・・ポンプ。
1 ... Pretreatment device, 2 ... Primary pure water device, 3 ...
Primary pure water tank, 4 ... Secondary pure water device, 5 ... Circulation pipe, 6 ... Branch pipe, 7 ... Use point (cleaning device), 8 ... Silicon wafer, 61, 62・ ・ ・ Water supply pipe, 41 ・ ・ ・ UV irradiation device, 42 ・ ・ ・ Non-regenerative mixed bed type ion exchange resin tower (mixed bed polisher), 4
3 ... Ultrafiltration membrane device, 71 ... Washing tank, 72 ...
-Rinse tank, 73 ... Spin dryer, 74 ... Chlorine gas solution tank, 75 ... Pump.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下幸福 埼玉県戸田市川岸1丁目4番9号 オルガ ノ株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Happiness Yamashita 1-4-9 Kawagishi, Toda City, Saitama Organo Research Institute

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板、ガラス基板、電子部品の製
品又は製品素材、あるいはこれらの製造装置用部品等の
被洗浄物の超清浄な表面を、高純度水に塩素ガスを溶解
した洗浄溶液で洗浄することを特徴とする電子部品等の
洗浄方法。
1. An ultraclean surface of an object to be cleaned such as a semiconductor substrate, a glass substrate, a product or product material of electronic parts, or parts for manufacturing equipment thereof is cleaned with a cleaning solution prepared by dissolving chlorine gas in high-purity water. A method for cleaning electronic parts and the like characterized by cleaning.
【請求項2】 請求項1において、塩素ガス溶解により
生成した次亜塩素酸の濃度が10ppm以上であること
を特徴とする電子部品等の洗浄方法。
2. The method for cleaning electronic parts according to claim 1, wherein the concentration of hypochlorous acid produced by dissolving chlorine gas is 10 ppm or more.
【請求項3】 請求項lにおいて、洗浄溶液のpHが
2.5以下であり、かつ塩素ガス溶解により生成した次
亜塩素酸の濃度が5ppm以上であることを特徴とする
電子部品等の洗浄方法。
3. The cleaning of electronic parts and the like according to claim 1, wherein the pH of the cleaning solution is 2.5 or less, and the concentration of hypochlorous acid generated by chlorine gas dissolution is 5 ppm or more. Method.
【請求項4】 請求項1ないし3のいずれかにおいて、
洗浄溶液は、次亜塩素酸と共にオゾンを含有することを
特徴とする電子部品等の洗浄方法。
4. The method according to claim 1, wherein
A cleaning method for electronic parts, wherein the cleaning solution contains ozone together with hypochlorous acid.
【請求項5】 請求項lないし4のいずれかにおいて、
洗浄溶液の温度が15〜30℃であることを特徴とする
電子部品等の洗浄方法。
5. The method according to any one of claims 1 to 4,
A cleaning method for electronic parts, wherein the temperature of the cleaning solution is 15 to 30 ° C.
【請求項6】 請求項lないし5のいずれかにおいて、
洗浄除去の対象が被洗浄物表面に付着している金属汚染
物質及び/又は有機物汚染物質であることを特徴とする
電子部品等の洗浄方法。
6. The method according to any one of claims 1 to 5,
A method for cleaning an electronic component or the like, wherein the object to be cleaned and removed is a metal contaminant and / or an organic contaminant adhered to the surface of the object to be cleaned.
【請求項7】 イオン,微粒子,有機物,ガスの除去手
段が多段階に設けれた超純水製造装置と、半導体基板,
ガラス基板,電子部品の製品又は製品素材あるいはこれ
らの製造装置用部品等の被洗浄物の超清浄表面を洗浄用
溶液で洗浄し次いで超純水ですすぎ処理する洗浄装置
と、該洗浄装置に洗浄溶液を送液する洗浄溶液供給手段
と、超純水製造装置で製造された超純水を洗浄装置に送
水するすすぎ水送水配管と、を備えた電子部品等の洗浄
装置において、 上記洗浄溶液供給手段は、上記超純水製造装置で製造さ
れた超純水に塩素ガスを溶解させた液を送液するもので
あることを特徴とする電子部品等の洗浄装置。
7. An ultrapure water production system provided with multi-stage means for removing ions, fine particles, organic substances and gases, a semiconductor substrate,
A cleaning device that cleans the ultra-clean surface of an object to be cleaned such as glass substrates, electronic parts products or product materials, or parts for these manufacturing devices with a cleaning solution, and then rinses with ultrapure water, and the cleaning device A cleaning solution supply means for supplying a solution, and a rinse water supply pipe for supplying the ultrapure water produced by the ultrapure water producing apparatus to the cleaning apparatus. A cleaning device for electronic parts or the like is characterized in that the means feeds a liquid in which chlorine gas is dissolved in the ultrapure water produced by the above ultrapure water producing device.
【請求項8】 請求項7において、洗浄溶液供給手段
は、酸添加手段を有することを特徴とする電子部品等の
洗浄装置。
8. The cleaning apparatus for electronic parts according to claim 7, wherein the cleaning solution supply means has an acid addition means.
JP17195995A 1995-07-07 1995-07-07 Method and apparatus for washing electronic parts and the like Pending JPH0919661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17195995A JPH0919661A (en) 1995-07-07 1995-07-07 Method and apparatus for washing electronic parts and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17195995A JPH0919661A (en) 1995-07-07 1995-07-07 Method and apparatus for washing electronic parts and the like

Publications (1)

Publication Number Publication Date
JPH0919661A true JPH0919661A (en) 1997-01-21

Family

ID=15932947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17195995A Pending JPH0919661A (en) 1995-07-07 1995-07-07 Method and apparatus for washing electronic parts and the like

Country Status (1)

Country Link
JP (1) JPH0919661A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6209553B1 (en) 1999-05-20 2001-04-03 Mitsubishidenki Kabushiki Kaisha Method of and apparatus for washing photomask and washing solution for photomask
JP2006257183A (en) * 2005-03-16 2006-09-28 Tokai Denka Kogyo Kk Aromatic polybenzimidazole resin powder and method for producing the same
JP2014192353A (en) * 2013-03-27 2014-10-06 Sumitomo Electric Ind Ltd Method of processing substrate
CN113637536A (en) * 2021-08-10 2021-11-12 江苏凯威特斯半导体科技有限公司 Strong oxidant cleaning solution and cleaning method for wafer boat in semiconductor production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6209553B1 (en) 1999-05-20 2001-04-03 Mitsubishidenki Kabushiki Kaisha Method of and apparatus for washing photomask and washing solution for photomask
US7077915B2 (en) 1999-05-20 2006-07-18 Renesas Technology Corp. Method of and apparatus for washing photomask and washing solution for photomask
JP2006257183A (en) * 2005-03-16 2006-09-28 Tokai Denka Kogyo Kk Aromatic polybenzimidazole resin powder and method for producing the same
JP2014192353A (en) * 2013-03-27 2014-10-06 Sumitomo Electric Ind Ltd Method of processing substrate
CN113637536A (en) * 2021-08-10 2021-11-12 江苏凯威特斯半导体科技有限公司 Strong oxidant cleaning solution and cleaning method for wafer boat in semiconductor production

Similar Documents

Publication Publication Date Title
US6290777B1 (en) Method and device for washing electronic parts member, or the like
US5635053A (en) Method and apparatus for cleaning electronic parts
JP3154814B2 (en) Semiconductor wafer cleaning method and cleaning apparatus
JP3198899B2 (en) Wet treatment method
JP4951625B2 (en) Preparation of silicon surface
TW200300130A (en) Apparatus for producing wash water or immersion water used in semiconductor devices and process of wash or immersion
JP3296405B2 (en) Cleaning method and cleaning device for electronic component members
KR100437429B1 (en) Cleaning water for electronic material and cleaning method of electronic material
JP4480061B2 (en) Ultrapure water production apparatus and cleaning method for ultrapure water production and supply system in the apparatus
TW200522189A (en) Method for cleaning semiconductor wafers
JP4367587B2 (en) Cleaning method
US20060042654A1 (en) Semiconductor wafer treatment method and apparatus therefor
US6620743B2 (en) Stable, oxide-free silicon surface preparation
JP2643814B2 (en) Semiconductor substrate cleaning method
KR101643124B1 (en) Cleaning water for wafer and method for cleaning wafer
JP3332323B2 (en) Cleaning method and cleaning device for electronic component members
JPH0919661A (en) Method and apparatus for washing electronic parts and the like
JP3296407B2 (en) Cleaning method and cleaning device for electronic component members
WO2000033367A1 (en) Wet cleaning apparatus
JP2001157879A5 (en)
JP3507588B2 (en) Wet processing method and processing apparatus
JPH10225664A (en) Wet treating device
JPH03190130A (en) Cleaning process of semiconductor and device therefor
JPH1129795A (en) Cleaning water for electronic material, its preparation, and cleaning of electronic material
JP3595681B2 (en) Manufacturing method of epitaxial wafer