JP5636751B2 - Reverse blocking insulated gate bipolar transistor and manufacturing method thereof - Google Patents

Reverse blocking insulated gate bipolar transistor and manufacturing method thereof Download PDF

Info

Publication number
JP5636751B2
JP5636751B2 JP2010135186A JP2010135186A JP5636751B2 JP 5636751 B2 JP5636751 B2 JP 5636751B2 JP 2010135186 A JP2010135186 A JP 2010135186A JP 2010135186 A JP2010135186 A JP 2010135186A JP 5636751 B2 JP5636751 B2 JP 5636751B2
Authority
JP
Japan
Prior art keywords
conductive type
semiconductor substrate
region
type semiconductor
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010135186A
Other languages
Japanese (ja)
Other versions
JP2012004174A (en
Inventor
源宜 窪内
源宜 窪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010135186A priority Critical patent/JP5636751B2/en
Publication of JP2012004174A publication Critical patent/JP2012004174A/en
Application granted granted Critical
Publication of JP5636751B2 publication Critical patent/JP5636751B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は電力変換装置などに使用される絶縁ゲート形バイポーラトランジスタ(IGBT)に関する。さらに詳しくは、逆阻止IGBTデバイスの改良に関する。   The present invention relates to an insulated gate bipolar transistor (IGBT) used in a power converter and the like. More particularly, it relates to improvements in reverse blocking IGBT devices.

従来のプレーナ型pn接合構造を有するIGBT(絶縁ゲート型バイポーラトランジスタ)は、主要な用途であるインバータ回路やチョッパー回路では、直流電源下で使用されるので、順方向の耐圧さえ確保できれば問題はなく、逆耐圧接合があるにもかかわらず、素子設計の段階から逆耐圧接合の接合終端面はチップ切断部側面に信頼性確保を考慮せずに露出したままの状態で作られていた。   A conventional IGBT (insulated gate type bipolar transistor) having a planar pn junction structure is used under a DC power source in an inverter circuit or a chopper circuit, which is a main application, so there is no problem as long as a forward breakdown voltage can be secured. In spite of the presence of reverse withstand voltage bonding, the junction end surface of the reverse withstand voltage junction has been made exposed on the side surface of the chip cut portion without considering the reliability from the element design stage.

しかし、最近、マトリクスコンバータ等の直接リンク形変換回路であるAC(交流)/AC変換回路、電流型DC/AC変換回路、新3レベル回路と言った一部のDC(直流)/AC変換回路では逆耐圧を有するスイッチング素子を使用して回路の小型化、軽量化、高効率化、高速応答化および低コスト化を図ることが検討されている。そのため、高信頼性の逆耐圧を持ったIGBTが要望されるようになった。逆阻止型IGBTでは、順阻止能力と同等の逆阻止能力が必要となる。この逆阻止能力を確保するために、逆耐圧を維持する裏面コレクタ側のpn接合の接合終端面をチップ切断部側面ではなく、半導体チップの表面に延在させて信頼性の確保を図る構造とする必要がある。このように裏面コレクタ側のpn接合の接合終端面を側面から表面に変更するための拡散層が分離層である。   Recently, however, some DC (direct current) / AC conversion circuits, such as AC (alternating current) / AC conversion circuits, current type DC / AC conversion circuits, and new three-level circuits, which are direct link type conversion circuits such as matrix converters, etc. Therefore, it has been studied to use a switching element having a reverse breakdown voltage to reduce the size, weight, efficiency, speed response, and cost of the circuit. For this reason, an IGBT having a highly reliable reverse withstand voltage has been demanded. In the reverse blocking IGBT, a reverse blocking capability equivalent to the forward blocking capability is required. In order to ensure this reverse blocking capability, a structure is intended to ensure reliability by extending the junction termination surface of the pn junction on the back collector side that maintains the reverse breakdown voltage to the surface of the semiconductor chip instead of the side surface of the chip cutting portion. There is a need to. Thus, the diffusion layer for changing the junction termination surface of the pn junction on the back collector side from the side surface to the surface is the separation layer.

図8は、従来の逆阻止型IGBTの前記分離層を形成する方法を製造工程順に示す半導体基板の要部断面図である。この図8は分離層を塗布拡散によって形成する方法を示す。まず、半導体基板(以降、ウエハ1と記す)上に膜厚がおおよそ2.5μm程度の熱酸化膜2をドーパントマスクとして形成する(図8(a))。つぎに、この熱酸化膜2にパターニングとエッチングにより、分離層を形成するための開口部3を形成する(図8(b))。つぎに、開口部3にボロンソース4を塗布し、その後、拡散炉により高温、長時間の熱処理を行い、おおよそ数百μm程度の深さのp型の拡散層を形成する(図8(c))。その後、図8(c)には図示されていないが、図9の断面図に示すように、ウエハ1の表面側にMOSゲート構造10、エミッタ電極8aなどを形成した後、裏面から図8(c)で破線に示すp型の拡散層に達する位置まで研削してウエハ1を薄くする。この研削面に、図9の要部断面図に示すpコレクタ層7とコレクタ電極8で構成される裏面構造を形成すると、前記p型の拡散層はpコレクタ層7と接続され分離層5となる。その結果、コレクタ接合の接合終端面はp型の拡散層によって表面側に移動する。このp型の拡散層を以降分離層5と言うことにする。分離層5の中心部に位置するスクライブライン6でウエハ1を格子状に切断すると、逆阻止型IGBTチップ100ができる。   FIG. 8 is a fragmentary cross-sectional view of a semiconductor substrate showing a method of forming the separation layer of a conventional reverse blocking IGBT in the order of manufacturing steps. FIG. 8 shows a method of forming a separation layer by coating diffusion. First, a thermal oxide film 2 having a thickness of about 2.5 μm is formed on a semiconductor substrate (hereinafter referred to as a wafer 1) as a dopant mask (FIG. 8A). Next, an opening 3 for forming a separation layer is formed in the thermal oxide film 2 by patterning and etching (FIG. 8B). Next, a boron source 4 is applied to the opening 3 and then heat treatment is performed at a high temperature for a long time in a diffusion furnace to form a p-type diffusion layer having a depth of about several hundred μm (FIG. 8C). )). Thereafter, although not shown in FIG. 8C, as shown in the cross-sectional view of FIG. 9, after forming the MOS gate structure 10, the emitter electrode 8a, and the like on the front surface side of the wafer 1, FIG. In c), the wafer 1 is thinned by grinding to the position reaching the p-type diffusion layer indicated by the broken line. 9 is formed on the ground surface, the p-type diffusion layer is connected to the p collector layer 7 and separated from the separation layer 5. Become. As a result, the junction termination surface of the collector junction moves to the surface side by the p-type diffusion layer. This p-type diffusion layer is hereinafter referred to as a separation layer 5. When the wafer 1 is cut into a lattice shape by the scribe line 6 located at the center of the separation layer 5, a reverse blocking IGBT chip 100 is formed.

図10は、従来の逆阻止型IGBTの前記分離層を形成するための異なる方法を製造工程順に示す半導体基板の要部断面図である。この図10は、前記図8で説明したようなp型の拡散層を形成するために必要な高温、長時間の熱処理を回避するため、半導体基板に高アスペクト比の深いトレンチを掘ってその側壁に拡散層を形成して分離層を形成する方法である。まず、ウエハ1の表面に数μmの厚い酸化膜2を形成する(図10(a))。つぎに、ウエハ1の表面から数百μm程度の深さのトレンチ11をドライエッチングで形成する(図10(b))。つぎに、気相拡散にてトレンチの側壁へ不純物を導入し、熱拡散して分離層12を形成する(図10(c))。トレンチ11にポリシリコン、絶縁膜など補強材(図示せず)を充填した後、前記図9と同様の構造の表面側のMOSゲート構造および金属電極を形成した後、図11に示すスクライブライン6に沿ってダイシングしてウエハ1からIGBTチップを切り出すと、逆阻止型IGBT200ができあがる。   FIG. 10 is a cross-sectional view of a principal part of a semiconductor substrate showing different methods for forming the separation layer of the conventional reverse blocking IGBT in the order of manufacturing steps. This FIG. 10 shows a sidewall of a deep trench having a high aspect ratio formed in a semiconductor substrate in order to avoid the high temperature and long time heat treatment necessary for forming the p-type diffusion layer as described in FIG. In this method, a diffusion layer is formed to form a separation layer. First, a thick oxide film 2 of several μm is formed on the surface of the wafer 1 (FIG. 10A). Next, a trench 11 having a depth of about several hundred μm from the surface of the wafer 1 is formed by dry etching (FIG. 10B). Next, impurities are introduced into the sidewalls of the trench by vapor phase diffusion and thermal diffusion is performed to form the separation layer 12 (FIG. 10C). After filling the trench 11 with a reinforcing material (not shown) such as polysilicon or insulating film, after forming the MOS gate structure and metal electrode on the surface side having the same structure as in FIG. 9, the scribe line 6 shown in FIG. When the IGBT chip is cut out from the wafer 1 by dicing along the line, a reverse blocking IGBT 200 is completed.

このように、ウエハ1の表面にトレンチ11を掘ってその側壁に分離層12を形成する方法に関して、デバイス表面から下側pn接合まで活性部を取り囲むようにトレンチを形成し、このトレンチの側壁に拡散層を形成し、デバイスの下側にある逆阻止用pn接合の終端をデバイスの表面まで延在させて分離層を形成する方法が知られている(特許文献1)。同様に、デバイス表面から下側の逆阻止用pn接合に達するトレンチを形成し、このトレンチの側壁に拡散層を形成することで逆阻止能力のあるデバイスとしている方法の記載がある(特許文献2、3)。   As described above, with respect to the method of digging the trench 11 on the surface of the wafer 1 and forming the isolation layer 12 on the sidewall thereof, the trench is formed so as to surround the active portion from the device surface to the lower pn junction, and the trench is formed on the sidewall of the trench. A method is known in which a diffusion layer is formed and a separation layer is formed by extending the end of a reverse blocking pn junction on the lower side of the device to the surface of the device (Patent Document 1). Similarly, there is a description of a method in which a trench reaching the lower reverse blocking pn junction from the device surface is formed, and a diffusion layer is formed on the side wall of the trench to obtain a device having reverse blocking capability (Patent Document 2). 3).

特開平2−22869号公報JP-A-2-22869 特開2001−185727号公報JP 2001-185727 A 特開2002−76017号公報JP 2002-76017 A

しかしながら、半導体基板の表面から裏面に達する分離層を不純物の熱拡散によって形成する方法では、高耐圧の半導体装置とするために半導体基板の厚さを厚くすると、さらに、それに応じて厚い酸化膜形成および不純物拡散に高温およびまたは長時間拡散を必要とする。高温および拡散時間が長くなると、半導体特性および拡散炉に使用される部品等の品質に多大な悪影響を及ぼすという問題がある。   However, in the method of forming the separation layer reaching from the front surface to the back surface of the semiconductor substrate by thermal diffusion of impurities, when the semiconductor substrate is made thicker in order to obtain a high breakdown voltage semiconductor device, a thick oxide film is formed accordingly. In addition, high temperature and / or long time diffusion is required for impurity diffusion. When the high temperature and the diffusion time become long, there is a problem that the quality of parts and the like used for the semiconductor characteristics and the diffusion furnace is greatly adversely affected.

前記問題について、以下具体的に説明する。前述の図8に示す逆阻止型IGBTの分離層の形成方法では、表面からボロンソース(ボロンの液状の拡散源)を塗布し熱処理によってボロンを拡散し、数百μm程度の拡散深さの分離層を形成する際には、高耐圧になればなるほど高温、長時間の拡散処理を必要とする。この結果、拡散炉を構成する石英ボード、石英管(石英チューブ)、石英ノズルなど石英治具のへたりや、ヒーターからの汚染、石英治具の失透現象による強度低下などを発生させる。さらに、この塗布拡散法による分離層の形成では、厚いマスク酸化膜の形成が必要となる。厚く、良質のマスク酸化膜が長時間のボロン拡散に耐えるようにするために欠かせない。この耐マスク性が高い、つまり良質なシリコン酸化膜を得る方法としては熱酸化の方法が最も好ましい。しかし、高温で長時間(例えば1500℃、200時間)のボロンによる分離層の拡散処理においてボロンがマスク酸化膜を突き抜けないためには、膜厚が約2.5μm以上の熱酸化膜を形成させる必要がある。この膜厚2.5μmの熱酸化膜形成のためには、例えば1150℃の酸化温度において必要な酸化時間は、良質な酸化膜が得られるドライ(乾燥酸素雰囲気)酸化では、約200時間必要である。膜質がやや劣るものの、ドライ酸化に比べて酸化時間が短くて済むウェットもしくはパイロジェニック酸化でも、約15時間と長い酸化時間を必要とする。さらにこれらの酸化処理中には、大量の酸素がシリコンウエハ中に導入されるために、酸素析出物や酸化誘起積層欠陥などの結晶欠陥が導入されたり、酸素ドナーが発生したりすることによるデバイス特性劣化や信頼性低下の弊害が生じる。   The problem will be specifically described below. In the method of forming the reverse blocking IGBT separation layer shown in FIG. 8 described above, boron source (boron liquid diffusion source) is applied from the surface, boron is diffused by heat treatment, and a diffusion depth of about several hundred μm is separated. When forming the layer, the higher the withstand voltage, the higher the temperature and the longer the diffusion treatment is required. As a result, sag of quartz jigs such as quartz boards, quartz tubes (quartz tubes), quartz nozzles constituting the diffusion furnace, contamination from heaters, strength reduction due to devitrification of the quartz jigs, and the like occur. Furthermore, the formation of the separation layer by this coating diffusion method requires the formation of a thick mask oxide film. It is indispensable for a thick, high-quality mask oxide film to withstand long-time boron diffusion. As a method for obtaining a silicon oxide film having a high mask resistance, that is, a good quality, a thermal oxidation method is most preferable. However, in order to prevent boron from penetrating the mask oxide film in the diffusion treatment of the separation layer with boron at a high temperature for a long time (for example, 1500 ° C., 200 hours), a thermal oxide film having a thickness of about 2.5 μm or more is formed. There is a need. In order to form a thermal oxide film having a thickness of 2.5 μm, for example, an oxidation time required at an oxidation temperature of 1150 ° C. requires about 200 hours in dry (dry oxygen atmosphere) oxidation in which a good quality oxide film can be obtained. is there. Wet or pyrogenic oxidation, which requires slightly shorter oxidation time than dry oxidation, requires a long oxidation time of about 15 hours, although the film quality is somewhat inferior. Furthermore, during these oxidation processes, a large amount of oxygen is introduced into the silicon wafer, so that crystal defects such as oxygen precipitates and oxidation-induced stacking faults are introduced, and oxygen donors are generated. Detrimental effects such as deterioration of characteristics and reliability occur.

またさらに、ボロンソース塗布後の熱拡散でも、通常は酸化雰囲気下で高温長時間の拡散処理が行われるため、ウエハ内に格子間酸素が導入され、この工程でも酸素析出物や酸素ドナー化現象、酸化誘起積層欠陥(OSF:OxidationInducedStackingFault)や、スリップ転位など結晶欠陥が導入される。これら結晶欠陥が導入されたウエハに形成されたpn接合ではリーク電流が高くなる傾向がある。さらに、ウエハ上に熱酸化により形成される絶縁膜の耐圧、信頼性が大幅に劣化することが知られている。また、拡散中に取り込まれた酸素がドナー化し、耐圧が低下するという弊害を生じさせる。また、図8に示す分離層の形成方法では、ボロンによる拡散はマスク酸化膜の開口部から、シリコンバルクへとほぼ等方的に進行するため、深さ方向に200μmのボロン拡散を行う場合、必然的に横方向にもボロンは160μm拡散されるため、デバイスピッチやチップサイズの縮小に対する障害となる。   Furthermore, even during thermal diffusion after boron source coating, interstitial oxygen is introduced into the wafer because diffusion treatment is usually performed in an oxidizing atmosphere at a high temperature for a long time. Even in this process, oxygen precipitates and oxygen donor phenomenon Then, crystal defects such as oxidation-induced stacking faults (OSF: Oxidation Induced Stacking Fault) and slip dislocations are introduced. In a pn junction formed on a wafer having these crystal defects introduced, the leakage current tends to increase. Further, it is known that the withstand voltage and reliability of an insulating film formed on a wafer by thermal oxidation are greatly deteriorated. In addition, oxygen taken in during diffusion becomes a donor, which causes a negative effect that the breakdown voltage is reduced. Further, in the method for forming the separation layer shown in FIG. 8, since the diffusion by boron proceeds substantially isotropically from the opening of the mask oxide film to the silicon bulk, when performing boron diffusion of 200 μm in the depth direction, Naturally, boron is diffused by 160 μm also in the lateral direction, which is an obstacle to reduction in device pitch and chip size.

また、図10に示すトレンチを利用して分離層を形成する場合についても問題がある。この方法では、異方性のドライエッチングにて高アスペクト比のトレンチ11を形成し、形成したトレンチ11側壁にボロンを導入して分離層12を形成する。その後、トレンチ11内を絶縁膜などの補強材で充填する。この図10に示す分離層の形成方法は前述の図8の形成方法と比べて、デバイスピッチの縮小という目的に関しては、有利となる。しかし、深さ200μm程度のエッチングに要する時間は、典型的なドライエッチング装置を用いた場合、1枚あたり、100分程度の処理時間が必要であり、リードタイムの増加、エッチング装置のメンテナンス回数の増加などの問題は避けられない。また、ドライエッチングによって深いトレンチを形成する際に、マスクとしてシリコン酸化膜(SiO)を用いると、選択比が50以下と小さいので、数μm程度の厚いシリコン酸化膜を必要とする。その結果、コストの上昇や酸化誘起積層欠陥や酸素析出物などのプロセス誘起結晶欠陥導入による良品率低下という問題が生じる。さらに、異方性ドライエッチングによる高アスペクト比の深堀りトレンチ11を利用した分離層形成プロセスでは、図12に示すように、トレンチ11内で薬液残渣13aやレジスト残渣13bなどが発生し、歩留まりの低下や信頼性の低下などの弊害を生じさせるという問題もある。 There is also a problem in the case where the isolation layer is formed using the trench shown in FIG. In this method, the trench 11 having a high aspect ratio is formed by anisotropic dry etching, and boron is introduced into the side wall of the formed trench 11 to form the separation layer 12. Thereafter, the trench 11 is filled with a reinforcing material such as an insulating film. The separation layer forming method shown in FIG. 10 is more advantageous for the purpose of reducing the device pitch than the forming method shown in FIG. However, the time required for etching with a depth of about 200 μm requires a processing time of about 100 minutes per sheet when a typical dry etching apparatus is used. Problems such as increase are inevitable. In addition, when a deep trench is formed by dry etching, if a silicon oxide film (SiO 2 ) is used as a mask, the selection ratio is as small as 50 or less, so a thick silicon oxide film of about several μm is required. As a result, there arises a problem of an increase in cost and a reduction in the yield rate due to the introduction of process-induced crystal defects such as oxidation-induced stacking faults and oxygen precipitates. Further, in the separation layer forming process using the deep trench 11 having a high aspect ratio by anisotropic dry etching, a chemical residue 13a, a resist residue 13b, etc. are generated in the trench 11 as shown in FIG. There is also a problem of causing adverse effects such as a decrease and a decrease in reliability.

通常、トレンチ11の側壁に対してリンやボロンなどのドーパントを導入する場合、トレンチ11の側壁が垂直となっているので、ウエハ1を斜めにしてイオン注入することによりトレンチ11の側壁へのドーパント導入を行っている。しかし、アスペクト比の高いトレンチ11の側壁へのドーパント導入は、実効ドーズ量の低下(それに伴う注入時間の増加)、実効投影飛程の低下、スクリーン酸化膜によるドーズ量ロス、注入均一性の低下などの弊害を生じさせる。このため、アスペクト比の高いトレンチ11内へ不純物を導入するための手法として、イオン注入の代わりにPH(ホスフィン)やB(ジボラン)などのガス化させたドーパント零囲気中にウエハを暴露させる気相拡散法が用いられるが、ドーズ量の精密制御性において、イオン注入法に比べて劣る。またアスペクト比の高いトレンチ11に絶縁膜を充填させる場合、トレンチ11内にボイドと呼ばれる隙間ができてしまい、信頼性などの問題が発生する。また、前記の特許文献1〜3の製造方法では、トレンチ内に補強材を充填してウエハをスクライブラインで切断して半導体チップ化する工程が必要となることが想定され、製造コストが高くなる。 Usually, when a dopant such as phosphorus or boron is introduced into the side wall of the trench 11, the side wall of the trench 11 is vertical. Therefore, the dopant is applied to the side wall of the trench 11 by implanting ions with the wafer 1 inclined. We are introducing. However, introduction of the dopant into the sidewall of the trench 11 having a high aspect ratio results in a decrease in effective dose (accordingly, an increase in implantation time), a decrease in effective projection range, a loss in dose due to the screen oxide film, and a decrease in implantation uniformity. This causes harmful effects. For this reason, as a method for introducing impurities into the trench 11 having a high aspect ratio, the wafer is contained in a gasified dopant zero atmosphere such as PH 3 (phosphine) or B 2 H 6 (diborane) instead of ion implantation. Is used, but is inferior to ion implantation in terms of precise control of dose. In addition, when the trench 11 having a high aspect ratio is filled with an insulating film, a gap called a void is formed in the trench 11, and problems such as reliability occur. Moreover, in the manufacturing method of the said patent documents 1-3, it is assumed that the process which fills a trench with a reinforcing material, cut | disconnects a wafer with a scribe line, and makes it a semiconductor chip becomes high, and manufacturing cost becomes high. .

本発明は、以上述べた点に鑑みてなされたものであり、本発明の目的は、半導体特性または拡散炉に悪影響を及ぼすような高温、長時間の拡散をすることなく、また、トレンチ形成のような長時間プロセス加工による良品率低下が無く、高耐圧用の厚い半導体基板の表面から裏面に達する程度の深さの拡散分離層を備える逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法を提供することである。   The present invention has been made in view of the above points, and an object of the present invention is to perform trench formation without performing high-temperature and long-time diffusion that adversely affects semiconductor characteristics or a diffusion furnace. There is provided a method for manufacturing a reverse blocking insulated gate bipolar transistor having a diffusion separation layer having a depth reaching the back surface from the surface of a thick semiconductor substrate for high breakdown voltage without causing a reduction in yield rate due to such long-time process processing. That is.

本発明は、前記本発明の目的を達成するために、第1導電型半導体基板の半導体デバイス領域を取り巻く位置に、該第1導電型半導体基板を貫通する第2導電型貫通領域を、いずれか一方の主面または両主面から形成する工程と、複数枚の前記第1導電型半導体基板を鏡面加工し、前記第2導電型貫通領域の位置を合わせて真空中で貼り合わせる工程とを有する半導体装置の製造方法とする。   In order to achieve the object of the present invention, the present invention provides a second conductivity type through region penetrating the first conductivity type semiconductor substrate at a position surrounding the semiconductor device region of the first conductivity type semiconductor substrate. Forming from one main surface or both main surfaces, and mirror-processing the plurality of first conductive semiconductor substrates, aligning the positions of the second conductive through regions, and bonding them in a vacuum. A method for manufacturing a semiconductor device is provided.

また、本発明は、第1導電型半導体基板の半導体デバイス領域を取り巻く位置に、該第1導電型半導体基板を貫通する第2導電型第1貫通領域を、いずれか一方の主面または両主面から形成する工程と、複数枚の前記第1導電型半導体基板を鏡面加工し、前記第2導電型第1貫通領域の位置を合わせて真空中で貼り合わせ、第2導電型第1貫通領域が重ねられた分離層を備える貼り合わせ半導体基板とし、該貼り合わせ半導体基板のいずれか一方の主面に前記分離層と接続される第2導電型半導体層を形成する工程と、前記貼り合わせ半導体基板と異なる第1導電型半導体基板の一方の主面に第2導電型第2貫通領域と活性部と耐圧構造を形成する工程と、前記貼り合わせ半導体基板と前記異なる第1導電型半導体基板のそれぞれの他方の主面を、第2導電型第1貫通領域と第2貫通領域の位置を合わせて真空中で貼り合わせる工程とを有する半導体装置の製造方法とすることによっても前記本発明の目的を達成できる。 Further, the present invention provides a second conductive type first through region penetrating the first conductive type semiconductor substrate at a position surrounding the semiconductor device region of the first conductive type semiconductor substrate. forming from the surface, a plurality of the first conductivity type semiconductor substrate mirror finished, before Symbol align the second conductivity type first through region bonded in a vacuum, the first through the second conductivity type Forming a second conductive type semiconductor layer connected to the separation layer on one main surface of the bonded semiconductor substrate, the bonded semiconductor substrate having a separation layer on which the regions are overlaid; and the bonding Forming a second conductive type second through region, an active portion, and a breakdown voltage structure on one main surface of the first conductive type semiconductor substrate different from the semiconductor substrate; and the first conductive type semiconductor substrate different from the bonded semiconductor substrate The other lord of each other A purpose can be achieved of the present invention also by a method of manufacturing a semiconductor device and a step of second conductivity type first through region and to align the second through region bonded in vacuum.

また、本発明は、第1導電型半導体基板の半導体デバイス領域を取り巻く位置に、該第1導電型半導体基板を貫通する第2導電型第1貫通領域を、いずれか一方の主面または両主面から形成する工程と、複数枚の前記第2導電型第1貫通領域を形成した第1導電型半導体基板と前記第2導電型第1貫通領域を形成していない第1導電型半導体基板とを鏡面加工し、複数枚の前記第2導電型第1貫通領域を形成した第1導電型半導体基板と前記第2導電型第1貫通領域を形成していない第1導電型半導体基板とを前記第2導電型第1貫通領域の位置を合わせて真空中で貼り合わせて貼り合わせ半導体基板とする工程と、該貼り合わせ半導体基板に形成された前記第2導電型第1貫通領域により取り巻かれる一方の主面に活性部と耐圧構造を形成する工程と、反対側の他方の主面に、底部が第2導電型第1貫通領域に達するテーパー溝を形成した後、該他方の主面に第2導電型半導体層を形成する工程とを有する半導体装置の製造方法とすることによって、前記本発明の目的を達成できる。 Further, the present invention provides a second conductive type first through region penetrating the first conductive type semiconductor substrate at a position surrounding the semiconductor device region of the first conductive type semiconductor substrate. A step of forming from the surface, a first conductive type semiconductor substrate in which a plurality of the second conductive type first through regions are formed, and a first conductive type semiconductor substrate in which the second conductive type first through regions are not formed, The first conductive semiconductor substrate in which a plurality of the second conductive type first through regions are formed and the first conductive semiconductor substrate in which the second conductive type first through regions are not formed are mirror-finished. A step of aligning the positions of the second conductive type first through regions and bonding them in a vacuum to form a bonded semiconductor substrate, and one surrounded by the second conductive type first through regions formed in the bonded semiconductor substrate Active part and pressure-resistant structure are formed on the main surface Forming a tapered groove having a bottom reaching the second conductive type first through region on the other main surface on the opposite side, and then forming a second conductive semiconductor layer on the other main surface. The object of the present invention can be achieved by employing a method for manufacturing a semiconductor device.

さらにまた、本発明は、第1導電型半導体基板の半導体デバイス領域を取り巻く位置に、該第1導電型半導体基板を貫通する第2導電型第1貫通領域を、いずれか一方の主面または両主面から形成する工程と、複数枚の前記第2導電型第1貫通領域を形成した第1導電型半導体基板と前記第2導電型第1貫通領域を形成していない第1導電型半導体基板とを鏡面加工し、複数枚の前記第2導電型第1貫通領域を形成した第1導電型半導体基板と前記第2導電型第1貫通領域を形成していない第1導電型半導体基板とを前記第2導電型第1貫通領域の位置を合わせて真空中で貼り合わせて貼り合わせ半導体基板とする工程、該貼り合わせ半導体基板の前記第2導電型第1貫通領域が形成されていない側の一方の主面に、底部が第2導電型第1貫通領域に達するテーパー溝を形成した後、第2導電型半導体層を形成する工程、該貼り合わせ半導体基板の他方の主面に、別途形成してなる第2導電型第2貫通領域と活性部と耐圧構造を一方の主面に有する第1導電型半導体基板の他方の主面を、前記第2導電型第1貫通領域と第2貫通領域の位置を合わせて真空中で貼り合わせる工程を有する半導体装置の製造方法とすることにより、前記本発明の目的を達成できる。 Furthermore, the present invention provides a second conductive type first through region penetrating the first conductive type semiconductor substrate at a position surrounding the semiconductor device region of the first conductive type semiconductor substrate. A step of forming from the main surface, a plurality of first conductive semiconductor substrates in which the second conductive type first through regions are formed, and a first conductive semiconductor substrate in which the second conductive type first through regions are not formed And a first conductive type semiconductor substrate in which a plurality of the second conductive type first through regions are formed and a first conductive type semiconductor substrate in which the second conductive type first through regions are not formed. process and, side not the second conductive type first transmembrane region of the semiconductor substrate mating Ri該貼is formed to the semiconductor substrate bonded by bonding in a vacuum by aligning the second conductivity type first through region The bottom of the main surface of the second conductivity type first After forming the tapered grooves reaching the passing region, and forming a second conductive type semiconductor layer, the other main surface of the semiconductor substrate mating Ri該貼, separately formed and then becomes a second conductivity type second through region and an active the other main surface of the first conductivity type semiconductor substrate having a part and the breakdown voltage structure in the one main surface, a step of bonding in a vacuum by aligning the second conductivity type first through region and the second through region The object of the present invention can be achieved by a method for manufacturing a semiconductor device having

また、第1導電型半導体基板の厚さが50μm乃至200μmである半導体装置の製造方法とすることが好ましい。さらにまた、第2導電型半導体層がp型コレクタ層であり、前記活性部がMOSゲート構造とエミッタ電極で構成される前記半導体装置が逆阻止型絶縁ゲート形バイポーラトランジスタである半導体装置の製造方法とすることが望ましい。   Moreover, it is preferable to set it as the manufacturing method of the semiconductor device whose thickness of a 1st conductivity type semiconductor substrate is 50 micrometers-200 micrometers. Furthermore, the semiconductor device manufacturing method, wherein the second conductivity type semiconductor layer is a p-type collector layer, and the active portion is composed of a MOS gate structure and an emitter electrode. The semiconductor device is a reverse blocking insulated gate bipolar transistor. Is desirable.

本発明によれば、半導体特性または拡散炉に悪影響を及ぼすような高温、長時間の拡散をすることなく、また、トレンチ形成のような長時間プロセス加工による良品率低下が無く、高耐圧用の厚い半導体基板の表面から裏面に達する程度の深さの拡散分離層を備える逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法を提供することができる。   According to the present invention, there is no high temperature and long time diffusion that adversely affects the semiconductor characteristics or the diffusion furnace, and there is no decrease in the yield rate due to long time process processing such as trench formation. It is possible to provide a method of manufacturing a reverse blocking insulated gate bipolar transistor including a diffusion separation layer having a depth reaching the back surface from the surface of a thick semiconductor substrate.

本発明にかかる分離層を真空接合による貼り合わせで形成する製造工程を順に示す半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process which forms the isolation | separation layer concerning this invention by bonding by vacuum bonding in order. 本発明にかかる前記図1で形成した貼り合わせウエハを用いた逆阻止型IGBTの要部断面図である。It is principal part sectional drawing of the reverse blocking IGBT which used the bonded wafer formed in the said FIG. 1 concerning this invention. 本発明にかかる分離層を真空接合による貼り合わせで形成する異なる製造方法を製造工程を順に示す半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate which shows a manufacturing process in order in the different manufacturing method which forms the isolation | separation layer concerning this invention by bonding by vacuum bonding. 本発明にかかる前記図3で形成した貼り合わせウエハを用いた逆阻止型IGBTの要部断面図である。It is principal part sectional drawing of the reverse blocking IGBT which used the bonded wafer formed in the said FIG. 3 concerning this invention. 本発明にかかる分離層を真空接合による貼り合わせで形成する製造方法を製造工程を順に示す半導体基板の要部断面図と、異なる貼り合わせウエハを用いた逆阻止型IGBTの要部断面図である。FIG. 4 is a cross-sectional view of a main part of a semiconductor substrate showing a manufacturing process in order of a manufacturing method for forming a separation layer according to the present invention by bonding by vacuum bonding, and a cross-sectional view of a main part of a reverse blocking IGBT using different bonded wafers. . 本発明にかかる分離層を真空接合による貼り合わせで形成する製造方法を製造工程を順に示す半導体基板の要部断面図と、異なる貼り合わせウエハを用いた逆阻止型IGBTの要部断面図である。FIG. 4 is a cross-sectional view of a main part of a semiconductor substrate showing a manufacturing process in order of a manufacturing method for forming a separation layer according to the present invention by bonding by vacuum bonding, and a cross-sectional view of a main part of a reverse blocking IGBT using different bonded wafers. . 本発明にかかる分離層を真空接合による貼り合わせで形成する製造方法を製造工程を順に示す半導体基板の要部断面図と、異なる貼り合わせウエハを用いた逆阻止型IGBTの要部断面図である。FIG. 4 is a cross-sectional view of a main part of a semiconductor substrate showing a manufacturing process in order of a manufacturing method for forming a separation layer according to the present invention by bonding by vacuum bonding, and a cross-sectional view of a main part of a reverse blocking IGBT using different bonded wafers. . 従来の逆阻止型IGBTの前記分離層を塗布拡散法で形成する場合の製造工程を順に示す半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate which shows in order the manufacturing process in the case of forming the said separation layer of the conventional reverse blocking IGBT by the application | coating diffusion method. 従来の塗布拡散法で形成した逆阻止IGBTの要部断面図である。It is principal part sectional drawing of reverse blocking IGBT formed with the conventional application | coating diffusion method. 従来の逆阻止型IGBTの前記分離層をトレンチ法で形成した場合の製造工程を順に示す半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate which shows in order the manufacturing process at the time of forming the said isolation layer of the conventional reverse blocking IGBT by the trench method. 従来のトレンチ法で形成した逆阻止IGBTの要部断面図である。It is principal part sectional drawing of the reverse blocking IGBT formed with the conventional trench method. 従来の逆阻止型IGBTの前記分離層をトレンチ法で形成した場合の問題点を説明するためのトレンチ部分の断面図である。It is sectional drawing of the trench part for demonstrating the problem at the time of forming the said isolation layer of the conventional reverse blocking IGBT by the trench method.

以下、本発明にかかる逆阻止型絶縁ゲート形バイポーラトランジスタおよびその製造方法の実施例について、図面を参照して詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。   Embodiments of a reverse blocking insulated gate bipolar transistor and a manufacturing method thereof according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.

本発明の実施例1について以下説明する。100μmの厚さのシリコンウエハ1(以降単にウエハと略記する)の表面に形成した酸化膜2に図1(a)のように開口部3を設ける。図1(b)で矢印で示すように、酸化膜2をマスクとして開口部3にボロンを加速電圧100keV、ドーズ量1×1015cm−2で選択的にイオン注入することで導入する。この酸化膜2の開口部3へのボロンの導入は図1(c)に示すようにボロンソース4の塗布によってでもよい。ボロンを導入したウエハ1に1300℃,100時間の熱拡散処理を施し、図1(d)のようにボロンをウエハ1の裏面に到達するまで熱拡散し、分離層5を形成する。そして、マスクとした酸化膜2を除去しウエハ1の両面を鏡面にする(図1(e))。このウエハ1を10−6Pa程度の高真空槽に配置し、表面をアルゴンスパッタで清浄にした後、厚さ100μmのウエハ1を、ボロンが拡散した分離層5が重なるように、3枚重ねて真空中で接合させ、表から裏まで分離層5が繋がった厚さ300μmの貼り合わせウエハ1aとする(図1(f))。前述のように、ウエハ1間の接合は、高真空中でArイオンをウエハ1に衝突させ、表面吸着物を離脱させ、表面のSi原子を活性化させたウエハ面同士を接触させることにより行われる。この貼り合わせウエハ1aの分離層5に囲まれたいずれか一方の表面にMOSゲート構造10、エミッタ電極8a、耐圧構造9などを形成し、裏面にコレクタ層7およびコレクタ電極8bを形成すると、図2(a)に示す逆阻止IGBT300が完成する。図2(b)は貼り合わせウエハ1aの表と裏を逆にして、前記図2(a)と同様の表面構造を形成した逆阻止IGBT400である。 Example 1 of the present invention will be described below. As shown in FIG. 1A, an opening 3 is provided in an oxide film 2 formed on the surface of a silicon wafer 1 (hereinafter simply referred to as a wafer) having a thickness of 100 μm. As shown by arrows in FIG. 1B, boron is introduced into the opening 3 by selective ion implantation at an acceleration voltage of 100 keV and a dose of 1 × 10 15 cm −2 using the oxide film 2 as a mask. Boron may be introduced into the opening 3 of the oxide film 2 by applying a boron source 4 as shown in FIG. The wafer 1 into which boron has been introduced is subjected to a thermal diffusion treatment at 1300 ° C. for 100 hours, and boron is thermally diffused until it reaches the back surface of the wafer 1 as shown in FIG. Then, the oxide film 2 used as a mask is removed and both surfaces of the wafer 1 are made mirror surfaces (FIG. 1E). After placing this wafer 1 in a high vacuum chamber of about 10 −6 Pa and cleaning the surface by argon sputtering, three wafers 1 having a thickness of 100 μm are stacked so that the separation layer 5 in which boron is diffused overlaps. Then, bonding is performed in a vacuum to obtain a bonded wafer 1a having a thickness of 300 μm in which the separation layer 5 is connected from the front to the back (FIG. 1 (f)). As described above, the bonding between the wafers 1 is performed by causing Ar ions to collide with the wafer 1 in a high vacuum, releasing the adsorbed surface, and bringing the wafer surfaces in which the surface Si atoms are activated into contact with each other. Is called. When the MOS gate structure 10, the emitter electrode 8a, the breakdown voltage structure 9 and the like are formed on one surface surrounded by the separation layer 5 of the bonded wafer 1a, and the collector layer 7 and the collector electrode 8b are formed on the back surface, FIG. The reverse blocking IGBT 300 shown in 2 (a) is completed. FIG. 2B shows a reverse blocking IGBT 400 in which the front and back surfaces of the bonded wafer 1a are reversed and the same surface structure as in FIG. 2A is formed.

本発明の実施例2について以下説明する。200μmの厚さのウエハ1bの両面に図3(a)のように酸化膜2をマスクとする開口部3を形成し、図3(b)のように両面の開口部3にそれぞれボロンを加速電圧100keV、ドーズ量1×1015cm−2で選択的イオン注入することで導入する。この酸化膜2の開口部3へのボロンの導入は図3(c)に示すようにボロンソース4の塗布によってでもよい。1300℃、100時間の熱拡散処理を施して図3(d)のように両面からのボロンの拡散領域が中央で重なる深さに熱拡散して分離層5aとする。そして、酸化膜2を除去しウエハ1の両面を鏡面にする。図3(e)のように表面を10−6Pa程度の高真空にし、アルゴンスパッタで清浄にした厚さ200μmのウエハ1bを、ボロンが拡散した領域が重なるように、3枚重ねて真空中で接合させ図3(f)のような表から裏まで分離層5aが繋がった厚さ600μmの1枚の貼り合わせウエハ1cとする。この3枚接合させた貼り合わせウエハ1cを用いて、いずれか一方の表面にMOSゲート構造10、エミッタ電極8a、耐圧構造9などを形成し、裏面にコレクタ層7およびコレクタ電極8bを形成すると、図4に示す逆阻止IGBT500が完成する。実施例2では前記実施例1による逆阻止IGBTの製造方法に比べて、貼り合わせ前のウエハの厚さが200μmと厚いので、ウエハプロセス中の割れなどに対するリスクが小さいというメリットがある。 A second embodiment of the present invention will be described below. Openings 3 using the oxide film 2 as a mask are formed on both sides of a wafer 1b having a thickness of 200 μm as shown in FIG. 3A, and boron is accelerated in the openings 3 on both sides as shown in FIG. 3B. Introduced by selective ion implantation at a voltage of 100 keV and a dose of 1 × 10 15 cm −2 . Boron may be introduced into the opening 3 of the oxide film 2 by applying a boron source 4 as shown in FIG. A thermal diffusion treatment is performed at 1300 ° C. for 100 hours to thermally diffuse to a depth where the boron diffusion regions from both sides overlap at the center as shown in FIG. Then, the oxide film 2 is removed and both surfaces of the wafer 1 are made mirror surfaces. As shown in FIG. 3 (e), the surface of the wafer 1b having a high vacuum of about 10 −6 Pa and cleaned by argon sputtering is overlapped in vacuum so that the boron diffused regions overlap. As shown in FIG. 3F, a single bonded wafer 1c having a thickness of 600 μm in which the separation layer 5a is connected from the front to the back as shown in FIG. Using the bonded wafer 1c bonded to the three sheets, the MOS gate structure 10, the emitter electrode 8a, the breakdown voltage structure 9 and the like are formed on any one surface, and the collector layer 7 and the collector electrode 8b are formed on the back surface. The reverse blocking IGBT 500 shown in FIG. 4 is completed. Compared with the manufacturing method of the reverse blocking IGBT according to the first embodiment, the second embodiment has an advantage that the risk of cracking during the wafer process is small because the thickness of the wafer before bonding is as thick as 200 μm.

本発明の実施例3について以下説明する。前記実施例1または2で説明した方法で、表から裏まで分離層5aが繋がったウエハ1cをまず作製する。図5(a)のようにその一方の面の全面にボロンイオン注入とアニールを行いコレクタ層7を形成する。アニールはレーザーで行うことも可能であるが、この段階では、まだ表面側に金属電極が形成されていないため赤外線のランプを用いるラピッドサーマルアニールによって1000℃くらいまで加熱することも可能である。このコレクタ層7の表面にコレクタ電極8b(図5(c)に示す)を形成する。次に、従来の熱拡散の方法で図5(b)に示すような逆阻止IGBTの表面側MOSゲート構造およびエミッタ電極8aおよび分離層5aなどを一方の表面に形成した厚さ50μm程度の薄ウエハ1dを別途作製する。この薄ウエハ1dの他方の面を、前記接合ウエハ1cの他方の面に、前述と同様の真空貼り合わせ方法でウエハ間を接合することで、図5(c)に示す逆阻止IGBT600が完成する。   A third embodiment of the present invention will be described below. First, a wafer 1c in which a separation layer 5a is connected from the front to the back is manufactured by the method described in the first or second embodiment. As shown in FIG. 5A, boron ion implantation and annealing are performed on the entire surface of one surface to form a collector layer 7. The annealing can be performed by laser, but at this stage, since the metal electrode is not yet formed on the surface side, it can be heated to about 1000 ° C. by rapid thermal annealing using an infrared lamp. A collector electrode 8 b (shown in FIG. 5C) is formed on the surface of the collector layer 7. Next, a reverse side blocking IGBT surface side MOS gate structure as shown in FIG. 5B and the emitter electrode 8a and the separation layer 5a are formed on one surface by a conventional thermal diffusion method. A wafer 1d is prepared separately. By bonding the other surface of the thin wafer 1d to the other surface of the bonded wafer 1c by the same vacuum bonding method as described above, the reverse blocking IGBT 600 shown in FIG. 5C is completed. .

本発明の実施例4について以下説明する。前記実施例1または2で説明した方法で、表から裏までボロン拡散層(分離層5a)が繋がった厚さ100μmのウエハ2枚を作製し、この2枚とボロン拡散を全くしていない1枚の100μmのウエハとの3枚を接合して図6(a)のような、厚さ300μmの貼り合わせウエハ1eを作製する。この貼り合わせウエハ1eのボロン拡散層(分離層5a)に囲まれた領域の表面にMOSゲート構造10、エミッタ電極8a、耐圧構造9などを形成する。この接合ウエハの裏面側を、図6(b)に示すように、エッチングによりテーパー溝14を掘り、テーパー溝14の底部がボロン拡散層(分離層5a)に達するようにする。そして裏面にボロンイオン注入、レーザーアニールで分離層5aと接続されたコレクタ層7、コレクタ電極8bを形成することで、図6(c)のような逆阻止IGBT700が完成する。   Embodiment 4 of the present invention will be described below. By the method described in the first or second embodiment, two wafers having a thickness of 100 μm in which a boron diffusion layer (separation layer 5a) is connected from the front to the back are prepared, and these two sheets are not diffused by boron at all 1 Three wafers having a thickness of 100 μm are joined to produce a bonded wafer 1e having a thickness of 300 μm as shown in FIG. A MOS gate structure 10, an emitter electrode 8a, a breakdown voltage structure 9 and the like are formed on the surface of a region surrounded by the boron diffusion layer (separation layer 5a) of the bonded wafer 1e. As shown in FIG. 6B, a taper groove 14 is dug by etching on the back surface side of the bonded wafer so that the bottom of the taper groove 14 reaches the boron diffusion layer (separation layer 5a). Then, the reverse blocking IGBT 700 as shown in FIG. 6C is completed by forming the collector layer 7 and the collector electrode 8b connected to the separation layer 5a by boron ion implantation and laser annealing on the back surface.

本発明の実施例5について以下説明する。前記実施例1または2で説明した方法で、表から裏までボロン拡散層(分離層5a)が繋がった厚さ100μmのウエハ2枚を作製し、この2枚とボロン拡散を全くしていない1枚の100μmのウエハとの3枚を接合して、前記図6(a)と同様の、厚さ300μmのウエハ1eを作製する。このウエハ1eで、ボロン拡散層のない側(裏面とする)の面から、図7(a)に示すようにテーパー溝14を掘り、底部がボロン拡散層(分離層5a)に達するようにする。コレクタ層7と分離層5aを接続するように、イオン注入とアニールによって図7(b)のようにコレクタ層7を形成する。このウエハ1eのボロン拡散層(分離層5a)のある表面側に、前記図5(b)に示す表側構造を持った薄ウエハ1dの裏面側を、分離層が重なるように接合させて貼り付けウエハ1fとする。この貼り付けウエハ1fの前記テーパー溝14のある裏面側にコレクタ電極を被着することで、図7(c)に示すような逆阻止IGBT800を完成させることができる。   Embodiment 5 of the present invention will be described below. By the method described in the first or second embodiment, two wafers having a thickness of 100 μm in which a boron diffusion layer (separation layer 5a) is connected from the front to the back are prepared, and these two sheets are not diffused by boron at all 1 Three sheets of 100 μm wafers are bonded together to produce a wafer 1e having a thickness of 300 μm, similar to FIG. In this wafer 1e, a taper groove 14 is dug as shown in FIG. 7A from the side (back side) where there is no boron diffusion layer, so that the bottom reaches the boron diffusion layer (separation layer 5a). . As shown in FIG. 7B, the collector layer 7 is formed by ion implantation and annealing so as to connect the collector layer 7 and the separation layer 5a. The back side of the thin wafer 1d having the front side structure shown in FIG. 5 (b) is bonded and bonded to the front surface side of the wafer 1e having the boron diffusion layer (separation layer 5a) so that the separation layers overlap. Let it be a wafer 1f. The reverse blocking IGBT 800 as shown in FIG. 7C can be completed by depositing a collector electrode on the back side of the bonded wafer 1f where the tapered groove 14 is present.

以上説明した実施例1〜5の説明では、使用するウエハ1として、厚さ50μm〜100μmのものを用いたが、拡散時間が長くなるデメリットがあるが、厚さ200μmまでは本発明の半導体装置の製造方法とすることによるメリットが得られる。   In the description of Examples 1 to 5 described above, the wafer 1 to be used has a thickness of 50 μm to 100 μm. However, there is a demerit that the diffusion time becomes long, but the semiconductor device of the present invention up to a thickness of 200 μm is used. Advantages of using this manufacturing method can be obtained.

以上説明したように、本発明にかかる実施例1〜5によれば、従来の高温、長時間の熱拡散では、半導体特性または拡散炉に及ぼす悪影響を考慮すると、限界のあった分離層の深さが、実質的に無制限に近くなるため、トータルのウエハ厚さがより厚くなる高耐圧の逆阻止IGBTを容易に製造することができるようになる。   As described above, according to Examples 1 to 5 according to the present invention, in the conventional high-temperature and long-time thermal diffusion, when the adverse effect on the semiconductor characteristics or the diffusion furnace is taken into consideration, the depth of the separation layer that has a limit is limited. However, since it becomes substantially unlimited, it becomes possible to easily manufacture a high breakdown voltage reverse blocking IGBT in which the total wafer thickness becomes thicker.

1a、1b、1c、1d ウエハ
2 酸化膜
3 開口部
4 ボロンソース
5、5a 分離層
6 スクライブライン
7 pコレクタ層
8a エミッタ電極
8b コレクタ電極
9 耐圧構造
10 MOSゲート構造
11 トレンチ
12 分離層
13a 薬液残渣
13b レジスト残渣
14 テーパー溝
100、200、300、400、500、600、700、800 逆阻止IGBT
1a, 1b, 1c, 1d wafer 2 oxide film 3 opening 4 boron source 5, 5a separation layer 6 scribe line 7 p collector layer 8a emitter electrode 8b collector electrode 9 breakdown voltage structure 10 MOS gate structure 11 trench 12 separation layer 13a chemical solution residue 13b Resist residue 14 Tapered groove 100, 200, 300, 400, 500, 600, 700, 800 Reverse blocking IGBT

Claims (6)

第1導電型半導体基板の半導体デバイス領域を取り巻く位置に、該第1導電型半導体基板を貫通する第2導電型貫通領域を、いずれか一方の主面または両主面から形成する工程と、複数枚の前記第1導電型半導体基板を鏡面加工し、前記第2導電型貫通領域の位置を合わせて真空中で貼り合わせる工程とを有することを特徴とする半導体装置の製造方法。 Forming a second conductive type penetrating region penetrating the first conductive type semiconductor substrate from any one or both main surfaces at a position surrounding the semiconductor device region of the first conductive type semiconductor substrate; A method of manufacturing a semiconductor device, comprising: mirror-finishing the first conductive type semiconductor substrate, and aligning the positions of the second conductive type through regions and bonding them in a vacuum. 第1導電型半導体基板の半導体デバイス領域を取り巻く位置に、該第1導電型半導体基板を貫通する第2導電型第1貫通領域を、いずれか一方の主面または両主面から形成する工程と、複数枚の前記第1導電型半導体基板を鏡面加工し、前記第2導電型第1貫通領域の位置を合わせて真空中で貼り合わせ、第2導電型第1貫通領域が重ねられた分離層を備える貼り合わせ半導体基板とし、該貼り合わせ半導体基板のいずれか一方の主面に前記分離層と接続される第2導電型半導体層を形成する工程と、前記貼り合わせ半導体基板と異なる第1導電型半導体基板の一方の主面に第2導電型第2貫通領域と活性部と耐圧構造を形成する工程と、前記貼り合わせ半導体基板と前記異なる第1導電型半導体基板のそれぞれの他方の主面を、第2導電型第1貫通領域と第2貫通領域の位置を合わせて真空中で貼り合わせる工程とを有することを特徴とする半導体装置の製造方法。 Forming a second conductive type first through region penetrating through the first conductive type semiconductor substrate at a position surrounding the semiconductor device region of the first conductive type semiconductor substrate from one or both main surfaces; , a plurality of the first conductivity type semiconductor substrate mirror finished, before Symbol align the second conductivity type first through region bonded in a vacuum, the separation of the first through region second conductivity type are stacked Forming a second conductive type semiconductor layer connected to the separation layer on one main surface of the bonded semiconductor substrate, and a first different from the bonded semiconductor substrate. Forming a second conductive type second through region, an active portion, and a breakdown voltage structure on one main surface of the conductive type semiconductor substrate; and the other main type of each of the bonded semiconductor substrate and the different first conductive type semiconductor substrate. The surface is the second conductivity type The method of manufacturing a semiconductor device characterized by a step of bonding the combined 1 through region and the position of the second through regions in vacuo. 第1導電型半導体基板の半導体デバイス領域を取り巻く位置に、該第1導電型半導体基板を貫通する第2導電型第1貫通領域を、いずれか一方の主面または両主面から形成する工程と、複数枚の前記第2導電型第1貫通領域を形成した第1導電型半導体基板と前記第2導電型第1貫通領域を形成していない第1導電型半導体基板とを鏡面加工し、複数枚の前記第2導電型第1貫通領域を形成した第1導電型半導体基板と前記第2導電型第1貫通領域を形成していない第1導電型半導体基板とを前記第2導電型第1貫通領域の位置を合わせて真空中で貼り合わせて貼り合わせ半導体基板とする工程と、該貼り合わせ半導体基板に形成された前記第2導電型第1貫通領域により取り巻かれる一方の主面に活性部と耐圧構造を形成する工程と、反対側の他方の主面に、底部が第2導電型第1貫通領域に達するテーパー溝を形成した後、該他方の主面に第2導電型半導体層を形成する工程とを有することを特徴とする半導体装置の製造方法。 Forming a second conductive type first through region penetrating through the first conductive type semiconductor substrate at a position surrounding the semiconductor device region of the first conductive type semiconductor substrate from one or both main surfaces; Mirror-treating a plurality of first conductive type semiconductor substrates in which the second conductive type first through region is formed and a first conductive type semiconductor substrate in which the second conductive type first through region is not formed. The first conductive type semiconductor substrate in which the second conductive type first through region is formed and the first conductive type semiconductor substrate in which the second conductive type first through region is not formed are the second conductive type first. A step of aligning the positions of the through regions and bonding them in a vacuum to form a bonded semiconductor substrate, and an active portion on one main surface surrounded by the second conductive type first through region formed on the bonded semiconductor substrate Opposite to the process of forming a pressure-resistant structure And forming a second conductive type semiconductor layer on the other main surface after forming a tapered groove whose bottom reaches the second conductive type first through region on the other main surface. A method for manufacturing a semiconductor device. 第1導電型半導体基板の半導体デバイス領域を取り巻く位置に、該第1導電型半導体基板を貫通する第2導電型第1貫通領域を、いずれか一方の主面または両主面から形成する工程と、複数枚の前記第2導電型第1貫通領域を形成した第1導電型半導体基板と前記第2導電型第1貫通領域を形成していない第1導電型半導体基板とを鏡面加工し、複数枚の前記第2導電型第1貫通領域を形成した第1導電型半導体基板と前記第2導電型第1貫通領域を形成していない第1導電型半導体基板とを前記第2導電型第1貫通領域の位置を合わせて真空中で貼り合わせて貼り合わせ半導体基板とする工程、該貼り合わせ半導体基板の前記第2導電型第1貫通領域が形成されていない側の一方の主面に、底部が第2導電型第1貫通領域に達するテーパー溝を形成した後、第2導電型半導体層を形成する工程、該貼り合わせ半導体基板の他方の主面に、別途形成してなる第2導電型第2貫通領域と活性部と耐圧構造を一方の主面に有する第1導電型半導体基板の他方の主面を、前記第2導電型第1貫通領域と第2貫通領域の位置を合わせて真空中で貼り合わせる工程を有することを特徴とする半導体装置の製造方法。 Forming a second conductive type first through region penetrating through the first conductive type semiconductor substrate at a position surrounding the semiconductor device region of the first conductive type semiconductor substrate from one or both main surfaces; Mirror-treating a plurality of first conductive type semiconductor substrates in which the second conductive type first through region is formed and a first conductive type semiconductor substrate in which the second conductive type first through region is not formed. The first conductive type semiconductor substrate in which the second conductive type first through region is formed and the first conductive type semiconductor substrate in which the second conductive type first through region is not formed are the second conductive type first. a step of the semiconductor substrate bonded by bonding in vacuum to align the transmembrane region, on the one main surface of the second conductive type first through region is not formed side of the semiconductor substrate mating Ri該貼, A taper where the bottom reaches the first through region of the second conductivity type After forming the groove, forming a second conductive type semiconductor layer, the other main surface of the semiconductor substrate mating Ri該貼, separately formed second conductivity type second transmembrane region comprising the active portion and the breakdown voltage structure the other main surface of the first conductivity type semiconductor substrate having one main surface, characterized by comprising a step of bonding in a vacuum by aligning the second conductivity type first through region and the second through region A method for manufacturing a semiconductor device. 第1導電型半導体基板の厚さが50μm乃至200μmであることを特徴とする請求項1乃至4のいずれか一項に記載の半導体装置の製造方法。 5. The method of manufacturing a semiconductor device according to claim 1, wherein the thickness of the first conductivity type semiconductor substrate is 50 μm to 200 μm. 第2導電型半導体層がp型コレクタ層であり、前記活性部がMOSゲート構造とエミッタ電極で構成される前記半導体装置が逆阻止型絶縁ゲート形バイポーラトランジスタであることを特徴とする請求項5に記載の半導体装置の製造方法。 6. The semiconductor device, wherein the second conductivity type semiconductor layer is a p-type collector layer, and the active part is composed of a MOS gate structure and an emitter electrode, is a reverse blocking insulated gate bipolar transistor. The manufacturing method of the semiconductor device as described in 2 ..
JP2010135186A 2010-06-14 2010-06-14 Reverse blocking insulated gate bipolar transistor and manufacturing method thereof Expired - Fee Related JP5636751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135186A JP5636751B2 (en) 2010-06-14 2010-06-14 Reverse blocking insulated gate bipolar transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135186A JP5636751B2 (en) 2010-06-14 2010-06-14 Reverse blocking insulated gate bipolar transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012004174A JP2012004174A (en) 2012-01-05
JP5636751B2 true JP5636751B2 (en) 2014-12-10

Family

ID=45535888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135186A Expired - Fee Related JP5636751B2 (en) 2010-06-14 2010-06-14 Reverse blocking insulated gate bipolar transistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5636751B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6089415B2 (en) * 2012-03-06 2017-03-08 富士電機株式会社 Method for manufacturing reverse blocking semiconductor device
CN105453250A (en) * 2013-08-08 2016-03-30 夏普株式会社 Semiconductor element substrate, and method for producing same
WO2020084782A1 (en) * 2018-10-26 2020-04-30 ウルトラメモリ株式会社 Semiconductor device and method of manufacturing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579979B2 (en) * 1987-02-26 1997-02-12 株式会社東芝 Method for manufacturing semiconductor device
US5164218A (en) * 1989-05-12 1992-11-17 Nippon Soken, Inc. Semiconductor device and a method for producing the same
JP2752431B2 (en) * 1989-05-12 1998-05-18 株式会社日本自動車部品総合研究所 Method for manufacturing semiconductor device
JPH08107198A (en) * 1994-10-04 1996-04-23 Toyo Electric Mfg Co Ltd Semiconductor device and manufacture thereof
JPH08236762A (en) * 1995-02-28 1996-09-13 Hitachi Ltd Reverse check type semiconductor device and its manufacture
JPH1051010A (en) * 1996-07-29 1998-02-20 Tokin Corp Manufacture of semiconductor device
JP2002009083A (en) * 2000-06-26 2002-01-11 Toyota Central Res & Dev Lab Inc METHOD FOR FORMING REPETITIVE pn JUNCTION AND SEMICONDUCTOR DEVICE USING IT
JP4747260B2 (en) * 2003-04-16 2011-08-17 富士電機株式会社 Method of manufacturing reverse blocking insulated gate bipolar transistor
JP2005183891A (en) * 2003-12-19 2005-07-07 Success International Kk Structure of bidirectional block type planar device and method of manufacturing the same
JP5248741B2 (en) * 2004-09-09 2013-07-31 富士電機株式会社 Reverse blocking insulated gate semiconductor device and method for manufacturing the same
US8304324B2 (en) * 2008-05-16 2012-11-06 Corporation For National Research Initiatives Low-temperature wafer bonding of semiconductors to metals

Also Published As

Publication number Publication date
JP2012004174A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5614451B2 (en) Manufacturing method of semiconductor device
JP5679073B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5655931B2 (en) Manufacturing method of semiconductor device
JP5761354B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2010263149A (en) Semiconductor device
JP5866827B2 (en) Method of manufacturing reverse blocking insulated gate bipolar transistor
JP5248741B2 (en) Reverse blocking insulated gate semiconductor device and method for manufacturing the same
JP5636751B2 (en) Reverse blocking insulated gate bipolar transistor and manufacturing method thereof
TWI405268B (en) Station type semiconductor device and method of manufacturing same
JP6654189B2 (en) Method for manufacturing semiconductor device with thin semiconductor wafer
JP2010135573A (en) Silicon carbide semiconductor device and method of manufacturing the same
JP5648379B2 (en) Manufacturing method of semiconductor device
JP5610595B2 (en) Semiconductor device and manufacturing method thereof
JP5549532B2 (en) Manufacturing method of semiconductor device
US9385210B2 (en) Method for manufacturing semiconductor device using a gettering layer
JP5692241B2 (en) Method for manufacturing reverse blocking semiconductor element
WO2018055838A1 (en) Semiconductor element manufacturing method and semiconductor substrate
JP2011238868A (en) Method of manufacturing dielectric separation type semiconductor device
JP2016086136A (en) Method of manufacturing semiconductor device
JP5301091B2 (en) Manufacturing method of semiconductor device
JP2006294772A (en) Method of manufacturing semiconductor device
JP2015041720A (en) Semiconductor device manufacturing method
JP2009206285A (en) Semiconductor device manufacturing method and semiconductor device
JP2012089560A (en) Method of manufacturing inverse prevention type igbt equipped with inclined side surface
JPH03126264A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5636751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees