JPH01768A - Method for manufacturing semiconductor devices - Google Patents

Method for manufacturing semiconductor devices

Info

Publication number
JPH01768A
JPH01768A JP62-330063A JP33006387A JPH01768A JP H01768 A JPH01768 A JP H01768A JP 33006387 A JP33006387 A JP 33006387A JP H01768 A JPH01768 A JP H01768A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
conductivity type
diffusion layer
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62-330063A
Other languages
Japanese (ja)
Other versions
JP2579979B2 (en
JPS64768A (en
Inventor
明夫 中川
星 忠秀
今村 薫
左藤 亮
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Publication of JPH01768A publication Critical patent/JPH01768A/en
Publication of JPS64768A publication Critical patent/JPS64768A/en
Application granted granted Critical
Publication of JP2579979B2 publication Critical patent/JP2579979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 C発明の目的] (産業上の利用分野) 本発明は、半導体基板同士の直接接着技術を用いた半導
体素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION CObject of the Invention] (Industrial Field of Application) The present invention relates to a method of manufacturing a semiconductor element using a direct bonding technique between semiconductor substrates.

(従来の技術)゛ 電力用半導体素子等において、定格電圧の向上と共に気
相成長により形成されるエピタキシャル・ウェーハの比
抵抗をますます高くすることが必要になっている。しが
しながら、高不純物濃度の半導体基板を用いtこ場合こ
の上に高抵抗エピタキシャル層を形成することは、基板
からの不純物混入があるために難しい。例えばn−型層
が100Ω・cIr1以上であるn”−n″″″接合つ
エピタキシャル・ウェーハを形成することは非常に困難
である。
(Prior Art) In power semiconductor devices and the like, as the rated voltage increases, it is necessary to further increase the specific resistance of epitaxial wafers formed by vapor phase growth. However, when a semiconductor substrate with a high impurity concentration is used, it is difficult to form a high resistance epitaxial layer thereon because of impurity contamination from the substrate. For example, it is very difficult to form an epitaxial wafer with an n''-n'''' junction in which the n-type layer has a resistance of 100 Ω·cIr1 or more.

また導電変調型M OS F E Tなどにおいては、
p十型基板にn十型層、n−型層を順次エピタキシャル
成長させる場合があるが、この様なエピタキシャル・ウ
ェーハを形成する場合、p+−〇十接合界面での不純物
のフンペンセーションが起り、所望の接合特性を得るこ
とが難しい。高不純物濃度層内にこれと逆導電型の高不
純物濃度層を拡散法により形成する場合も同様の問題が
ある。
In addition, in conductive modulation type MOS FET etc.
In some cases, an n+ type layer and an n- type layer are sequentially epitaxially grown on a p+ type substrate, but when such an epitaxial wafer is formed, impurity dispersion occurs at the p+-〇〇 junction interface. It is difficult to obtain desired bonding properties. A similar problem occurs when a high impurity concentration layer of the opposite conductivity type is formed within the high impurity concentration layer by a diffusion method.

(発明が解決しようとする問題点) 以上のように従来のエピタキシャル成長法や拡散法では
、所望のpn接合特性を形成する上で限界がある。
(Problems to be Solved by the Invention) As described above, conventional epitaxial growth methods and diffusion methods have limitations in forming desired pn junction characteristics.

本発明はこの様な点に鑑み、特に半導体基板の直接接着
技術を利用して素子ウェーハを形成し、接着界面でのキ
ャリア寿命が低いことを利用して素子特性を改善するよ
うにした半導体素子の製造方法を提供することを目的と
する。
In view of these points, the present invention provides a semiconductor device in which device wafers are formed using direct bonding technology of semiconductor substrates, and device characteristics are improved by taking advantage of the short carrier life at the bonding interface. The purpose is to provide a manufacturing method for.

[発明の構成] (問題点を解決するための手段) 本発明においては、表面が鏡面研磨された第1、第2の
半導体基板を清浄な雰囲気下で異物の介在なしに直接接
着し熱処理して素子ウェーハを形成する。その際本発明
では、第1の半導体基板を第1導電型の高不純物濃度基
板とし、第2の半導体基板を第2導電型の高抵抗基板と
して、第1の基板から不純物を第2の基板側に拡散して
、第2の基板内に、単位面積当りの電気的に活性な不純
物総量が1×10】3/cm2〜2×1015 /cI
II2である第1導電型拡散層を形成するようにしたこ
とを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In the present invention, first and second semiconductor substrates having mirror-polished surfaces are directly bonded and heat-treated in a clean atmosphere without the intervention of foreign matter. Then, a device wafer is formed. In this case, in the present invention, the first semiconductor substrate is a first conductivity type high impurity concentration substrate, the second semiconductor substrate is a second conductivity type high resistance substrate, and the impurities are transferred from the first substrate to the second substrate. The total amount of electrically active impurities per unit area is 1×10]3/cm2 to 2×1015/cI in the second substrate.
A feature is that a first conductivity type diffusion layer of II2 is formed.

(作用) 本発明により形成される素子ウェーハの、第2の基板側
に形成される第2導電型拡散層をエミッタとすると、そ
のエミッタ注入効率は適当に低い値となる。エミッタ接
合直後にキャリア寿命の小さい基板接着界面があり、エ
ミッタ接合とこの接着界面の間の不純物総量が小さいか
らである。
(Function) When the second conductivity type diffusion layer formed on the second substrate side of the element wafer formed according to the present invention is used as an emitter, the emitter injection efficiency becomes a suitably low value. This is because there is a substrate bonding interface with a short carrier life immediately after the emitter bonding, and the total amount of impurities between the emitter bonding and this bonding interface is small.

従って例えば本発明により得られる素子ウェーハを用い
て導電変調型MO8FETやGTOなどを構成した時、
高抵抗ベース層となる第2の基板のキャリア寿命を大き
いものとして高速スイッチング動作が可能になる。しか
も、この第2の基板のキャリア寿命が大きいので、素子
の順方向電圧降下を小さく保つことができる。
Therefore, for example, when a conductivity modulation type MO8FET, GTO, etc. is constructed using the element wafer obtained according to the present invention,
By increasing the carrier life of the second substrate serving as a high-resistance base layer, high-speed switching operation becomes possible. Moreover, since the carrier life of this second substrate is long, the forward voltage drop of the element can be kept small.

なお第2の基板側に拡散形成される第1導電型拡散層の
不純物総量が1×1o13/crII2より小さいと、
この拡散層はエミツタ層として有効に働らかなくなる。
Note that if the total amount of impurities in the first conductivity type diffusion layer diffused and formed on the second substrate side is smaller than 1×1o13/crII2,
This diffusion layer no longer functions effectively as an emitter layer.

またこの拡散層はキャリアの拡散長と比較して同程度ま
たはそれより薄いことが必要で、好ましくは6μ辺以下
とする。第1.第2の基板の接着界面でのキャリアライ
フタイムを小さくするためには、界面で格子を乱してお
くことが望ましく、そのためには両基板の面指数を異な
らせればよい。または、タイムキラーを熱拡散してこれ
が界面に集まる性質を利用することもできる。
Further, this diffusion layer needs to be thinner than or equal to the carrier diffusion length, and preferably has a side length of 6 μm or less. 1st. In order to reduce the carrier lifetime at the adhesion interface of the second substrate, it is desirable to disturb the lattice at the interface, and for this purpose it is sufficient to make the surface indices of both substrates different. Alternatively, it is also possible to utilize the property of thermally diffusing time killers and gathering them at interfaces.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)〜(C)は、本発明を導電変調型MO3F
ETに適用した実施例の製造工程である。第1図(a)
に示すように、それぞれ鏡面研磨されたp÷型Si基板
(第1の半導体基板)11とn−型Si基板(第2の半
導体基板)12を用意する。p小型St基板11の不純
物濃度は、2× 10” /cx3〜5x 1019/
cm3とする。
FIGS. 1(a) to (C) show the conductivity modulation type MO3F according to the present invention.
This is a manufacturing process of an example applied to ET. Figure 1(a)
As shown in FIG. 2, a p÷ type Si substrate (first semiconductor substrate) 11 and an n- type Si substrate (second semiconductor substrate) 12, each mirror-polished, are prepared. The impurity concentration of the p-sized St substrate 11 is 2× 10”/cx3~5x 1019/
Let it be cm3.

n−型Si基板12の研磨面には、リンをドーズ量2x
 i O” 7cm2でイオン注入して浅いn+拡散層
13を形成しである。また内基板11゜12の面方位は
異なる。この様な基板11.12をその研磨面同士を清
浄な雰囲気下で接着し、熱処理して第1図(b)に示す
に一体化する。
A 2x dose of phosphorus is applied to the polished surface of the n-type Si substrate 12.
A shallow n+ diffusion layer 13 is formed by ion implantation with a thickness of 7 cm2.Also, the plane orientations of the inner substrates 11 and 12 are different.The polished surfaces of these substrates 11 and 12 are polished in a clean atmosphere. They are bonded and heat treated to form an integrated structure as shown in FIG. 1(b).

基板の直接接着の具体的な方法は例えば次の通りである
。先ず、2枚の基板の接着すべき面は、表面粗さ500
Å以下に鏡面研磨する。基板の表面状態によってはその
基板に対し、脱脂およびスティンフィルム除去の前処理
を行なう。この前処理は例えば、H2O2+H2SO,
1=王水ボイル−HFのような工程とする。この後基板
を清浄な水で数分間水洗し、室温でスピンナ乾燥による
脱水処理をする。この脱水処理は鏡面研磨面に過剰に吸
着している水分を除去するためのもので、吸着水分の殆
どが揮散するような100℃以上の加熱乾燥は避けるこ
とが重要である。その後両基板を、クラス1以下の清浄
な雰囲気中で実質的に異物を介在させない状態で研磨面
同士を接着させ、200℃以上で熱処理する。Si基板
の場合好ましい熱処理温度は1000℃〜1200℃で
ある。
A specific method for directly bonding the substrates is, for example, as follows. First, the surfaces of the two substrates to be bonded have a surface roughness of 500
Mirror polished to Å or less. Depending on the surface condition of the substrate, the substrate is subjected to pre-treatments such as degreasing and stain film removal. This pretreatment includes, for example, H2O2+H2SO,
1 = Aqua regia boil-HF process. Thereafter, the substrate is washed with clean water for several minutes, and dehydrated by drying with a spinner at room temperature. This dehydration treatment is to remove excess moisture adsorbed on the mirror-polished surface, and it is important to avoid heating and drying at 100° C. or higher, which would evaporate most of the adsorbed moisture. Thereafter, the polished surfaces of both substrates are adhered to each other in a clean atmosphere of class 1 or lower, with substantially no foreign matter present, and heat treated at 200° C. or higher. In the case of a Si substrate, a preferable heat treatment temperature is 1000°C to 1200°C.

このようにして2枚の基板を一体化して、第1図(b)
に示す一体化素子ウニー71を得る。このとき、一体止
後必要なら更に熱処理をして、n−型Si基板12側に
p型拡散層14を形成する。p型拡散層14は接着界面
15からの厚みを6μm程度以下とし、その単位面積当
りの電気的に活性な不純物総量を1×1013/Cm2
〜2×1015/c1B2とする。更に好ましくは、l
Xl0” 〜lXl0” 7cm2とする。
In this way, the two boards are integrated, as shown in Figure 1(b).
An integrated element uni 71 shown in FIG. At this time, after bonding, further heat treatment is performed if necessary to form a p-type diffusion layer 14 on the n-type Si substrate 12 side. The thickness of the p-type diffusion layer 14 from the adhesive interface 15 is approximately 6 μm or less, and the total amount of electrically active impurities per unit area is 1×10 13 /Cm 2
~2×1015/c1B2. More preferably, l
Xl0" to lXl0" 7cm2.

この後第1図(c)に示すように、n−型Si基板12
側を必要に応じて所定厚みになるように研磨した後、ゲ
ート絶縁膜16を介してゲート電極17を形成し、p型
ベース層18およびn÷型ソース層19を拡散形成し、
更にソース電極20、ドレイン電極21を形成して導電
変調型MO5FETが完成する。
After this, as shown in FIG. 1(c), the n-type Si substrate 12
After polishing the sides to a predetermined thickness as necessary, a gate electrode 17 is formed via a gate insulating film 16, a p-type base layer 18 and an n÷-type source layer 19 are formed by diffusion,
Furthermore, a source electrode 20 and a drain electrode 21 are formed to complete the conductivity modulation type MO5FET.

この実施例によれば、p十型基板にエピタキシャル法に
よりn中型層、n−型層を順次成長させる場合と異なり
、不純物のコンペンセーションがなく、良好な特性が得
られる。p+型基板11から拡散して形成されたp型拡
散層14が正孔を注入するエミッタとして働き、導電変
調が起こる。基板の接着時またはその後の熱処理が不十
分であると、このp型拡散層14の不純物総量が1×1
013/cr12以下となり、導電変調が起こらなくな
る。またこのp型拡散層14の不純物総量の上限は、こ
れ以上に大きくするとエミッタ注入効率が大きくなり過
ぎ、キャリアの過剰蓄積によりスイッチング速度が遅く
なるためである。注入効率が大きくなり過ぎた場合、電
子線を照射してキャリア寿命を小さくすることが考えら
れるが、これでは次のような問題が生じる。即ち、常温
ではターンオフ時間は短縮されるが、例えば125℃で
は25℃の場合の3倍のターンオフ時間に増大してしま
う。n型Si基板12側に予め形成されたn小型層13
は所定厚み残るようにし、その単位面積当りの電気的に
活性な不純物総量は5×1013/CjlI2〜1×1
015/Cm2となるようにする。
According to this embodiment, unlike the case where an n medium layer and an n- type layer are sequentially grown on a p-type substrate by an epitaxial method, there is no impurity compensation and good characteristics can be obtained. The p-type diffusion layer 14 formed by diffusion from the p + -type substrate 11 acts as an emitter for injecting holes, causing conductivity modulation. If the heat treatment at the time of bonding the substrate or after that is insufficient, the total amount of impurities in this p-type diffusion layer 14 will be 1×1.
013/cr12 or less, and no conductive modulation occurs. Further, the upper limit of the total amount of impurities in the p-type diffusion layer 14 is set because if it is made larger than this, the emitter injection efficiency becomes too high and the switching speed becomes slow due to excessive accumulation of carriers. If the injection efficiency becomes too high, it may be possible to shorten the carrier lifetime by irradiating the carrier with an electron beam, but this will cause the following problems. That is, the turn-off time is shortened at room temperature, but at 125° C., for example, the turn-off time increases to three times that at 25° C. N small layer 13 formed in advance on the n-type Si substrate 12 side
remains at a predetermined thickness, and the total amount of electrically active impurities per unit area is 5×1013/CjlI2~1×1
015/Cm2.

以上のようにしてこの実施例によれば、接着界面を通し
て拡散形成されるエミッタとしてのp型拡散層の不純物
総量を小さくすることにより、素子のスイッチング速度
と順電圧降下の協調関係が優れたものとなる。即ち同じ
スイッチング速度の素子でもp!42拡散層14の不純
物総量が多いとn−基板12のライフタイムを小さくし
なければならないが、この実施例ではn″″型基板12
は十分高抵抗として長いライフタイムとすることができ
、順電圧降下は低くできる。
As described above, according to this embodiment, by reducing the total amount of impurities in the p-type diffusion layer as an emitter that is diffused through the adhesive interface, the cooperative relationship between the switching speed and forward voltage drop of the device is improved. becomes. In other words, even elements with the same switching speed have p! If the total amount of impurities in the 42 diffusion layer 14 is large, the lifetime of the n-type substrate 12 must be shortened.
can have a sufficiently high resistance to provide a long lifetime and a low forward voltage drop.

第2図(a)〜(c)は、本発明の他の実施例による導
電変調型MO3FETの製造工程を、第1図(a)〜(
c)に対応させて示す。この実施例では、n型Si基板
12側にリンのイオン注入層13′を形成し、その不純
物活性化の熱処理をすることなく、接着工程に入る。イ
オン注入層13′の形成条件は例えば、加速電圧40k
eV。
2(a) to 2(c) show the manufacturing process of a conductivity modulation type MO3FET according to another embodiment of the present invention.
It is shown in correspondence with c). In this embodiment, a phosphorus ion implantation layer 13' is formed on the n-type Si substrate 12 side, and the bonding process is started without performing heat treatment to activate the impurity. The conditions for forming the ion implantation layer 13' are, for example, an acceleration voltage of 40k.
eV.

ドーズm2 X 1015/C112とする。この後は
先の実施例と同様である。基板接着後の1100℃程度
の熱処理工程でイオン注入層13′の不純物は活性化し
て、先の実施例と同様にn中型層13が形成され、また
接着界面15から所定深さのp型層14がn型Si基板
12側に形成される。
The dose is m2 x 1015/C112. The rest is the same as in the previous embodiment. The impurities in the ion-implanted layer 13' are activated in a heat treatment process at about 1100° C. after bonding the substrates, and an n-type medium layer 13 is formed as in the previous embodiment, and a p-type layer is formed at a predetermined depth from the adhesive interface 15. 14 is formed on the n-type Si substrate 12 side.

この実施例の方法において、p小型Si基板11は比抵
抗0.01〜0.05Ω・aの範囲とし、また基板一体
止後n型St基板12側に拡散形成されるp型層14の
厚みは3〜7μmの範囲になるように条件を設定するこ
とが好ましい。、それらの裏付はデータを次に説明する
In the method of this embodiment, the p-type small Si substrate 11 has a specific resistance in the range of 0.01 to 0.05 Ω·a, and the thickness of the p-type layer 14 which is diffused and formed on the n-type St substrate 12 side after the substrates are integrated. It is preferable to set the conditions so that the thickness is in the range of 3 to 7 μm. , their supporting data will be explained below.

第3図は、p型層14の厚みxjと、素子のコレクタ・
エミッタ間電圧VCEの関係を示す。使用した基板は、
p型St基板11が比抵抗0.0.15Ω” cmであ
り、nIC2Si基板12が比抵抗62.5Ω・cmで
ある。測定条件は、ゲート電圧Va=15V、コレクタ
電流IC−25Aである。xj<3μmでは導電変調か
認められず、また特性上有効となるvcや≦4Vを得る
ためにもxj≧3μmであることが必要であることが分
る。
FIG. 3 shows the thickness xj of the p-type layer 14 and the collector
The relationship between the emitter voltage VCE is shown. The board used is
The p-type St substrate 11 has a specific resistance of 0.0.15 Ωcm, and the nIC2Si substrate 12 has a specific resistance of 62.5 Ωcm.The measurement conditions are a gate voltage Va=15V and a collector current IC-25A. It can be seen that conductive modulation is not observed when xj<3 μm, and that xj≧3 μm is necessary in order to obtain vc and ≦4V, which are effective in terms of characteristics.

次にこの実施例により得られた素子に、高速化のために
電子線照射を行なった。V、:E≦4Vを満足する最大
照射量を1とし、電子線照射量を0.0.5.160.
11.5と変えた時、素子のスイッチング速度(降下時
間)trとVCEの関係を第4図に示す。また電子線照
射量とxjとの関係で好ましい素子特性が得られる範囲
を第5図に示す。第5図の斜線範囲の上限は、素子特性
上要求されるtr≦0.9μSQQを満たすための上限
であり、下限はこれ以下では導電変調が起こらないこと
を示す。これらの結果から、xjの上限は、7μm程度
であることか分る。
Next, the device obtained in this example was irradiated with an electron beam to increase the speed. V,: The maximum irradiation amount that satisfies E≦4V is 1, and the electron beam irradiation amount is 0.0.5.160.
11.5, the relationship between the switching speed (fall time) tr of the element and VCE is shown in FIG. Further, FIG. 5 shows the range in which preferable device characteristics can be obtained based on the relationship between the electron beam irradiation amount and xj. The upper limit of the shaded range in FIG. 5 is the upper limit for satisfying tr≦0.9 μSQQ required for device characteristics, and the lower limit indicates that conductive modulation does not occur below this. From these results, it can be seen that the upper limit of xj is approximately 7 μm.

第6図は、p小型Si基板11の比抵抗を種々異ならせ
た場合の得られた素子の耐圧をΔ−1定した結果である
。この結果から、比抵抗が0.01Ω・cm未満では極
端に耐圧が低下することが分る。
FIG. 6 shows the results of determining the withstand voltage of the element obtained by varying the specific resistance of the p-sized Si substrate 11 by Δ-1. This result shows that when the resistivity is less than 0.01 Ω·cm, the withstand voltage is extremely reduced.

これは、p小型Si基板11の比抵抗が余り小さいと、
p型層14の厚みが増大して、空乏層の伸びを抑制する
ためのn中型層13が実質的になくなってしまうためで
ある。また比抵抗が0.05Ω・cmより大きいと、p
型層14として必要な厚みを得ることが難しくなる。
This is because if the specific resistance of the p-sized Si substrate 11 is too small,
This is because the thickness of the p-type layer 14 increases, and the n-type medium layer 13 for suppressing the extension of the depletion layer is substantially eliminated. Also, if the specific resistance is greater than 0.05Ω・cm, p
It becomes difficult to obtain the necessary thickness for the mold layer 14.

上記各実施例においては、p型層14はp小型Si基板
11からの拡散により形成した。このp型層14のため
のボロン・イオン注入を予めn型5iJJ板12側に行
なっておくようにしてもよい。
In each of the above embodiments, the p-type layer 14 was formed by diffusion from the p-small Si substrate 11. Boron ion implantation for the p-type layer 14 may be performed in advance on the n-type 5iJJ plate 12 side.

本発明は上記各実施例において示した導電変調型MO3
FETに限られず、他の素子に適用することが可能であ
る。例えばGTOに適用した場合の構造例を第7図に示
す。簡単に製造工程を説明すれば、pms i基板31
とn−型Si基板32を上記実施例と同様にして直接接
着して一体化つ工−ハを形成する。この時必要なら接着
後に更に熱処理を加え、p十型基板31の不純物をn−
型基板32側に拡散させてp型拡散層33を形成する。
The present invention is based on the conductivity modulation type MO3 shown in each of the above embodiments.
The present invention is not limited to FETs, and can be applied to other elements. For example, a structural example when applied to a GTO is shown in FIG. To briefly explain the manufacturing process, pms i board 31
and n-type Si substrate 32 are directly bonded together in the same manner as in the above embodiment to form an integrated structure. At this time, if necessary, further heat treatment is applied after bonding to remove impurities from the p-type substrate 31.
A p-type diffusion layer 33 is formed by diffusing to the type substrate 32 side.

この後周知の工程でp型ベース層35.n型エミツタ層
36を形成し、カソード電極37.ゲート電極38およ
びアノード電極39を形成する。
After this, a p-type base layer 35. An n-type emitter layer 36 is formed, and a cathode electrode 37. A gate electrode 38 and an anode electrode 39 are formed.

この実施例の場合も、接着界面34上のp型拡散層33
の不純物総量を先の実施例と同様の範囲に設定すること
により、先の実施例と同様の効果が得られる。
In this embodiment as well, the p-type diffusion layer 33 on the adhesive interface 34
By setting the total amount of impurities in the same range as in the previous example, the same effects as in the previous example can be obtained.

なお、界面のライフタイムを低下させるために、金等の
ライフタイムキラーを熱拡散させ、これが接着界面に集
まる性質を利用することもできる。
In addition, in order to reduce the lifetime of the interface, it is also possible to thermally diffuse a lifetime killer such as gold and utilize the property that it gathers at the adhesive interface.

[発明の効果] 以上述べたように本発明によれば、基板の直接接着技術
を利用して素子ウェーハを形成する際に、接着界面のキ
ャリアライフタイムが低いことを利用して、接着界面か
ら高抵抗基板側に拡散形成される拡散層をエミッタとし
て動作させ4素子のその拡散層の不純物総量を所定範囲
に規定することによって、従来法では得られない優れた
素子特性を実現することができる。
[Effects of the Invention] As described above, according to the present invention, when forming an element wafer using direct bonding technology of substrates, the carrier lifetime of the adhesive interface is low, and By operating the diffusion layer formed on the high-resistance substrate side as an emitter and regulating the total amount of impurities in the diffusion layer of the four elements within a predetermined range, it is possible to achieve excellent device characteristics that cannot be obtained with conventional methods. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は本発明の一実施例による導電変
調型MOSFETの製造工程を示す図、第2図(a)〜
(c)は他の実施例による導電変調型MO3FETの製
造工程を示す図、第3図はその実施例により得られる素
子のp型層厚みとコレクタ・エミッタ間電圧の関係を示
す図、第4図は同じ(コレクタ・、エミッタ間電圧とス
イッチング速度の関係を示す図、第5図は同じく電子線
照射量とp型層厚みとの関係で好ましい素子特性が得ら
れる範囲を示す図、第6図は同じくp小型St基板の比
抵抗と得られる素子の耐圧の関係を示す図、第7図は他
の実施例によるGTOを示す図である。 11・・・p十型Si基板(第1の半導体基板)、12
・・・n−型Si基板(第2の半導体基板)、13・・
・n型拡散層、13′・・・n型不純物イオン注入層、
14・・・p型拡散層、15・・・接着界面、16・・
・ゲート絶縁膜、17・・・ゲート電極、18・・・p
型ベース層、19・・・n型エミツタ層、20・・・ソ
ース電極、21・・・ドレイン電極、31・・・p十型
Si基板、32・・・n−型Si基板、33・・・p型
拡散層、34・・・接着界面、35・・・、p型ベース
層、36・・・n型エミツタ層、37・・・カソード電
極、38・・・ゲート電極、39・・・アノード電極。 出願人代理人 弁理士 鈴江武彦 第1図 1] 第2図 XI [pm] 第3図 VCE [V] 屯J線照肘i(相ま↑づL) 第5図 九才氏↑厄(n−am)
FIGS. 1(a) to 1(c) are diagrams showing the manufacturing process of a conductivity modulation type MOSFET according to an embodiment of the present invention, and FIGS. 2(a) to 2(c)
(c) is a diagram showing the manufacturing process of a conductivity modulation type MO3FET according to another example, FIG. 3 is a diagram showing the relationship between the p-type layer thickness and the collector-emitter voltage of the device obtained by that example, The diagrams are the same (Figure 5 is a diagram showing the relationship between collector-emitter voltage and switching speed, Figure 5 is a diagram showing the range where favorable device characteristics can be obtained in the relationship between electron beam irradiation amount and p-type layer thickness, and Figure 6 is a diagram showing the relationship between collector-emitter voltage and switching speed. The figure also shows the relationship between the specific resistance of the p-sized St substrate and the withstand voltage of the resulting device, and Fig. 7 is a diagram showing the GTO according to another example. semiconductor substrate), 12
... n-type Si substrate (second semiconductor substrate), 13...
・N-type diffusion layer, 13'...n-type impurity ion implantation layer,
14...p-type diffusion layer, 15...adhesive interface, 16...
・Gate insulating film, 17...gate electrode, 18...p
Type base layer, 19... N-type emitter layer, 20... Source electrode, 21... Drain electrode, 31... P-type Si substrate, 32... N- type Si substrate, 33...・p-type diffusion layer, 34... adhesive interface, 35..., p-type base layer, 36... n-type emitter layer, 37... cathode electrode, 38... gate electrode, 39... anode electrode. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 1] Figure 2 -am)

Claims (1)

【特許請求の範囲】 (1)表面が鏡面研磨された第1導電型で高不純物濃度
の第1の半導体基板と、表面が鏡面研磨された第2導電
型で高抵抗の第2の半導体基板とを、清浄な雰囲気下で
異物の介在なしに研磨面同士を接着させ熱処理して一体
化する工程を有する半導体素子の製造方法において、前
記第1の半導体基板から接着界面を通して前記第2の半
導体基板に不純物を拡散させて、単位面積当りの電気的
に活性な不純物総量が1×10^1^3/cm^2〜2
×10^1^5/cm^2である第1導電型拡散層を形
成して、第2の半導体基板側にpn接合を形成すること
を特徴とする半導体素子の製造方法 (2)前記第1導電型拡散層は接着界面からの厚みが6
μm以下である特許請求の範囲第1項記載の半導体素子
の製造方法。 (3)前記第2の半導体基板の第1の半導体基板と接着
すべき側に予め第2導電型拡散層を形成しておき、前記
第1の半導体基板からの不純物拡散による第1導電型拡
散層はこの第2導電型拡散層の一部が残るように形成さ
れる特許請求の範囲第1項記載の半導体素子の製造方法
。 (4)前記第2の半導体基板側に残される第2導電型拡
散層の単位面積当りの電気的に活性な不純物総量は5×
10^1^3〜1×10^1^5/cm^2である特許
請求の範囲第3項記載の半導体素子の製造方法。 (5)前記第1、第2の半導体基板は互いに面指数が異
なるか、またはタイムキラーの熱拡散処理を施したもの
である特許請求の範囲第1項記載の半導体素子の製造方
法。 (6)前記第2の半導体基板の第1の半導体基板と接着
すべき側に予め第2導電型不純物のイオン注入層を形成
しておき、熱処理を加えることなく両基板を接着した後
熱処理し、前記第1の半導体基板からの不純物拡散によ
る第1導電型拡散層は前記第2導電型不純物が活性化し
て得られる拡散層の一部が残るように形成される特許請
求の範囲第1項記載の半導体素子の製造方法。 (7)前記第1の半導体基板は比抵抗が 0.01〜0.05Ω・cmであり、接着した後に第2
の半導体基板側に形成される第1導電型拡散層の接着界
面からの厚みが3〜7μmである特許請求の範囲第6項
記載の半導体素子の製造方法。
[Scope of Claims] (1) A first semiconductor substrate of a first conductivity type and having a high impurity concentration and having a mirror-polished surface; and a second semiconductor substrate of a second conductivity type and having a high resistance and having a mirror-polished surface. In the method for manufacturing a semiconductor device, the method includes a step of bonding polished surfaces together in a clean atmosphere without intervening foreign substances, and heat-treating and integrating the second semiconductor from the first semiconductor substrate through the adhesive interface. By diffusing impurities into the substrate, the total amount of electrically active impurities per unit area is 1×10^1^3/cm^2~2
A method for manufacturing a semiconductor device, characterized in that a first conductivity type diffusion layer of x10^1^5/cm^2 is formed and a pn junction is formed on the second semiconductor substrate side (2) The thickness of the 1-conductivity type diffusion layer from the adhesive interface is 6
The method for manufacturing a semiconductor device according to claim 1, wherein the semiconductor device has a diameter of μm or less. (3) A second conductivity type diffusion layer is formed in advance on the side of the second semiconductor substrate to be bonded to the first semiconductor substrate, and the first conductivity type is diffused by impurity diffusion from the first semiconductor substrate. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the layer is formed so that a portion of the second conductivity type diffusion layer remains. (4) The total amount of electrically active impurities per unit area of the second conductivity type diffusion layer left on the second semiconductor substrate side is 5×
10^1^3 to 1 x 10^1^5/cm^2. The method for manufacturing a semiconductor device according to claim 3. (5) The method of manufacturing a semiconductor device according to claim 1, wherein the first and second semiconductor substrates have different surface indices or are subjected to a time killer thermal diffusion treatment. (6) An ion implantation layer of a second conductivity type impurity is formed in advance on the side of the second semiconductor substrate to be bonded to the first semiconductor substrate, and after bonding both substrates without heat treatment, heat treatment is performed. , the first conductivity type diffusion layer formed by impurity diffusion from the first semiconductor substrate is formed such that a part of the diffusion layer obtained by activating the second conductivity type impurity remains. A method for manufacturing the semiconductor device described above. (7) The first semiconductor substrate has a specific resistance of 0.01 to 0.05 Ωcm, and after bonding, the second semiconductor substrate
7. The method of manufacturing a semiconductor device according to claim 6, wherein the first conductivity type diffusion layer formed on the semiconductor substrate side has a thickness of 3 to 7 μm from the adhesive interface.
JP62330063A 1987-02-26 1987-12-28 Method for manufacturing semiconductor device Expired - Fee Related JP2579979B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62-43562 1987-02-26
JP4356287 1987-02-26

Publications (3)

Publication Number Publication Date
JPH01768A true JPH01768A (en) 1989-01-05
JPS64768A JPS64768A (en) 1989-01-05
JP2579979B2 JP2579979B2 (en) 1997-02-12

Family

ID=12667184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62330063A Expired - Fee Related JP2579979B2 (en) 1987-02-26 1987-12-28 Method for manufacturing semiconductor device

Country Status (2)

Country Link
US (2) US4935386A (en)
JP (1) JP2579979B2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191071A (en) * 1985-02-20 1986-08-25 Toshiba Corp Conductivity modulation type semiconductor device and manufacture thereof
JP2752371B2 (en) * 1988-05-16 1998-05-18 株式会社日本自動車部品総合研究所 Method for manufacturing semiconductor device
US5237183A (en) * 1989-12-14 1993-08-17 Motorola, Inc. High reverse voltage IGT
US5264378A (en) * 1990-04-20 1993-11-23 Fuji Electric Co., Ltd. Method for making a conductivity modulation MOSFET
NL9000972A (en) * 1990-04-24 1991-11-18 Philips Nv METHOD FOR MANUFACTURING A SILICON BODY WITH AN N-TYPE TOP COATING AND A HIGH DOPPED N-TYPE TOP COATING THEREIN.
US5381026A (en) * 1990-09-17 1995-01-10 Kabushiki Kaisha Toshiba Insulated-gate thyristor
US5753530A (en) * 1992-04-21 1998-05-19 Seiko Instruments, Inc. Impurity doping method with diffusion source of boron-silicide film
US6162665A (en) * 1993-10-15 2000-12-19 Ixys Corporation High voltage transistors and thyristors
JPH07263721A (en) * 1994-03-25 1995-10-13 Nippondenso Co Ltd Semiconductor device and manufacture thereof
JPH09172167A (en) * 1995-12-19 1997-06-30 Toshiba Corp Semiconductor device
WO1997047044A1 (en) * 1996-06-06 1997-12-11 The Board Of Trustees Of The University Of Illinois Insulated gate bipolar transistor with reduced losses
US6248651B1 (en) * 1998-06-24 2001-06-19 General Semiconductor, Inc. Low cost method of fabricating transient voltage suppressor semiconductor devices or the like
DE19909105A1 (en) * 1999-03-02 2000-09-14 Siemens Ag Symmetrical thyristor with reduced thickness and manufacturing method therefor
US6362075B1 (en) * 1999-06-30 2002-03-26 Harris Corporation Method for making a diffused back-side layer on a bonded-wafer with a thick bond oxide
US6984571B1 (en) 1999-10-01 2006-01-10 Ziptronix, Inc. Three dimensional device integration method and integrated device
US6902987B1 (en) 2000-02-16 2005-06-07 Ziptronix, Inc. Method for low temperature bonding and bonded structure
DE10048437A1 (en) * 2000-09-29 2002-04-18 Eupec Gmbh & Co Kg Method for producing a body from semiconductor material with a reduced mean free path and body produced with the method
US6512300B2 (en) * 2001-01-10 2003-01-28 Raytheon Company Water level interconnection
JP3906076B2 (en) * 2001-01-31 2007-04-18 株式会社東芝 Semiconductor device
US7109092B2 (en) 2003-05-19 2006-09-19 Ziptronix, Inc. Method of room temperature covalent bonding
WO2005012686A1 (en) * 2003-07-29 2005-02-10 Shell Internationale Research Maatschappij B.V. System for sealing a space in a wellbore
JP4834309B2 (en) * 2005-01-25 2011-12-14 株式会社豊田中央研究所 Manufacturing method of semiconductor device
JP5636751B2 (en) * 2010-06-14 2014-12-10 富士電機株式会社 Reverse blocking insulated gate bipolar transistor and manufacturing method thereof
US9312133B2 (en) 2011-08-25 2016-04-12 Aeroflex Colorado Springs Inc. Wafer structure for electronic integrated circuit manufacturing
US9378955B2 (en) 2011-08-25 2016-06-28 Aeroflex Colorado Springs Inc. Wafer structure for electronic integrated circuit manufacturing
US9378956B2 (en) 2011-08-25 2016-06-28 Aeroflex Colorado Springs Inc. Wafer structure for electronic integrated circuit manufacturing
US20130049178A1 (en) * 2011-08-25 2013-02-28 Aeroflex Colorado Springs Inc. Wafer structure for electronic integrated circuit manufacturing
US20130049175A1 (en) * 2011-08-25 2013-02-28 Aeroflex Colorado Springs Inc. Wafer structure for electronic integrated circuit manufacturing
US9396947B2 (en) 2011-08-25 2016-07-19 Aeroflex Colorado Springs Inc. Wafer structure for electronic integrated circuit manufacturing
EP2748845A4 (en) * 2011-08-25 2015-07-08 Aeroflex Colorado Springs Inc Wafer structure for electronic integrated circuit manufacturing

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855611A (en) * 1973-04-11 1974-12-17 Rca Corp Thyristor devices
US4278476A (en) * 1979-12-05 1981-07-14 Westinghouse Electric Corp. Method of making ion implanted reverse-conducting thyristor
US4364073A (en) * 1980-03-25 1982-12-14 Rca Corporation Power MOSFET with an anode region
US4782379A (en) * 1981-11-23 1988-11-01 General Electric Company Semiconductor device having rapid removal of majority carriers from an active base region thereof at device turn-off and method of fabricating this device
JPS6051700A (en) * 1983-08-31 1985-03-23 Toshiba Corp Bonding method of silicon crystalline body
US4587713A (en) * 1984-02-22 1986-05-13 Rca Corporation Method for making vertical MOSFET with reduced bipolar effects
JPS60196974A (en) * 1984-03-19 1985-10-05 Toshiba Corp Conduction modulation type mosfet
EP0161740B1 (en) * 1984-05-09 1991-06-12 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor substrate
JPH0770474B2 (en) * 1985-02-08 1995-07-31 株式会社東芝 Method for manufacturing compound semiconductor device
JPH0770476B2 (en) * 1985-02-08 1995-07-31 株式会社東芝 Method for manufacturing semiconductor device
EP0219995B1 (en) * 1985-09-30 1994-03-02 Kabushiki Kaisha Toshiba Gate turn-off thyristor with independent turn-on/off controlling transistors
JPS6276557A (en) * 1985-09-30 1987-04-08 Toshiba Corp Insulated gate type self-turn-off element
US4766482A (en) * 1986-12-09 1988-08-23 General Electric Company Semiconductor device and method of making the same

Similar Documents

Publication Publication Date Title
JPH01768A (en) Method for manufacturing semiconductor devices
JP2579979B2 (en) Method for manufacturing semiconductor device
JP3764343B2 (en) Manufacturing method of semiconductor device
US5023696A (en) Semiconductor device having composite substrate formed by fixing two semiconductor substrates in close contact with each other
JPH0770476B2 (en) Method for manufacturing semiconductor device
US5541122A (en) Method of fabricating an insulated-gate bipolar transistor
US4370180A (en) Method for manufacturing power switching devices
JPH027569A (en) Field effect controllable bipolar transistor
JP4088011B2 (en) Semiconductor device and manufacturing method thereof
EP0190934B1 (en) Method of manufacturing a thyristor
JPH023266A (en) Bipolar semiconductor device having conductive recombination layer
JP3638873B2 (en) Power semiconductor device with an emitter region having a stop zone
EP0406916A2 (en) Conductivity modulation type semiconductor device and method for manufacturing the same
JPH0578949B2 (en)
JP2579928B2 (en) Semiconductor device and method of manufacturing the same
JP4843923B2 (en) High voltage semiconductor device and manufacturing method thereof
US5858855A (en) Semiconductor substrate, process for production thereof, and semiconductor device
JPS61208268A (en) Conductance modulation type semiconductor device
JPH09153466A (en) Method of decreasing accumulation of carrier of semiconductor device
JPH0473615B2 (en)
JPH0982955A (en) Manufacture of semiconductor device
JPH07321304A (en) Insulated gate bipolar transistor and its manufacture
JP4629809B2 (en) Method of manufacturing a semiconductor device having a SiC semiconductor layer
JPS62290179A (en) Gate turn-off thyristor
JPH11307467A (en) Manufacture of silicon carbide semiconductor element