JPH0196334A - Production of pellet charged into blast furnace - Google Patents

Production of pellet charged into blast furnace

Info

Publication number
JPH0196334A
JPH0196334A JP25185387A JP25185387A JPH0196334A JP H0196334 A JPH0196334 A JP H0196334A JP 25185387 A JP25185387 A JP 25185387A JP 25185387 A JP25185387 A JP 25185387A JP H0196334 A JPH0196334 A JP H0196334A
Authority
JP
Japan
Prior art keywords
pellets
charged
carbonaceous material
blast furnace
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25185387A
Other languages
Japanese (ja)
Inventor
Ichiro Shigaki
志垣 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25185387A priority Critical patent/JPH0196334A/en
Publication of JPH0196334A publication Critical patent/JPH0196334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the reducibility of pellets charged into a blast furnace and to prevent the reduction of the crushing strength by sticking fine powder of iron ore to a carbonaceous material contg. granules of a specified diameter, pelletizing the material and firing the resulting raw pellets so that the carbonaceous material remains in an unburnt state. CONSTITUTION:A carbonaceous material is so crushed that granules of >=1mm diameter are contained by >=70%. Fine powder of iron ore is stuck to the crushed carbonaceous material and the material are pelletized. The resulting raw pellets are fired under such conditions that the carbonaceous material remains in an unburnt state to obtain pellets charged into a blast furnace. The pellets are smoothly reduced and have superior properties as starting material for iron in a blast furnace.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高炉の鉄原料として優れた性状を備えた装
入ペレットもしくは装入ブリケ1゛ット(以下、これら
を単に装入ペレットという)の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) This invention is directed to the production of charging pellets or charging briquettes (hereinafter simply referred to as charging pellets) that have excellent properties as an iron raw material for blast furnaces. ).

(従来の技術) 鉄鉱石の微粉や、製鉄所内で発生した粉鉱石は、そのま
まの状態では高炉に装入できないため、これらを−旦、
生ペレットに造粒した後、グレートもしくはキルンで焼
成して、装入ペレットとし、これを高炉装入原料とする
ことが一般的に行われている。このような装入ペレット
には被還元性を有することが要求されるがそこで被還元
性を向トさせるために、装入ペレットの気孔率を高める
ことが従来よりなされている。
(Prior art) Fine iron ore powder and fine ore generated in a steelworks cannot be charged into a blast furnace as they are, so they are
It is common practice to granulate green pellets and then burn them in a grate or kiln to make charging pellets, which are then used as a raw material for blast furnace charging. Such charged pellets are required to have reducibility, and in order to improve the reducibility, conventionally, the porosity of the charged pellets has been increased.

例えば、第1従来例として、鉄鉱石の微粉等の主原料に
石灰石やドロマイト等の副原料を配合し、これを造粒し
て生ペレットを成形し、この生ペレットの焼成工程で上
記副原料を滓化させて装入ペレットの内部に多数の気孔
を形成し、これによって装入ペレットの気孔率を高めて
いる。
For example, as a first conventional example, auxiliary raw materials such as limestone and dolomite are blended with the main raw material such as iron ore fine powder, this is granulated to form green pellets, and the above-mentioned auxiliary raw materials are is slaged to form a large number of pores inside the charged pellets, thereby increasing the porosity of the charged pellets.

また、第2従来例として、特公昭60−12412号公
報で示すものがある。この構成では、生ペレットの表面
層に粒度1■以下の炭材、例えばコークスを添加し、こ
の生ペレットの焼成工程で上記炭材を燃焼させることに
より装入ペレットの表面層に多数の気孔を形成し、0.
5〜1.Omm程度の気孔径で25〜35%の気孔率の
装入ペレットを得ている。
Further, as a second conventional example, there is one shown in Japanese Patent Publication No. 60-12412. In this configuration, a carbon material with a particle size of 1 square or less, such as coke, is added to the surface layer of the raw pellet, and by burning the carbon material in the firing process of the raw pellet, a large number of pores are created in the surface layer of the charged pellet. form, 0.
5-1. Charged pellets with a pore diameter of about 0 mm and a porosity of 25 to 35% are obtained.

(発明が解決しようとする問題点) ところで、上記のように気孔率を高めた装入ペレットを
高炉に装入して還元する場合、この還元はペレット外周
部より進行するが、ペレット内部を還元するCOガスが
還元生成物の鉄穀中を拡散することは容易でないため1
反応速度は次第に遅くなる。従って、上記高炉シャフト
部のガス還元だけでは装入ペレットの内部にまで還元が
進行せず、この装入ペレットにはFeOを含む低融点ス
ラグを主体とする抜芯が残ることになる。そして、更に
温度が上昇して、例えば1200℃以上の高温の還元雰
囲気となった場合には、上記スラグの溶融ならびに装入
ペレットの外殻金属鉄の緻密化が容易となり、これに因
って還元停滞を生じるおそれがある。
(Problem to be solved by the invention) By the way, when charging pellets with increased porosity as described above is charged into a blast furnace and reduced, the reduction proceeds from the outer periphery of the pellet, but the inside of the pellet is reduced. Because it is not easy for CO gas to diffuse through the reduction product iron grain, 1
The reaction rate gradually slows down. Therefore, the reduction does not proceed to the inside of the charged pellets only by the gas reduction in the blast furnace shaft portion, and cores mainly composed of low melting point slag containing FeO remain in the charged pellets. If the temperature rises further and becomes a high-temperature reducing atmosphere of, for example, 1200°C or higher, it becomes easier to melt the slag and densify the outer metal iron of the charged pellets. There is a possibility that reduction stagnation may occur.

また、上記のように気孔率を高めると、この装入ペレッ
トの圧潰強度が大きく低下するという不都合を生じる。
Furthermore, increasing the porosity as described above causes the disadvantage that the crushing strength of the charged pellets is greatly reduced.

(発明の目的) この発明は、上記のような事情に注目してなされたもの
で、高炉で装入ペレットを還元する場合に、この装入ペ
レットに還元停滞が生じることを防止してその被還元性
を向上させると共に、この装入ペレットの圧潰強度が低
下しないようにすることを目的とする。
(Purpose of the Invention) This invention was made in view of the above-mentioned circumstances, and is aimed at preventing reduction stagnation in the charged pellets and preventing reduction stagnation in the charged pellets when reducing the charged pellets in a blast furnace. The purpose is to improve reducibility and to prevent the crushing strength of the charged pellets from decreasing.

(発明の構成) 上記目的を達成するためのこの発明の特徴とするところ
は、高炉用装入ペレットを製造するに際し1粒度1ll
lI以上の粒子を70重量%以上含有する)々材を抜芯
として、この炭材の周囲に鉄鉱石の微粉を付着させて生
ペレットを成形し、この生ペレットの上記炭材が未燃状
態で残存するようにこの生ペレットを焼成する点にある
(Structure of the Invention) The feature of the present invention for achieving the above object is that when producing blast furnace charging pellets, the grain size is 1 ll.
A raw material (containing 70% by weight or more of particles of 1I or more) is used as a core, fine iron ore powder is attached around this carbon material to form a green pellet, and the carbon material of this raw pellet is in an unburned state. The point is to sinter the raw pellets so that they remain.

(作 用) 抜芯部に炭材が未燃状態で残存する装入ペレットを高炉
で還元すると、その昇温還元過程では、上記抜芯部の炭
材中のCとC02ガスとの反応によりCOガスを生成し
、このCOガスが装入ペレットの内部の還元を進行させ
る。また、昇温後の1200℃以上の過程では、上記抜
芯部には未還元の低融点スラグが生成しようとするが、
この低融点スラグ中のFeOが上記炭材中のCと直接反
応し、上記FeOがFeに還元されて抜芯部の還元が進
行する。
(Function) When charged pellets in which carbonaceous material remains in an unburned state in the cored part are reduced in a blast furnace, in the temperature raising reduction process, carbon in the carbonized material in the cored part reacts with CO2 gas. CO gas is produced, which drives the reduction inside the charged pellets. In addition, in the process of increasing the temperature to 1200°C or higher, unreduced low-melting slag tends to be generated in the core removal section, but
FeO in this low melting point slag directly reacts with C in the carbon material, the FeO is reduced to Fe, and reduction of the cored portion progresses.

これによって、上記低融点スラグの融点が上昇して高融
点スラグとなり、このため、ガス還元が阻止されること
はなく、即ち、ガス還元が容易となって還元停止の生じ
ることが防止される。
As a result, the melting point of the low melting point slag increases and becomes a high melting point slag, so that gas reduction is not inhibited, that is, gas reduction is facilitated and reduction stoppage is prevented.

(実施例) 以下、この発明の詳細な説明する。(Example) The present invention will be described in detail below.

先ず、炭材を粉砕して粒度1mm以上の粒子を70重量
%以上含有するようにすると共に、5i02を0.1〜
5重量%有する鉄鉱石を」:記炭材より微粉に粉砕し、
これらをペレット原料とする。
First, the carbonaceous material is pulverized so that it contains 70% by weight or more of particles with a particle size of 1 mm or more, and 5i02 is added to the
Iron ore containing 5% by weight is crushed into fine powder from carbonaceous material,
These are used as pellet raw materials.

次に、上記炭材を抜芯とし、パン形のペレタイザー等に
よりこの炭材の周囲に同上鉄鉱石の微粉を付着させて造
粒し、生ペレットを成形する。
Next, the above-mentioned carbonaceous material is cored, and fine powder of the above-mentioned iron ore is adhered to the periphery of the carbonaceous material using a pan-shaped pelletizer or the like and granulated to form raw pellets.

そして、上記生ペレットを1300℃以下の温度及び0
2ガスが0.1eatm以下の雰囲気で加熱焼成して装
入ペレットを製造する。
Then, the raw pellets were heated at a temperature of 1300°C or less and at 0.
The charged pellets are produced by heating and firing in an atmosphere containing 2 gases of 0.1 atm or less.

上記の場合、炭材の粒度を11111以上としたりは次
の理由による。即ち、上記炭材の粒度が1ml11以下
では、ペレット原料の造粒工程で炭材の抜芯としての働
きが低下し、この炭材と鉄鉱石の微粉とが混合されてし
まうことにより、生ペレットの全体にわたり炭材が均一
に分散して存在する。そして、この場合には、この生ペ
レットの焼成工程で上記均一に分散して存在する炭材は
燃焼して消滅し、気孔を形成することとなる。一方、炭
材の粒度を1 am以上とすればこれは抜芯として十分
に働き、かつ、焼成工程で燃焼消滅することなく残存す
ることとなる。
In the above case, the particle size of the carbonaceous material is set to 11111 or more for the following reason. That is, if the particle size of the carbonaceous material is less than 1ml11, the function of the carbonaceous material as a core in the granulation process of the pellet raw material will be reduced, and the carbonaceous material will be mixed with iron ore fine powder, resulting in a raw pellet. Carbonaceous materials are uniformly dispersed throughout the area. In this case, during the firing process of the green pellets, the carbonaceous material present in a uniformly dispersed manner burns and disappears, forming pores. On the other hand, if the particle size of the carbonaceous material is 1 am or more, it will function sufficiently as a core remover and will remain without being burnt out in the firing process.

」二記のようにして得られた装入ペレットを高炉の近似
条件の下で還元する。
The charged pellets obtained as described in Section 2 are reduced under conditions approximating that of a blast furnace.

即ち、” 900〜1200℃の温度でガス還元した場
合、装入ペレットの抜芯部では炭材中のCとCO2ガス
との反応によりCOガスを生成する。このため、このC
Oガスにより装入ペレットの内部の還元が進行する。よ
って、上記装入ペレットは全体にわたって還元が進行し
、この装入ペレットの未還元部は減少する。
In other words, when gas reduction is carried out at a temperature of 900 to 1200°C, CO gas is produced by the reaction between C in the carbon material and CO2 gas at the core removal part of the charged pellet.
O gas causes internal reduction of the charged pellets to proceed. Therefore, reduction progresses throughout the charged pellets, and the unreduced portion of the charged pellets decreases.

そして、上記状態から更に温度を上昇させ、1200 
’(!以上で還元する。この場合、装入ペレットの抜芯
部には未還元の低融点スラグが生成しようとするが、こ
の低融点スラグ中のFeOが上記炭材中のCと直接反応
するため、上記FeOはFeに還元される。このため、
上記低融点スラグの融点が上昇して高融点スラグとなり
、上記装入ペレットの抜芯部ではスラグが溶融すること
は抑制される。
Then, the temperature was further increased from the above state to 1200
'(!Reduction is carried out at above. In this case, unreduced low melting point slag is about to be generated at the cored part of the charged pellets, but FeO in this low melting point slag directly reacts with C in the carbonaceous material. Therefore, the above FeO is reduced to Fe. Therefore,
The melting point of the low melting point slag increases to become a high melting point slag, and melting of the slag at the cored portion of the charged pellets is suppressed.

この結果、装入ペレットの高温還元時に上記溶融スラグ
によりガス還元が阻IFされることはなく、即ち、還元
停滞の生じることは防止され、この装入ペレットの被還
元性は向上する。
As a result, gas reduction is not inhibited by the molten slag during high-temperature reduction of the charged pellets, that is, reduction stagnation is prevented, and the reducibility of the charged pellets is improved.

また、上記装入ペレットは炭材の燃焼により多数の気孔
を形成して気孔率を高めたものではないため、この装入
ペレットの圧潰強度が低下することはない。
Furthermore, since the charged pellets are not made of carbonaceous material having a large number of pores formed therein to increase the porosity, the crushing strength of the charged pellets does not decrease.

(Jt一体重実施例) 本発明者らは、本発明方法の効果を確認するため1次の
実験を行った。
(Jt Monoweight Example) The present inventors conducted a first experiment to confirm the effect of the method of the present invention.

下記第1表に、実験に用いたペレット原料の化学組成を
示す。
Table 1 below shows the chemical composition of the pellet raw material used in the experiment.

第1表 ペレット原料の化学組成(玉量%)上記ペレッ
ト原料と炭材たるコークスとを所定の配合割合とし、こ
れを混合造粒して生ペレットを成形し、この生ペレット
を焼成して装入ペレットを得た。この装入ペレットの各
種原料の配合割合及びコークスの粒度を下記第2表に示
す。
Table 1 Chemical composition of pellet raw material (ball amount %) The above pellet raw material and coke as a carbon material are mixed in a predetermined ratio, mixed and granulated to form green pellets, and the raw pellets are fired and packaged. A pellet was obtained. The blending ratios of various raw materials and the particle size of coke in the charged pellets are shown in Table 2 below.

(以下余白) 」二記第1表において、本発明方法による装入ペレット
では1粒度2〜4層■のコークスを抜芯として造粒し、
生ペレットを成形した。また、従来例1及び2による装
入ペレットを比較のために付記した。この従来例2によ
る装入ペレットはその表面層に粒度is■以下のブリー
ズを多く添加して気孔率を高めたものである。なお、上
記各装入ペレットにおける生ペレットの焼成工程は、い
ずれも1200℃への昇温時間を18分間、 1200
℃を10分間、及び1200℃からの降温時間を18分
間とした条件とされる。
(Hereinafter in the margin) Table 1 shows that in the charging pellets according to the method of the present invention, coke with a grain size of 2 to 4 layers is granulated as a core.
The raw pellets were formed. In addition, charged pellets according to Conventional Examples 1 and 2 are added for comparison. The charged pellets according to Conventional Example 2 have a high porosity by adding a large amount of breeze having a particle size of less than is■ to the surface layer thereof. In addition, in the firing process of the green pellets for each of the above-mentioned charged pellets, the heating time to 1200°C was 18 minutes, and the heating time was 1200°C.
The conditions were as follows: 10 minutes at 1200°C, and 18 minutes at lower temperature from 1200°C.

また、上記本発明方法による装入ペレットでは、そのペ
レット原料中に−1001braの通常使用される粒度
および量の石灰及びドロマイトの副産ネ1を添加してい
る。この場合、0.1〜0.5■の粗粒の副原料を添加
すると、得られる装入ペレットの粒径を大きくできると
いう利点があるが、その一方、この副原料は生ペレット
の焼成工程で滓化して気孔を形成し、よって、雰囲気中
の02ガスがペレット中を拡散しやすくなるため、上記
焼成工程で抜芯部の炭材を燃焼させるという不都合があ
る。従って、この炭材の燃焼を抑制しようとすれば、通
常の副原料の添加で良いことになる。
In addition, in the pellets charged according to the method of the present invention, lime and dolomite by-product 1 are added to the pellet raw material in a particle size and amount commonly used of -1001 bra. In this case, adding a coarse auxiliary material of 0.1 to 0.5 square centimeters has the advantage of increasing the particle size of the resulting charged pellets, but on the other hand, this auxiliary material is This causes the inconvenience that the carbonaceous material in the cored part is burned in the above firing process because the 02 gas in the atmosphere becomes easily diffused in the pellets. Therefore, in order to suppress the combustion of this carbonaceous material, it is sufficient to add ordinary auxiliary raw materials.

上記各方法により得た装入ペレットを高炉の近似条件下
で荷重還元実験した。この結果を第1図に示す。
Charged pellets obtained by each of the above methods were subjected to load reduction experiments under conditions similar to those of a blast furnace. The results are shown in FIG.

第1図から明らかなように、従来例による装入ペレット
では、1200℃を越えると未還元の抜芯部で低融点ス
ラグが溶融し、還元停滞を生じている。一方、本発明方
法による装入ペレットでは。
As is clear from FIG. 1, in the case of the charged pellets according to the conventional example, when the temperature exceeds 1200° C., the low melting point slag melts in the unreduced core part, causing reduction stagnation. On the other hand, for charging pellets according to the method of the invention.

1200℃以上における還元停滞が生じず、良好な還元
性状を示している。よって、本発明方法によれば、装入
ペレットの被還元性の向上することが理解される。
No reduction stagnation occurred at temperatures above 1200°C, showing good reducing properties. Therefore, it is understood that the method of the present invention improves the reducibility of the charged pellets.

(発明の効果) この発明によれば、粒度1mm以上の粒子を70重量%
以上含有する炭材を抜芯として、この炭材の周囲に鉄鉱
石の微粉を付着させて生ペレットを成形し、この生ペレ
ットの上記炭材が未燃状態で残存するようにこの生ペレ
ットを焼成するため、このようにして7H+られる装入
ペレットを高炉で還元する場合には、その昇温還元過程
で炭材中のCとC02ガスとの反応で生成されたCOガ
スにより装入ペレットの内部のζ元が進行する。また、
昇温後の1200°C以上の過程では装入ペレットの抜
芯部に生成しようとする低融点スラグ中のFeOが上記
炭材中のCと直接反応し、FeOがFeの還元されるこ
とにより」;配植芯部の還元が進行する。これによって
、」−配紙融点スラグが高融点スラグとなりに記ガス還
元は容易になる。従って、装入ペレットに還元停滞が生
じることは防止され、この結果、装入ペレットの被還元
性を向上させることができる。
(Effect of the invention) According to this invention, 70% by weight of particles with a particle size of 1 mm or more
Using the carbonaceous material containing the above as a core, fine iron ore powder is attached around the carbonaceous material to form green pellets, and the green pellets are shaped so that the carbonaceous material in the green pellets remains in an unburned state. When the charged pellets that are 7H+ treated in this way are reduced in a blast furnace for firing, the charged pellets are reduced by the CO gas generated by the reaction between C in the carbonaceous material and CO2 gas during the heating reduction process. The internal ζ elements progress. Also,
In the process of raising the temperature to 1200°C or higher, FeO in the low melting point slag that is about to be generated at the cored part of the charged pellets directly reacts with C in the carbon material, and FeO is reduced by Fe. ”; Reduction of the planting core progresses. As a result, the paper-distributed melting point slag becomes a high melting point slag and gas reduction becomes easy. Therefore, reduction stagnation in the charged pellets is prevented, and as a result, the reducibility of the charged pellets can be improved.

しかも、上記装入ペレットはその抜芯部に未燃状!Eの
炭材が残存しており従来例のように多数の気孔を形成し
て気孔率を高めたものではないため、この装入ペレット
における圧潰強度が低下することはない、従って、本発
明方法により高炉の鉄原料として優れた性状を備えた装
入ペレットを得ることができる。
Moreover, the above-mentioned charged pellets are unburned at the cored part! Since the carbonaceous material E remains and the porosity is not increased by forming a large number of pores as in the conventional example, the crushing strength of the charged pellets does not decrease.Therefore, the method of the present invention As a result, charging pellets with excellent properties as an iron raw material for blast furnaces can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

0′!1図は本発明方法による装入ペレットと従来例に
よる装入ペレットとを荷重還元実験した結果を示すグラ
フで高炉における温度と還元率との関係を示している。
0'! FIG. 1 is a graph showing the results of a load reduction experiment on pellets charged according to the method of the present invention and pellets charged according to a conventional example, and shows the relationship between temperature and reduction rate in a blast furnace.

Claims (1)

【特許請求の範囲】[Claims] 1、粒度1mm以上の粒子を70重量%以上含有する炭
材を核芯として、この炭材の周囲に鉄鉱石の微粉を付着
させて生ペレットを成形し、この生ペレットの上記炭材
が未燃状態で残存するようにこの生ペレットを焼成する
ことを特徴とする高炉用装入ペレットの製造方法。
1. Using a carbon material containing 70% by weight or more of particles with a particle size of 1 mm or more as a core, fine iron ore powder is attached around this carbon material to form a raw pellet, and the above carbon material of the raw pellet is not removed. A method for producing blast furnace charging pellets, which comprises firing the raw pellets so that they remain in a combustible state.
JP25185387A 1987-10-06 1987-10-06 Production of pellet charged into blast furnace Pending JPH0196334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25185387A JPH0196334A (en) 1987-10-06 1987-10-06 Production of pellet charged into blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25185387A JPH0196334A (en) 1987-10-06 1987-10-06 Production of pellet charged into blast furnace

Publications (1)

Publication Number Publication Date
JPH0196334A true JPH0196334A (en) 1989-04-14

Family

ID=17228894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25185387A Pending JPH0196334A (en) 1987-10-06 1987-10-06 Production of pellet charged into blast furnace

Country Status (1)

Country Link
JP (1) JPH0196334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048353A (en) * 2016-09-20 2018-03-29 Jfeスチール株式会社 Manufacturing method of carbonaceous material interior granulation particles and manufacturing method of carbonaceous material interior agglomerate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048353A (en) * 2016-09-20 2018-03-29 Jfeスチール株式会社 Manufacturing method of carbonaceous material interior granulation particles and manufacturing method of carbonaceous material interior agglomerate

Similar Documents

Publication Publication Date Title
JP6620850B2 (en) Carbonaceous granulated particles for the production of sintered ore and method for producing the same
RU2447164C2 (en) Method of producing pellets from recovered iron and method of producing cast iron
US4231797A (en) Fired iron-ore pellets having macro pores
JP5053305B2 (en) Manufacturing method of pig iron
JP6964692B2 (en) Method of manufacturing metallic iron
JP6288462B2 (en) Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore
US4985075A (en) Method for manufacturing chromium-bearing pig iron
US3751241A (en) Method for producing weather-resistant superfluxed metallized pellets from iron-bearing fines and a superfluxed metallized pellet produced thereby
JP6460293B2 (en) Method for producing sintered ore
RU2455371C2 (en) Self-fluxing pellets for blast furnaces and method for their manufacture
JP4984488B2 (en) Method for producing semi-reduced sintered ore
JP2006274440A (en) Semi-reduced sintered ore and method for production thereof
JPH0196334A (en) Production of pellet charged into blast furnace
JP6264517B1 (en) Method for producing carbonaceous interior sinter
CN115989329A (en) Iron ore pellets and method for producing iron ore pellets
JP2001140007A (en) Operating method of blast furnace using polycrystallized water-containing iron raw material
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
WO2024069991A1 (en) Method for producing iron ore pellets, and iron ore pellets
JP3020494B2 (en) Method for producing reduced iron agglomerates
US3304168A (en) System for producing carbonized and prereduced iron ore pellets
US3684478A (en) Method for producing highly-fluxed pellets containing oxides of iron from in-plant waste products
JP3864506B2 (en) Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron
JP3678034B2 (en) Method for producing partially reduced iron
JP6436317B2 (en) Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same
JPS60141810A (en) Method for controlling operation of blast furnace using iron ore pellet