JPS62290179A - Gate turn-off thyristor - Google Patents

Gate turn-off thyristor

Info

Publication number
JPS62290179A
JPS62290179A JP13320386A JP13320386A JPS62290179A JP S62290179 A JPS62290179 A JP S62290179A JP 13320386 A JP13320386 A JP 13320386A JP 13320386 A JP13320386 A JP 13320386A JP S62290179 A JPS62290179 A JP S62290179A
Authority
JP
Japan
Prior art keywords
conductivity type
base layer
layer
conductivity
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13320386A
Other languages
Japanese (ja)
Inventor
Masaki Atsuta
昌己 熱田
Tsuneo Ogura
常雄 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13320386A priority Critical patent/JPS62290179A/en
Publication of JPS62290179A publication Critical patent/JPS62290179A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding

Abstract

PURPOSE:To contrive the improvement of a turn-off dielectric strength while keeping a low on-voltage, by using a wafer having a bonding boundary in a predetermined position in a D-base layer and utllizing a direct bonding technique. CONSTITUTION:By using a wafer made of two semiconductor substrates bonded directly, a direct bonding boundary 16 exists in first conductivity type base layers 13 and 15 and a distance between this boundary and a second conductivity emitter layer 17 is made 30mum or shorter. In such structure, a maximum impurity concentration part of the first conductivity type base layers 13 and 13 can be arranged in the position distant from a bonding plane between the second conductivity emitter layer 17 and the first conductivity base layer 15. As a result, although a lateral-direction resistance of the first conductivity base layers 13 and 15 which is to be a passage of a gate current is virtually reduced, an impurity concentration of a bonding part between the first conductivity type base layer 15 and the second conductivity type emitter layer 17 is low and a breakdown voltage in the bonding part is high. Also, an emitter injection efficiency can be made high and an on-voltage is low and a turn-off breakdown strength is high.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的コ (産業上の利用分野) 本発明は、二枚の半導体基板を直接接着技術により接着
して得られたウェーハを用いて構成されるゲートターン
オフサイリスク(以下、GTO)に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Purpose of the Invention (Industrial Field of Application) The present invention uses a wafer obtained by bonding two semiconductor substrates by direct bonding technology. This invention relates to a gate turn-off switch (hereinafter referred to as GTO).

(従来の技術) 一般にGTOは、ゲート雪掻に正または負のバイアスを
印加することによりターンオン及びターンオフを可能に
するため、整流回路が不要であり、またスイッチング時
間が短いので高周波で動作できる、という利点を有する
。−万GTOは、ターンオフ時の電力損失が一定の値に
達すると熱破壊を起こすため、流し得るアノード電流に
限界があり、その値は高々200OA程度であって通常
のサイリスタと比べて電流容量を大きくすることができ
ない、という欠点がある。その原因は、GTOをターン
オフする時に局所的に電流集中が生じることにある。こ
の様な現象を緩和するために通常、マルチエミッタ構造
、即ちカソード領域を分割して複数の小さいGTO(こ
れを、GTOエレメントと称する)を並列接続した構造
とづることが行われる。これにより電流集中箇所が分散
されるため、ある程度電流容量を増大(ることができる
(Prior Art) In general, GTOs enable turn-on and turn-off by applying a positive or negative bias to the gate electrode, so a rectifier circuit is not required, and the switching time is short, so GTOs can operate at high frequencies. It has the advantage of - 10,000 GTOs cause thermal breakdown when the power loss at turn-off reaches a certain value, so there is a limit to the anode current that can flow, and that value is about 200 OA at most, which has a lower current capacity than a normal thyristor. The drawback is that it cannot be made larger. The reason for this is that local current concentration occurs when the GTO is turned off. In order to alleviate this phenomenon, a multi-emitter structure is usually used, that is, a structure in which the cathode region is divided and a plurality of small GTOs (referred to as GTO elements) are connected in parallel. As a result, the current concentration points are dispersed, so that the current capacity can be increased to some extent.

しかし以上のような改善を行なっても、各GTOエレメ
ントにおいて上記した電流集中が生じるので、本質的な
問題解決にならない。ターンオフ時に各GTOエレメン
ト間のアノード電流のバランスが崩れ、ターンオフ過程
の最終時に一個ないし数個のGTOエレメントに電流集
中が起り、これらが破壊されるのである。この原因の一
つは、現在のプロセス技術では直径40m以上のウェー
ハ全面に均一な不純物拡散を施し、かつ一様なライフタ
イムを実現することが困難であるためである。第2の原
因は、各GTOエレメントのターンオフ破壊耐量が十分
でないためである。
However, even if the above-mentioned improvements are made, the above-mentioned current concentration occurs in each GTO element, so the essential problem cannot be solved. During turn-off, the balance of anode current between each GTO element is disrupted, and at the end of the turn-off process, current concentration occurs in one or several GTO elements, destroying them. One of the reasons for this is that with current process technology, it is difficult to uniformly diffuse impurities over the entire surface of a wafer with a diameter of 40 m or more and to achieve a uniform lifetime. The second reason is that the turn-off breakdown resistance of each GTO element is insufficient.

この問題を解決するため、GTOのpベース製のシート
抵抗を小さくし、nエミッタ層とnベース層の間の接合
耐圧を大きくすることが提案されている(特開昭53−
110386号公報)。またnベース層を低抵抗の均一
不純物濃度層とするために、これをエピタキシャル法で
形成することも提案されている(特開昭52−1026
87号公報)。
In order to solve this problem, it has been proposed to reduce the sheet resistance of the p-based GTO and increase the junction breakdown voltage between the n-emitter layer and the n-base layer (Japanese Patent Laid-Open No. 1983-1973-1).
110386). It has also been proposed to form the n-base layer by an epitaxial method in order to make it a low-resistance, uniform impurity concentration layer (Japanese Unexamined Patent Publication No. 52-1026
Publication No. 87).

ところで、nベース層のシート抵抗を十分小さくするた
めには、その幅を30μm程度以上にする必要がある。
By the way, in order to make the sheet resistance of the n-base layer sufficiently small, its width needs to be about 30 μm or more.

また、nベース層内に拡散形成するnエミッタ層の幅は
、注入効率を十分なものとするためには20μm程度以
上を必要とする。そうすると、nベース層をエピタキシ
ャル成長法で形成するためにはエピタキシャル成長層と
して50μm以上の厚さを必要とすることになる。とこ
ろが、エピタキシャル成長は1300℃程度の高温で行
なうため、この工程で基板のnベース層に欠陥が形成さ
れ、これがライフタイムの低下をもたらし、GTOのオ
ン電圧上昇をもたらす。また40μm以上のエピタキシ
ャル成長層を形成すると、成長層内にも多数の欠陥が発
生するため、nベース層のライフタイムも低下し、これ
もGTOのオン電圧上昇の原因となる。
Further, the width of the n emitter layer formed by diffusion in the n base layer needs to be about 20 μm or more in order to obtain sufficient injection efficiency. In this case, in order to form the n-base layer by epitaxial growth, the epitaxial growth layer needs to have a thickness of 50 μm or more. However, since epitaxial growth is performed at a high temperature of about 1300° C., defects are formed in the n-base layer of the substrate during this step, which leads to a reduction in lifetime and an increase in the on-state voltage of the GTO. Furthermore, when an epitaxially grown layer of 40 μm or more is formed, many defects are generated within the grown layer, which also reduces the lifetime of the n-base layer, which also causes an increase in the on-state voltage of the GTO.

(発明が解決しようとする問題点) 以上のように従来のGTOでは、エピタキシャル法を利
用してターンオフ破壊耐量を高めようとすると、オン電
圧が上昇づるという問題があった。
(Problems to be Solved by the Invention) As described above, in the conventional GTO, when an attempt is made to increase the turn-off breakdown strength using the epitaxial method, there is a problem in that the on-voltage increases.

本発明はこの様な゛問題を解決し、ターンオフ破11m
ff1が高く、しかもオン電圧が低いGTOを提供する
ことを目的とする。
The present invention solves these problems and
It is an object of the present invention to provide a GTO with high ff1 and low on-voltage.

[発明の構成コ (問題点を解決するための手段) 本発明にがかるGTOは、二枚の半導体基板を直接接着
して得られたウェーハを用いて構成され、第1導電型エ
ミッタ層、第2導電型ベース層。
[Configuration of the Invention (Means for Solving Problems) The GTO according to the present invention is constructed using a wafer obtained by directly bonding two semiconductor substrates, and includes a first conductivity type emitter layer, a first conductivity type emitter layer, and a first conductivity type emitter layer. 2 conductivity type base layer.

第1導電型ベース層、及び第1導電型ベース層内に複数
に分割されて形成された第2Q電型エミッタ層を有する
ものであって、前記第1導電型ベース層内に直接接着界
面を有し、かつこの界面と前記第2導電型エミッタ層間
の距離が30μm以下であることを特徴とする。
It has a first conductivity type base layer and a second Q conductivity type emitter layer divided into a plurality of parts in the first conductivity type base layer, and has a direct adhesive interface in the first conductivity type base layer. and the distance between this interface and the second conductivity type emitter layer is 30 μm or less.

(作用) この様なGTO構造においては、第2導電型エミッタ層
と第1導電型ベース層との接合面から離れた位置に第1
導電型ベース客の不純物最大濃度部分を設けることがで
きる。直接接着界面を最大不純物濃度部分とすることが
容易にできるからである。この結果、ゲート電流の通路
になる第1導電型ベース層の横方向抵抗が実質的に低減
されているにも拘らず、第1導′心型ベース層と第2導
電型エミッタ層間の接合部の不純物濃度は低く、この接
合部での破壊電圧を高いものとし、かつエミッタ注入効
率を高いものとすることができる。
(Function) In such a GTO structure, the first conductivity type emitter layer is located away from the junction surface between the second conductivity type emitter layer and the first conductivity type base layer.
A portion of maximum impurity concentration of the conductivity type base layer can be provided. This is because it is possible to easily make the direct bonding interface the maximum impurity concentration portion. As a result, even though the lateral resistance of the first conductivity type base layer through which the gate current passes is substantially reduced, the junction between the first conductivity type base layer and the second conductivity type emitter layer The impurity concentration of is low, the breakdown voltage at this junction can be made high, and the emitter injection efficiency can be made high.

従ってこの構造により、オン電圧が低く、かつターンオ
フ破壊耐量の高いGTOが実現される。
Therefore, with this structure, a GTO with low on-voltage and high turn-off breakdown resistance is realized.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は一実施例のGTOを示す断面図である。この構
造を、第2図(a)〜(C)に示す工程断面図を参照し
ながら工程順に説明する。なおこの実施例では、第1導
電型としてn型、第2導電型としてn型を用いている。
FIG. 1 is a sectional view showing a GTO according to an embodiment. This structure will be explained in the order of steps with reference to step-by-step cross-sectional views shown in FIGS. 2(a) to 2(C). In this embodiment, n type is used as the first conductivity type, and n type is used as the second conductivity type.

先ず第2図(a>に示すように二枚の高抵抗のn−型S
i基板11.14を用意づる。これらの基板の互いに接
着すべき面は表面粗さ500人以下に鏡面研磨されてい
る。一方のn−型S1基板11はnベース層として用い
られるもので、その接着すべき面には、ボロンまたはガ
リウムなどのp型不純物を拡散してnベース層の一部と
なる厚さ10〜100μmの第1のnベース層13が形
成されている。また接着すべき面と反対側の面には、厚
さ30〜150μmのnエミッタ層12が拡散形成され
ている。他方のn−型3i基板14の接着すべき面には
、崩ざ10〜100μmの第2のnベース層15が拡散
形成されている。これら二枚の基板を、その表面状態に
よってはH2O2+H2SO4→ HF  → 稀HF
なる前処理工程で脱脂及びスティンフィルム除去を行な
う。次に各基板を清浄な水で数分程度水洗し、室温でス
ピンナ乾燥する。この工程は基板の接着すべき面に吸着
していると思われる水分はそのまま残し、過剰な水分を
除去するものである。
First, as shown in Figure 2 (a), two high-resistance n-type S
Prepare i-boards 11 and 14. The surfaces of these substrates to be bonded to each other are mirror polished to a surface roughness of 500 or less. One of the n-type S1 substrates 11 is used as an n-base layer, and a p-type impurity such as boron or gallium is diffused into the surface to be bonded to a thickness of 10 to 10 cm to form a part of the n-base layer. A first n base layer 13 of 100 μm is formed. Further, on the surface opposite to the surface to be bonded, an n emitter layer 12 having a thickness of 30 to 150 μm is formed by diffusion. On the surface of the other n-type 3i substrate 14 to be bonded, a second n base layer 15 with a thickness of 10 to 100 μm is diffused and formed. Depending on the surface condition of these two substrates, H2O2 + H2SO4 → HF → rare HF
Degreasing and stain film removal are performed in the pretreatment process. Next, each substrate is washed with clean water for several minutes and dried on a spinner at room temperature. In this step, excess moisture is removed while leaving any moisture that seems to be adsorbed on the surface of the substrate to be bonded.

従って吸着水分の殆どが揮散する100℃以上の加熱乾
燥は避ける。
Therefore, avoid heating and drying at temperatures above 100°C, where most of the adsorbed moisture will evaporate.

この様な処理を経た二枚の基板を、例えばクラス1以下
の清浄な雰囲気下に設置し、それぞれの鏡面研磨面に異
物が介在しない状態で第2図(b)に示すように研摩面
同士を接触させる。そして密着した基板を200℃以上
、好ましくは1000〜1200℃で熱処理して直接接
着した基板を得る。16が直接接着界面である。
Two substrates that have undergone such treatment are placed in a clean atmosphere of class 1 or lower, for example, and the polished surfaces are aligned with each other as shown in Figure 2 (b), with no foreign matter present on each mirror-polished surface. contact. Then, the adhered substrates are heat-treated at 200° C. or higher, preferably 1000 to 1200° C., to obtain directly bonded substrates. 16 is a direct adhesive interface.

なお、n−型Si基板11の厚さは、高抵抗nベース層
の厚さにより決まるので、例えば耐圧4.5KV素子で
は800μm程度とする。またn−型3i基板14の厚
さは、接着作業の容易さを考慮して300μm程度以上
とする。
Note that the thickness of the n-type Si substrate 11 is determined by the thickness of the high-resistance n base layer, and is, for example, about 800 μm for a 4.5 KV breakdown voltage device. Further, the thickness of the n-type 3i substrate 14 is set to be approximately 300 μm or more in consideration of ease of bonding work.

この様にして形成された接着基板のn−型3i基板14
側を研磨して、接着界面16上の厚みを50μm程度に
設定し、その後第2図(C)に示すように第2のnベー
ス層15側にリンなどを拡散して20μm程度以上のn
エミッタ層17を形成する。これにより、実質的な第2
のnベース層15の幅W(即ち接着界面16からnエミ
ッタ層17の接合面までの距離)が30μm以下である
、pnpnウェー八が得へれる。
The n-type 3i substrate 14 of the adhesive substrate formed in this way
The thickness on the adhesive interface 16 is set to about 50 μm by polishing the side, and then, as shown in FIG.
An emitter layer 17 is formed. As a result, the actual second
A pnpn wafer is obtained in which the width W of the n base layer 15 (that is, the distance from the adhesive interface 16 to the bonding surface of the n emitter layer 17) is 30 μm or less.

この後、公知の方法でnエミッタ層17をエツチングし
て複数個に分割し、第1図に示すようにカソード電極1
8.ゲート電極19.アノード電極20及び保護膜21
等を形成して、GTOが完成する。
Thereafter, the n-emitter layer 17 is etched and divided into a plurality of layers by a known method, and the cathode electrode 17 is divided into a plurality of layers as shown in FIG.
8. Gate electrode 19. Anode electrode 20 and protective film 21
etc., and the GTO is completed.

第3図はこの実施例によるGTOの不純物濃度分布を示
す。図から明らかなようにnベース層は、第1のpベー
ス@13と第2のnベース層15の間即ち接着界面16
近傍に不純物最大濃度領域を有する。そしてこの接着界
面16からnエミッタ層17側にいくにつれてp型不純
物濃度は低下し、接着界面16からW−30um以下の
距離にnエミッタ層17が形成されている。
FIG. 3 shows the impurity concentration distribution of GTO according to this example. As is clear from the figure, the n-base layer is formed between the first p-base@13 and the second n-base layer 15, that is, at the adhesive interface 16.
There is a region of maximum impurity concentration nearby. The p-type impurity concentration decreases from the adhesive interface 16 toward the n emitter layer 17, and the n emitter layer 17 is formed at a distance of W-30 um or less from the adhesive interface 16.

この実施例では、nベース層のシート抵抗ρ8PBとし
て5oΩ/口以下が冑られ、十分に高いターンオフ破壊
耐量が得られる。しかもnベース層のうらnエミッタ層
近傍の部分は十分不純物が低く、nエミッタ層からの注
入効率は高い。
In this embodiment, the sheet resistance ρ8PB of the n-base layer is less than 5 oΩ/unit, and a sufficiently high turn-off breakdown strength can be obtained. Furthermore, the impurity content in the portion behind the n-base layer and near the n-emitter layer is sufficiently low, and the injection efficiency from the n-emitter layer is high.

このことと、Wが30μm以下であることと相まって、
このGTOでは十分に大きいαnpnが得られ、低いオ
ン電圧が得られる。なお、αnpnとオン電圧の間には
、αII p 11が大きくなる程オン電圧が低くなる
関係があることは、既に知られているコトテある(例え
ば、F、 E、 Gentry 。
This, combined with the fact that W is 30 μm or less,
With this GTO, a sufficiently large αnpn can be obtained and a low on-voltage can be obtained. It is already known that there is a relationship between αnpn and on-voltage, in which the larger αII p 11 is, the lower the on-voltage becomes (for example, F, E, Gentry.

“Sem1conductor  Controlle
dRectifiers ” 、 Prentice 
−Hall 、  r N C。
“Sem1conductor Controller
dRectifiers”, Prentice
-Hall, rNC.

[:nglewood  Cl!ffs 、 New 
 Jersey 、 1964゜pp、103−108
 )。
[:nglewood Cl! ffs, New
Jersey, 1964゜pp, 103-108
).

第4図は、上記実施例において、最終的な第2のnベー
ス層15の幅Wを変え、そのシート抵抗をパラメータと
して作ったGTOでのαnpnを測定した結果を示す。
FIG. 4 shows the results of measuring αnpn in a GTO made by changing the final width W of the second n base layer 15 and using its sheet resistance as a parameter in the above embodiment.

破線は、nベース層をウェー八表面より拡散形成した従
来法による場合のデータである。図から明らかなように
、Wが30μmを超えるとαnpnは急激に低くなる。
The broken line represents data obtained by the conventional method in which the n-base layer was formed by diffusion from the surface of the wafer. As is clear from the figure, when W exceeds 30 μm, αnpn decreases rapidly.

これは、nエミッタ層とpベース層間の接合(J3 )
近傍のp型不純物濃度が接着界面でのp型不純物濶度よ
り低いために、〜Vが余り大きいとnエミッタ層から注
入された電子に対するドリフト電界が小さくなり、電子
の輸送効率が低下するためである。Wが30μm以下で
あれば、この様なαnpnの低下はなく、従って十分低
いオン電圧が得られる。
This is the junction (J3) between the n emitter layer and the p base layer
Because the nearby p-type impurity concentration is lower than the p-type impurity concentration at the adhesive interface, if ~V is too large, the drift electric field for electrons injected from the n-emitter layer becomes small, and the electron transport efficiency decreases. It is. If W is 30 μm or less, there is no such decrease in αnpn, and therefore a sufficiently low on-voltage can be obtained.

なお本発明は、上記実施例に限られるものではなくその
趣旨を逸脱しない範囲で種々変形して実施することがで
きる。
Note that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without departing from the spirit thereof.

[発明の効果コ 以上述べたように本発明によれば、pベース層内の所定
位置に接着界面を有する直接接着技術を利用したウェー
ハを用いることにより、低いオン電圧を保ちながらター
ンオフ破壊耐量の向上を図ったGTOを1りることがで
きる。
[Effects of the Invention] As described above, according to the present invention, by using a wafer using direct bonding technology that has an adhesive interface at a predetermined position in the p base layer, turn-off breakdown resistance can be increased while maintaining a low on-voltage. You can get rid of the improved GTO by 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のGTOを示す断面図、第2
図(a)〜(C)はそのGTOの製造工程断面図、第3
図は同じくそのGTOの不純物濃度分布を示す図、第4
図は本発明の詳細な説明するためのpベース層幅とαn
pnの関係を示す図である。 11−n−型3i基板〈nベース1il)、12−・・
nエミッタ層、13・・・第1のpベース層、14・・
・n−型S;基板、15・・・第2のpベース層、16
・・・接着界面、17:・・nエミッタ層、18・・・
カソード電極、19・・・ゲート電極、20・・・アノ
ード電を引、21・・・保護膜。 出願人代理人 弁理士 鈴江武彦 第1図 第3 図 ′襲 2 闇
Fig. 1 is a sectional view showing a GTO according to an embodiment of the present invention;
Figures (a) to (C) are cross-sectional views of the GTO manufacturing process.
The figure also shows the impurity concentration distribution of the GTO.
The figure shows the p base layer width and αn for detailed explanation of the present invention.
It is a figure which shows the relationship of pn. 11-n-type 3i substrate (n-base 1il), 12-...
n emitter layer, 13...first p base layer, 14...
・n-type S; substrate, 15... second p base layer, 16
...adhesive interface, 17:...n emitter layer, 18...
Cathode electrode, 19... Gate electrode, 20... Anode electrode, 21... Protective film. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 3 Figure 'Attack 2 Darkness

Claims (1)

【特許請求の範囲】[Claims] 二枚の半導体基板を直接接着技術により接着して得られ
たウェーハを用いて構成され、第1導電型エミッタ層、
第2導電型ベース層、第1導電型ベース層、及び第1導
電型ベース層内に複数個に分割されて形成された第2導
電型エミッタ層を有するゲートターンオフサイリスタに
おいて、前記第1導電型ベース層内に直接接着界面を有
し、かつこの接着界面と前記第2導電型エミッタ層間の
距離が30μm以下であることを特徴とするゲートター
ンオフサイリスタ。
It is constructed using a wafer obtained by bonding two semiconductor substrates using a direct bonding technique, and includes a first conductivity type emitter layer,
In the gate turn-off thyristor, the gate turn-off thyristor includes a second conductivity type base layer, a first conductivity type base layer, and a second conductivity type emitter layer divided into a plurality of parts in the first conductivity type base layer. A gate turn-off thyristor having a direct adhesive interface in the base layer, and a distance between the adhesive interface and the second conductivity type emitter layer is 30 μm or less.
JP13320386A 1986-06-09 1986-06-09 Gate turn-off thyristor Pending JPS62290179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13320386A JPS62290179A (en) 1986-06-09 1986-06-09 Gate turn-off thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13320386A JPS62290179A (en) 1986-06-09 1986-06-09 Gate turn-off thyristor

Publications (1)

Publication Number Publication Date
JPS62290179A true JPS62290179A (en) 1987-12-17

Family

ID=15099140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13320386A Pending JPS62290179A (en) 1986-06-09 1986-06-09 Gate turn-off thyristor

Country Status (1)

Country Link
JP (1) JPS62290179A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313092A (en) * 1989-05-12 1994-05-17 Nippon Soken, Inc. Semiconductor power device having walls of an inverted mesa shape to improve power handling capability
US5550392A (en) * 1994-01-14 1996-08-27 Westinghouse Brake And Signal Holdings Limited Semiconductor switching devices
EP1037286A1 (en) * 1999-03-02 2000-09-20 Infineon Technologies AG Symmetrical thyristor with reduced thickness and manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313092A (en) * 1989-05-12 1994-05-17 Nippon Soken, Inc. Semiconductor power device having walls of an inverted mesa shape to improve power handling capability
US5550392A (en) * 1994-01-14 1996-08-27 Westinghouse Brake And Signal Holdings Limited Semiconductor switching devices
EP1037286A1 (en) * 1999-03-02 2000-09-20 Infineon Technologies AG Symmetrical thyristor with reduced thickness and manufacturing method
US6924177B2 (en) 1999-03-02 2005-08-02 Infineon Technologies Ag Method for producing a thyristor

Similar Documents

Publication Publication Date Title
US4259683A (en) High switching speed P-N junction devices with recombination means centrally located in high resistivity layer
JP2002319676A (en) Semiconductor device, manufacturing method and control method
JP3214343B2 (en) Insulated gate thyristor
JPS6141145B2 (en)
JPS60231363A (en) Manufacture of gate turn-off thyristor
JPS61183966A (en) Manufacture of thyristor
JP2002261281A (en) Manufacturing method of insulated gate bipolar transistor
CN111933705B (en) Manufacturing method of power semiconductor device and power semiconductor device
US4236169A (en) Thyristor device
JPS62290179A (en) Gate turn-off thyristor
JP2579928B2 (en) Semiconductor device and method of manufacturing the same
JPH08274306A (en) Insulated gate thyristor
JPS60198778A (en) Switching element
JP2003264288A (en) Semiconductor device
JP3789580B2 (en) High voltage semiconductor device
JPS61183965A (en) Manufacture of thyristor
JPH0982955A (en) Manufacture of semiconductor device
JPH0543192B2 (en)
JP4872208B2 (en) Manufacturing method of semiconductor device
JPS61182259A (en) Gate turn-off thyristor
JPS6262558A (en) Manuacture of field effect semiconductor switching element
JP4467717B2 (en) Main electrode short-circuit type semiconductor device
JPH0234187B2 (en)
JPH0347592B2 (en)
JPS63205957A (en) Electrostatic induction thyristor