JP5301091B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP5301091B2
JP5301091B2 JP2006230504A JP2006230504A JP5301091B2 JP 5301091 B2 JP5301091 B2 JP 5301091B2 JP 2006230504 A JP2006230504 A JP 2006230504A JP 2006230504 A JP2006230504 A JP 2006230504A JP 5301091 B2 JP5301091 B2 JP 5301091B2
Authority
JP
Japan
Prior art keywords
layer
forming
semiconductor substrate
back surface
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006230504A
Other languages
Japanese (ja)
Other versions
JP2008053611A (en
Inventor
学 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006230504A priority Critical patent/JP5301091B2/en
Publication of JP2008053611A publication Critical patent/JP2008053611A/en
Application granted granted Critical
Publication of JP5301091B2 publication Critical patent/JP5301091B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device with a little introduction of a crystal defect, by which an impurity layer at a thick back side is formed by a heat treatment not higher than a heat history which is added at the time of forming a surface structure. <P>SOLUTION: The method includes the steps of: mechanically grinding a backside 7 of an n semiconductor substrate 1 to flatten the backside 7, forming an FS layer 9 on a flattened backside 8 by using an epitaxial growing, and forming a p collector layer 12 on a surface layer thereof. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

この発明は、FZ(フローティング・ゾーン)ウェハを用いて製造されるパンチスルー型の素子、すなわちMOSFET(MOSゲート型電界効果トランジスタ)、PT型(FS型)IGBT(IGBT:絶縁ゲート型バイポーラトランジスタ)および逆阻止IGBTなどの半導体装置の製造方法に関する。尚、PTはパンチスルー、FSはフィールドストップを表す。   The present invention relates to a punch-through element manufactured using an FZ (floating zone) wafer, that is, a MOSFET (MOS gate type field effect transistor), a PT type (FS type) IGBT (IGBT: insulated gate bipolar transistor). The present invention also relates to a method for manufacturing a semiconductor device such as a reverse blocking IGBT. PT represents punch through, and FS represents field stop.

近年、安価なFZ(フローティングゾーン)ウェハを用いたパンチスルー型の素子の開発が進んでいる。図5のようなFZウェハを用いたNPT(ノンパンチスルー)型IGBTが開発され、最初に実用化された。このNPT型IGBTの製造方法は、IGBTの表面セル構造を形成後、エミッタ電極10である表面電極をアルミニウムで形成して表面構造を形成し、その後裏面を研削により所定の厚さにし、裏面からボロンをイオン注入して400℃程度で低温アニールすることでpコレクタ層31を形成し、このpコレクタ層31面にコレクタ電極13である裏面電極を蒸着などで形成して完成する。順方向ブロッキング時に空乏層35(高電界領域)が裏面側のpコレクタ層31に到達しない素子構造である。尚、図中の1はn半導体基板、2はpベース領域、3はnエミッタ領域、4はゲート絶縁膜、5はゲート電極、6は層間絶縁膜、11は保護膜のポリイミド膜である。   In recent years, development of punch-through elements using inexpensive FZ (floating zone) wafers has been progressing. An NPT (non-punch through) IGBT using an FZ wafer as shown in FIG. 5 was developed and put to practical use first. In this NPT type IGBT manufacturing method, after forming the surface cell structure of the IGBT, the surface electrode as the emitter electrode 10 is formed of aluminum to form the surface structure, and then the back surface is ground to a predetermined thickness, Boron ions are implanted and annealed at a low temperature of about 400 ° C. to form the p collector layer 31, and the back electrode as the collector electrode 13 is formed on the surface of the p collector layer 31 by vapor deposition or the like. This is an element structure in which the depletion layer 35 (high electric field region) does not reach the back collector layer 31 during forward blocking. In the figure, 1 is an n semiconductor substrate, 2 is a p base region, 3 is an n emitter region, 4 is a gate insulating film, 5 is a gate electrode, 6 is an interlayer insulating film, and 11 is a polyimide film as a protective film.

その後、NPT型IGBT技術を応用して、FS型IGBTや逆阻止IGBTが開発された。図6のようにFS型IGBTは、裏面側のpコレクタ層33であるp層とドリフト層であるn層(n半導体基板1)に挟まれたnバッファ層32であるn層を有している。nバッファ層32であるn層はFS(フィールドストップ)層と呼ばれ、リンのイオン注入などによって形成される。NPT型IGBTと違い、このFS型IGBTは順方向ブロッキング時に空乏層がnバッファ層32であるn層に到達し、従って裏面に極めて近い(数ミクロン)位置まで高電界領域が進展する。 Thereafter, FS type IGBTs and reverse blocking IGBTs were developed by applying NPT type IGBT technology. As shown in FIG. 6, the FS type IGBT has an n + layer that is an n buffer layer 32 sandwiched between a p layer that is a p collector layer 33 on the back surface side and an n layer (n semiconductor substrate 1) that is a drift layer. doing. The n + layer which is the n buffer layer 32 is called an FS (field stop) layer, and is formed by phosphorus ion implantation or the like. Unlike the NPT type IGBT, in the FS type IGBT, the depletion layer reaches the n + layer which is the n buffer layer 32 at the time of forward blocking, and thus the high electric field region develops to a position very close to the back surface (several microns).

逆阻止IGBTは図7のようにNPT型IGBTのチップ側面(端部39)のダイシングされる領域をp分離層で覆うことで製造される。IGBTに逆バイアスを印加するとpコレクタ層15であるp層とドリフト層であるn層(n半導体基板1)のp/n接合40より空乏層が伸びはじめる。チップ側面(端部39)は結晶欠陥が多く、もしも側面がp分離不純物層36で覆われていないと空乏層35がチップ側面に露出してしまい、結晶欠陥により発生する漏れ電流によって十分な逆耐圧が得られない。p分離不純物層36が有れば、空乏層35はp分離不純物層36内の奥には進入できず端部39に達しないので、漏れ電流は増大しない。裏面側のpコレクタ層15はNPT型IGBTと同じくボロンのイオン注入と400℃以下の低温アニールによって形成される。ただしイオン注入前に、裏面をエッチングなどにより、機械的研削による結晶ダメージを極力除去しておくことが必要であるが、低温アニールのため結晶欠陥は十分には除去されず漏れ電流は大きい(図3参照)。また、低温アニールのために裏面側のpコレクタ層15の厚さは通常1μm以下であり、従って空乏層35は裏面41の極めて近傍まで接近する。尚、図中の37は絶縁膜、38は金属膜である。尚、高速イオン注入によりpコレクタ層の厚さを厚くする方法もあるが、イオン注入により結晶欠陥が発生してもれ電流が増大してしまう。 As shown in FIG. 7, the reverse blocking IGBT is manufactured by covering the dicing region of the chip side surface (end 39) of the NPT type IGBT with a p isolation layer. When a reverse bias is applied to the IGBT, a depletion layer begins to extend from the p + / n junction 40 of the p + layer as the p collector layer 15 and the n layer (n semiconductor substrate 1) as the drift layer. The chip side surface (end portion 39) has many crystal defects. If the side surface is not covered with the p-isolation impurity layer 36, the depletion layer 35 is exposed to the chip side surface, and the reverse current is sufficiently reversed by the leakage current generated by the crystal defect. Pressure resistance cannot be obtained. If the p isolation impurity layer 36 is present, the depletion layer 35 cannot penetrate into the depth of the p isolation impurity layer 36 and does not reach the end 39, so that the leakage current does not increase. The p-collector layer 15 on the back side is formed by boron ion implantation and low-temperature annealing at 400 ° C. or lower as in the case of the NPT type IGBT. However, it is necessary to remove crystal damage due to mechanical grinding as much as possible by etching, etc. before ion implantation. However, crystal defects are not sufficiently removed due to low-temperature annealing, and leakage current is large (Fig. 3). Further, the thickness of the p collector layer 15 on the back surface side is usually 1 μm or less due to low temperature annealing, and therefore the depletion layer 35 approaches very close to the back surface 41. In the figure, 37 is an insulating film and 38 is a metal film. Although there is a method in which the thickness of the p collector layer is increased by high-speed ion implantation, the leakage current increases even if crystal defects are generated by ion implantation.

図示しないFZ型MOSFETにおいても、FS型IGBTと同じように空乏層は裏面近傍に進入する。このようにFZウェハを用いて製造されるパンチスルー型の素子、および逆阻止IGBTは、いずれも裏面近傍に高電界が発生するのである。
また、特許文献1によると、半導体基体の中層領域に形成されたn型半導体領域(ドリフト領域)と、半導体基体の他方の主面側に形成された凹部の底面に露出し、且つn型半導体領域に接合すると共に、このn型半導体領域よりも高い不純物密度を有するn型半導体領域と、半導体基体の一方の主面側に露出し、且つn型半導体領域に接合するp型半導体領域と、p型半導体領域の露出部分に形成された第1主電極層と、n型半導体領域の露出部分に形成された第2主電極層とから構成されていることで、素子(ダイオード)の主動作領域の厚さを薄くできて、低損失化を達成できることが開示されている。
Even in an FZ type MOSFET (not shown), the depletion layer enters the vicinity of the back surface in the same manner as the FS type IGBT. A punch-through element manufactured using an FZ wafer and a reverse blocking IGBT both generate a high electric field near the back surface.
According to Patent Document 1, an n-type semiconductor region (drift region) formed in a middle layer region of a semiconductor substrate and an exposed bottom surface of a recess formed on the other main surface side of the semiconductor substrate, and an n-type semiconductor An n-type semiconductor region having an impurity density higher than that of the n-type semiconductor region, a p-type semiconductor region exposed on one main surface side of the semiconductor substrate, and joined to the n-type semiconductor region; The main operation of the element (diode) is constituted by the first main electrode layer formed in the exposed portion of the p-type semiconductor region and the second main electrode layer formed in the exposed portion of the n-type semiconductor region. It is disclosed that the thickness of the region can be reduced and a reduction in loss can be achieved.

また、特許文献2によると、シリコンウエハを支持基板と酸化膜を介して接着する工程と、上記シリコンウエハを研削してドレイン層を形成する工程と、コレクタ層の上にバッファ層および高抵抗層をエピタキシャル成長で形成する工程と、高抵抗層の表面にMOSゲートを形成する工程とを具備する。その結果、完成したIGBTの耐圧を決定する高抵抗層は比抵抗ばらつきの小さいエピタキシャル成長で形成されるため、所望の比抵抗を有する高コストなシリコンウエハを必要としなくなる。さらに、エピタキシャル成長で形成されるバッファ層は高濃度で幅の狭い不純物濃度プロフィルを有するようになることが開示されている。   According to Patent Document 2, a step of bonding a silicon wafer to a support substrate through an oxide film, a step of grinding the silicon wafer to form a drain layer, a buffer layer and a high resistance layer on the collector layer And a step of forming a MOS gate on the surface of the high resistance layer. As a result, the high resistance layer that determines the breakdown voltage of the completed IGBT is formed by epitaxial growth with a small variation in specific resistance, so that a high-cost silicon wafer having a desired specific resistance is not required. Furthermore, it is disclosed that a buffer layer formed by epitaxial growth has a high concentration and narrow impurity concentration profile.

また、特許文献3によると、裏面にアルミニウムなどの拡散係数の大きい元素をアクセプタとして拡散してコレクタ層を形成して接合深さを深くすることが開示されている。
特開2002−170963号公報 特開2004−241534号公報 特開2006−86414号公報
Patent Document 3 discloses that the junction depth is increased by diffusing an element having a large diffusion coefficient such as aluminum as an acceptor on the back surface to form a collector layer.
JP 2002-170963 A JP 2004-241534 A JP 2006-86414 A

FZウェハを用いて製造されるパンチスルー型の各種素子や逆阻止IGBTは、ウェハの裏面構造を形成した後からチップのパッケージへの組立てまでの工程において、裏面へのキズ発生が大きな問題となる。
各素子の電圧ブロッキング時においては、高電界領域が裏面近傍まで到達するが、仮に裏面キズがこの電界領域にかかってしまうと、この部分で漏れ電流が発生し、所定の耐圧が得られなくなる。これはキズの形状による電界集中、キズ面の汚れによる沿層方向の電流、裏面の不純物層形成時に導入された結晶欠陥による発生電流が原因である。素子面積内にこのようなキズが一個でも有ると、耐圧不良になる可能性がある。
For punch-through various elements and reverse blocking IGBTs manufactured using FZ wafers, scratches on the back surface become a major problem in the process from forming the back surface structure of the wafer to assembling the chip into the package. .
At the time of voltage blocking of each element, the high electric field region reaches the vicinity of the back surface. However, if a back surface scratch is applied to this electric field region, a leakage current is generated in this portion, and a predetermined breakdown voltage cannot be obtained. This is due to the electric field concentration due to the flaw shape, the current in the layering direction due to flaws on the flaw surface, and the current generated due to crystal defects introduced during the formation of the impurity layer on the back surface. If there is even one such scratch in the element area, there is a possibility that a withstand voltage failure will occur.

不良を防ぐには、電圧ブロッキング時において高電界領域を裏面からできるだけ離すことが必要である。これはすなわち裏面側の不純物層を厚くして、前記のpn接合の位置をウェハ裏面から離して内部側に持ってくることと、裏面の不純物層形成時に導入される結晶欠陥を低減することに他ならない。
しかし、裏面側の不純物層を厚くするためには、一般に高温・長時間の熱拡散が必要である。例えばリンやボロンを10μm拡散するためには1150℃で20時間程度の熱処理が必要である。ところが素子の表面構造の形成では、一般にこれ程の熱履歴を加えておらず、このような多大の熱履歴を加えると表面構造が大きく変化してしまう。このため当初設計した特性は得られなくなってしまう。
In order to prevent defects, it is necessary to separate the high electric field region from the back surface as much as possible during voltage blocking. This is to increase the thickness of the impurity layer on the back surface and bring the position of the pn junction away from the back surface of the wafer to the inside, and to reduce crystal defects introduced when forming the impurity layer on the back surface. There is nothing else.
However, in order to increase the thickness of the impurity layer on the back surface side, generally high-temperature and long-time thermal diffusion is required. For example, in order to diffuse phosphorus or boron by 10 μm, heat treatment at 1150 ° C. for about 20 hours is required. However, in the formation of the surface structure of the element, generally, such a heat history is not added, and if such a large heat history is added, the surface structure is greatly changed. For this reason, the originally designed characteristics cannot be obtained.

また、特許文献1では、ダイオードに関して記載されているがMOSゲート構造の素子については言及されていない。
また、特許文献2では、シリコンウエハを絶縁膜を介して支持基板に接着し、その後シリコンウエハを研削して薄くし、その上にエピタキシャル成長層を形成し、その後MOSゲート構造を形成した後、支持基板と絶縁膜を除去している。本発明では、表面側にMOSゲート構造を形成した後、裏面側を研削し、研削した裏面にエピタキシャル成長層を形成しているのでこの特許文献2とは異なっている。
Patent Document 1 describes a diode, but does not mention an element having a MOS gate structure.
In Patent Document 2, a silicon wafer is bonded to a support substrate through an insulating film, and then the silicon wafer is ground and thinned, an epitaxial growth layer is formed thereon, and then a MOS gate structure is formed. The substrate and the insulating film are removed. In the present invention, after the MOS gate structure is formed on the front surface side, the back surface side is ground, and an epitaxial growth layer is formed on the ground back surface.

また、特許文献3では、1000℃で拡散温度は低いものの6時間という長時間の拡散でも接合深さは11μm程度であり、熱履歴(温度×時間)が大きく表面構造に影響を与えるという不都合を生じる。
この発明の目的は、前記の課題を解決して、表面構造を形成した時に加えた熱履歴以下の熱処理により、厚い裏面側の不純物層を形成することと、結晶欠陥の導入が少ない半導体装置の製造方法を提供することである。
Further, in Patent Document 3, although the diffusion temperature is low at 1000 ° C., the junction depth is about 11 μm even for a long time diffusion of 6 hours, and the heat history (temperature × time) is large, which affects the surface structure. Arise.
An object of the present invention is to solve the above-described problems and form a thick back-side impurity layer by heat treatment less than the thermal history applied when the surface structure is formed, and a semiconductor device with less introduction of crystal defects. It is to provide a manufacturing method.

前記の目的を達成するために、半導体基板の一方の主面にMOSゲート構造を形成する工程と、前記MOSゲート構造上に層間絶縁膜を形成する工程と、他方の主面を研削し平坦化する工程と、平坦化した他方の主面にエピタキシャル成長層を形成する工程と、前記エピタキシャル成長層を形成した後前記層間絶縁膜上に第1主電極を形成する工程と、前記エピタキシャル成長層上に第2主電極を形成する工程とをこの順に有し、前記半導体基板のダイシングされる領域であってチップダイシング後に各チップの側面が覆われるよう該半導体基板と異なる導電型の不純物層を前記半導体基板の一方の主面にMOSゲート構造を形成する工程の前に各チップの枠状に形成し、前記エピタキシャル成長層が5μm以上50μm以下の厚さで前記半導体基板と異なる導電型で形成される製造方法とする。 In order to achieve the above object, a step of forming a MOS gate structure on one main surface of a semiconductor substrate, a step of forming an interlayer insulating film on the MOS gate structure, and grinding and planarizing the other main surface A step of forming an epitaxial growth layer on the other planarized main surface, a step of forming a first main electrode on the interlayer insulating film after forming the epitaxial growth layer, and a second step on the epitaxial growth layer. and forming a main electrode in this order, said an area to be diced semiconductor substrate the semiconductor substrate and the different conductivity type impurity layer so that the side surfaces of each chip is covered after chip dicing of the semiconductor substrate Before the step of forming the MOS gate structure on one main surface, it is formed in a frame shape of each chip, and the epitaxial growth layer has a thickness of not less than 5 μm and not more than 50 μm. The manufacturing method is formed with a conductivity type different from that of the body substrate.

また、前記エピタキシャル成長層を形成するときに原料ガスと同時にエッチングガスを流して、平坦化した他方の主面に半導体層をエピタキシャル成長させるとよい。
また、前記MOSゲート構造が、プレーナゲート型またはトレンチゲート型であるとよい。
In addition, when forming the epitaxial growth layer, an etching gas is flowed simultaneously with the source gas, and the semiconductor layer is preferably epitaxially grown on the other planarized main surface.
The MOS gate structure may be a planar gate type or a trench gate type.

この発明によれば、FZウエハである半導体基板の一方の主面にMOSゲート構造を形成し、その上に層間絶縁膜を被覆した後、他方の主面を研削し、平坦化した後、バッファ層またはドレイン層もしくはコレクタ層をエピタキシャル成長層で形成し、前記層間絶縁膜にコンタクト孔を開けてエミッタ電極やソース電極を形成し、エピタキシャル層(バッファ層の場合は表面層に拡散などでコレクタ層を形成する)上にドレイン電極やコレクタ電極を形成することで、パンチスルー型の素子(FS型IGBT、MOSFET)や逆阻止IGBTの裏面キズ耐性(キズがあっても耐圧が確保できること)を向上させることができて、製品の良品率が向上する。   According to the present invention, a MOS gate structure is formed on one main surface of a semiconductor substrate which is an FZ wafer, an interlayer insulating film is coated thereon, the other main surface is ground and flattened, and then a buffer is formed. A layer, a drain layer, or a collector layer is formed of an epitaxial growth layer, contact holes are formed in the interlayer insulating film to form an emitter electrode and a source electrode, and an epitaxial layer (in the case of a buffer layer, the collector layer is formed by diffusion or the like). By forming a drain electrode and a collector electrode on the upper surface of the substrate, it is possible to improve the resistance to scratches on the back surface of punch-through elements (FS-type IGBTs and MOSFETs) and reverse blocking IGBTs. Can improve the yield rate of products.

実施の形態を以下の実施例で説明する。   Embodiments will be described in the following examples.

図1は、この発明の第1実施例の半導体装置の製造方法であり、同図(a)〜同図(c)は工程順に示した要部製造工程断面図である。この半導体装置は1200V耐圧のプレーナゲート型のFS型IGBTである。以下の表現でnはn型、pはp型を示す。
500μmの厚さのFZウエハであるn半導体基板1の第1主面の表面層にpベース領域2を複数形成し、このpベース領域2の表面層にnエミッタ領域3を形成し、nエミッタ領域3とn半導体基板1に挟まれたpベース領域2上にゲート絶縁膜4を介してゲート電極5を形成することで、表面のプレーナ型セル構造を形成した後、表面を1μmのBPSG(ボロンリンガラス)膜の層間絶縁膜6で覆う(同図(a))。
FIG. 1 shows a method of manufacturing a semiconductor device according to a first embodiment of the present invention. FIGS. 1A to 1C are cross-sectional views showing a main part manufacturing process shown in the order of steps. This semiconductor device is a planar gate type FS type IGBT having a withstand voltage of 1200V. In the following expressions, n is n-type and p is p-type.
A plurality of p base regions 2 are formed on the surface layer of the first main surface of the n semiconductor substrate 1 which is an FZ wafer having a thickness of 500 μm, and an n emitter region 3 is formed on the surface layer of the p base region 2. A gate electrode 5 is formed on the p base region 2 sandwiched between the region 3 and the n semiconductor substrate 1 via a gate insulating film 4 to form a planar cell structure on the surface, and then the surface is coated with 1 μm BPSG ( A boron phosphorous glass) film is covered with an interlayer insulating film 6 (FIG. 2A).

つぎに、裏面7を機械的に研削してウェハ厚を120μmにする。CMP(Chemical Mechanical Planarization)により裏面7を平坦化し、ウェハを110μmにする。平坦化された裏面8はCMPで平坦化しないで、フッ酸−硝酸系の混酸による裏面スピンエッチングで平坦化しても良い。エピタキシャル(以下、エピと略す)成長炉にて970℃で、シリコン原料ガスのDCS(ジクロロシラン)を200sccm、エッチングガスのHClを300sccm同時供給し、さらにn型不純物としてホスフィンガスを供給する。表面の層間絶縁膜6上にはシリコンを堆積させずに裏面8のシリコン面にn型エピシリコン(エピタキシャルのシリコン層)を成長させる。エピの成長速度は0.3μm/分であり、40分で12μmのn型エピシリコンが成長し、n層であるFS層9(nバッファ層)となる。熱履歴が少ないために表面構造は影響を受けない。n型ドーピング濃度は2×1015cm−3である(同図(b))。 Next, the back surface 7 is mechanically ground to a wafer thickness of 120 μm. The back surface 7 is flattened by CMP (Chemical Mechanical Planarization) to make the wafer 110 μm. The flattened back surface 8 may be flattened by back surface spin etching with hydrofluoric acid-nitric acid mixed acid without being flattened by CMP. In an epitaxial (hereinafter abbreviated as epi) growth furnace at 970 ° C., 200 sccm of DCS (dichlorosilane) as a silicon source gas and 300 sccm of HCl as an etching gas are simultaneously supplied, and phosphine gas is further supplied as an n-type impurity. N-type episilicon (epitaxial silicon layer) is grown on the silicon surface of the back surface 8 without depositing silicon on the interlayer insulating film 6 on the front surface. The epi growth rate is 0.3 μm / min. In 40 minutes, 12 μm of n-type episilicon grows to become an FS layer 9 (n buffer layer) which is an n + layer. The surface structure is not affected due to the low thermal history. The n-type doping concentration is 2 × 10 15 cm −3 ((b) in the figure).

つぎに、フォトエッチングにより層間絶縁膜6にコンタクト孔を空け、アルミニウムのスパッタにより表面金属層を形成し、フォトエッチングにより表面電極(エミッタ電極10)を形成する。ポリイミド塗布およびフォトエッチングによりポリイミド膜11で保護膜を形成する。ボロンのイオン注入および窒素雰囲気中の400℃アニールにより裏面側のコレクタ層12であるp層を形成する。最後に裏面電極(コレクタ電極13)をAl/Ti/Ni/Auの四層蒸着により形成してウェハ工程が完了する(同図(c))。 Next, a contact hole is formed in the interlayer insulating film 6 by photoetching, a surface metal layer is formed by sputtering of aluminum, and a surface electrode (emitter electrode 10) is formed by photoetching. A protective film is formed with the polyimide film 11 by polyimide coating and photoetching. A p + layer, which is the collector layer 12 on the back side, is formed by ion implantation of boron and annealing at 400 ° C. in a nitrogen atmosphere. Finally, the back electrode (collector electrode 13) is formed by four-layer deposition of Al / Ti / Ni / Au to complete the wafer process ((c) in the figure).

つぎに図示しないがチップダイシング後にパッケージに組立てて製品が完成する。
裏面側のn層(n半導体基板1)とn層(FS層9)のn/n接合14(界面)の位置が裏面17から12μm離れることで、工程中に数ミクロン深さの裏面キズ(裏面17についたキズ)が発生しても耐圧は低下しない。従来はリンのイオン注入によりFS層を形成しており、n層とn層のn/n接合の深さは2μm程度であるため、数ミクロンのキズが発生すると耐圧不良が発生した。本実施例では厚いFS層9が形成されるので、キズによる耐圧不良を防ぐことができる。
Next, although not shown, the product is completed by assembling into a package after chip dicing.
The position of the n / n + junction 14 (interface) between the n layer (n semiconductor substrate 1) and the n + layer (FS layer 9) on the back surface side is 12 μm away from the back surface 17 so that the depth is several microns during the process. Even if a back surface scratch (a scratch on the back surface 17) occurs, the breakdown voltage does not decrease. Conventionally, the FS layer is formed by phosphorus ion implantation, and the n / n + junction depth of the n layer and the n + layer is about 2 μm. did. In this embodiment, since the thick FS layer 9 is formed, it is possible to prevent a breakdown voltage failure due to scratches.

層であるFS層9をエピタキシャル成長層で形成した方が熱拡散で形成する場合より結晶欠陥や重金属の導入が抑制されるため、同じ厚さとした場合エピタキシャル成長層の方がもれ電流を小さくできる。また、厚さはエピタキシャル成長層の方が厚くできる。pコレクタ層12を形成する前のFS層9の厚さ(裏面16からn/n接合14までの距離)についてはFS型IGBTの場合、2μm〜50μmが実用的な範囲であり、10μm程度以上とすると大きなキズが付いた場合でももれ電流を小さく抑制できて望ましい。 When the FS layer 9 which is the n + layer is formed by the epitaxial growth layer, the introduction of crystal defects and heavy metals is suppressed as compared with the case where the FS layer 9 is formed by thermal diffusion. it can. The thickness of the epitaxial growth layer can be increased. The thickness of the FS layer 9 before the formation of the p-type collector layer 12 - case for (from the back surface 16 n / n + distance to the junction 14) of the FS type IGBT, 2μm~50μm is practical range, 10 [mu] m If it is more than about, it is desirable that the leakage current can be suppressed even if there is a large scratch.

尚、前記のIGBTはプレーナゲート型であるが図示しないトレンチゲート型の場合も同様の効果が期待できる。 Incidentally, the above IGBT is the same effect can be expected in the case of is a planar gate type shown intention wrench gate.

図2は、この発明の第2実施例の半導体装置の製造方法であり、同図(a)〜同図(c)は工程順に示した要部製造工程断面図である。この半導体装置はプレーナゲート型の1200V耐圧の逆阻止IGBTである。図ではセルの一部だけを示しているが、断面を中心として線対称の形状で複数形成され、チップ周辺部にはp分離不純物層を含めた耐圧構造部が示されている。 FIG. 2 shows a method of manufacturing a semiconductor device according to a second embodiment of the present invention. FIGS. 2A to 2C are cross-sectional views of the main part manufacturing process shown in the order of steps. This semiconductor device is a planar gate type 1200V withstand voltage reverse blocking IGBT. Although only a part of the cell is shown in the figure, a plurality of line-symmetric shapes with respect to the cross section are formed, and a breakdown voltage structure including a p-isolation impurity layer is shown at the periphery of the chip.

FZウエハであるn半導体基板1の一方の主面から内部に向かって複数の枠状の図示しないp分離不純物層(図7のp分離不純物層36に相当する)を180μm以上の深さに形成し、この枠内のn半導体基板1の第1主面の表面層にpベース領域2を複数形成し、このpベース領域2の表面層にnエミッタ領域3を形成し、nエミッタ領域3とn半導体基板1に挟まれたpベース領域2上にゲート絶縁膜4を介してゲート電極5を形成することで、表面のプレーナ型セル構造を形成した後、表面を1μmのBPSG膜の層間絶縁膜6で覆う(同図(a))。   A plurality of frame-shaped p isolation impurity layers (not shown) (corresponding to the p isolation impurity layer 36 in FIG. 7) having a depth of 180 μm or more are formed from one main surface of the n semiconductor substrate 1 which is an FZ wafer toward the inside. A plurality of p base regions 2 are formed on the surface layer of the first main surface of the n semiconductor substrate 1 in the frame, and an n emitter region 3 is formed on the surface layer of the p base region 2. A gate electrode 5 is formed on a p base region 2 sandwiched between n semiconductor substrates 1 through a gate insulating film 4 to form a planar cell structure on the surface, and then a surface of the BPSG film having a 1 μm interlayer insulation. It is covered with a film 6 ((a) in the figure).

つぎに、裏面7を機械的に図示しないp分離不純物層に達するまで研削してウェハ厚を190μmにする。CMPにより裏面7を平坦化し、ウェハを180μmの厚さにする。フッ酸−硝酸系の混酸によるスピンエッチングで裏面側を平坦化しても良い。エピ炉にて970℃で、シリコン原料ガスのDCS (ジクロロシラン) を200sccm、エッチングガスのHClを300sccm同時供給し、さらにp型不純物としてジボランガスを供給する。表面側の絶縁膜上にはシリコンを堆積させずに裏面側のシリコン面にp型エピシリコンを成長させる。成長速度は0.3μm/分であり、20分で6μmのp型エピシリコンが成長し、図示しないp分離不純物層と接続するpコレクタ層15となる。このpコレクタ層15の形成では熱履歴が少ないために表面構造は影響を受けない。p型ドーピング濃度は2×1016cm−3である(同図(b))。 Next, the back surface 7 is mechanically ground until a p-isolation impurity layer (not shown) is reached, so that the wafer thickness is 190 μm. The back surface 7 is flattened by CMP to make the wafer 180 μm thick. The back side may be planarized by spin etching with a hydrofluoric acid-nitric acid mixed acid. At 970 ° C. in an epi furnace, 200 sccm of silicon source gas DCS (dichlorosilane) and 300 sccm of etching gas HCl are simultaneously supplied, and further, diborane gas is supplied as a p-type impurity. P-type epitaxial silicon is grown on the silicon surface on the back surface side without depositing silicon on the insulating film on the front surface side. The growth rate is 0.3 μm / min, and 6 μm of p-type episilicon is grown in 20 minutes to become a p collector layer 15 connected to a p isolation impurity layer (not shown). In the formation of the p collector layer 15, the surface structure is not affected because the thermal history is small. The p-type doping concentration is 2 × 10 16 cm −3 ((b) in the figure).

つぎに、フォトエッチングにより層間絶縁膜6にコンタクト孔を空け、アルミニウムのスパッタにより表面金属層を形成し、フォトエッチングにより表面電極(エミッタ電極10)を形成する。ポリイミド塗布およびフォトエッチングによりポリイミド膜11の保護膜を形成する。最後に裏面電極(コレクタ電極13)をAl/Ti/Ni/Auの四層蒸着により形成してウェハ工程が完了する(同図(c))。   Next, a contact hole is formed in the interlayer insulating film 6 by photoetching, a surface metal layer is formed by sputtering of aluminum, and a surface electrode (emitter electrode 10) is formed by photoetching. A protective film for the polyimide film 11 is formed by polyimide coating and photoetching. Finally, the back electrode (collector electrode 13) is formed by four-layer deposition of Al / Ti / Ni / Au to complete the wafer process ((c) in the figure).

つぎに図示しないがチップダイシング後にパッケージに組立てて製品が完成する。
裏面側のn層とp層のn/p接合16の位置が裏面17から6μm離れることで、工程中に2〜3ミクロン深さの裏面キズが発生しても耐圧は低下しない。従来はボロンイオン注入と400℃以下の低温アニールによりpコレクタ層を形成しており、n層とp層のn/p接合の深さは深くても0.5μm程度であり、これよりミクロンオーダーのキズがあると耐圧低下を招く。また0.5μm以下の小さなキズでも結晶欠陥が十分回復せずライフタイムキラーが短かったためにもれ電流が増大していた。
Next, although not shown, the product is completed by assembling into a package after chip dicing.
The position of the n / p + junction 16 of the n layer and the p + layer on the back surface is 6 μm away from the back surface 17, so that the withstand voltage does not decrease even if a back surface scratch having a depth of 2 to 3 microns occurs during the process. . Conventionally, the p collector layer is formed by boron ion implantation and low-temperature annealing at 400 ° C. or lower, and the n / p + junction depth of the n layer and the p + layer is about 0.5 μm at most, If there is a micron order scratch, the breakdown voltage will be reduced. Even with small scratches of 0.5 μm or less, the crystal defects were not sufficiently recovered and the lifetime killer was short, so that the leakage current increased.

第2実施例では6μmの厚いpコレクタ層15が形成されているので、キズによる耐圧不良を大幅に防ぐことができる。また第2実施例ではエピタキシャル成長層でpコレクタ層15を形成しアニールが十分行われてpコレクタ層15内のライフタイムが長いために、n層とp層のn/p接合16の深さは0.5μm程度とし、漏れ電流の増大は抑制される。 In the second embodiment, since the 6 μm thick p collector layer 15 is formed, it is possible to greatly prevent a breakdown voltage failure due to scratches. In the second embodiment, since the p collector layer 15 is formed of an epitaxially grown layer and annealing is sufficiently performed and the lifetime in the p collector layer 15 is long, the n / p + junction 16 of the n layer and the p + layer is used. The depth of is about 0.5 μm, and an increase in leakage current is suppressed.

第2実施例により製造された1200V耐圧の逆阻止IGBTの逆漏れ電流を図3に示す。Aが第2実施例でありBが従来例である。第2実施例の逆漏れ電流は、従来の逆阻止IGBTの逆漏れ電流の1/5に低減される。
逆阻止IGBTの場合、エピタキシャル成長層で形成したpコレクタ層15の厚さは0.5μm〜50μmが実用的な範囲であり、5μm程度以上とすると大きなキズが付いた場合でももれ電流を小さく抑制できて望ましい。通常、n/p接合16の方がn/n接合14よりも電界強度の影響を受け難く、接合の深さがn/n接合14より浅くてももれ電流は抑制される。そのため、pコレクタ層15の厚さの実用的な範囲の最小値を0.5μmとしてもよい。
FIG. 3 shows the reverse leakage current of the reverse blocking IGBT having a withstand voltage of 1200 V manufactured according to the second embodiment. A is the second embodiment and B is the conventional example. The reverse leakage current of the second embodiment is reduced to 1/5 of the reverse leakage current of the conventional reverse blocking IGBT.
In the case of a reverse blocking IGBT, the thickness of the p collector layer 15 formed of an epitaxial growth layer is in a practical range of 0.5 μm to 50 μm. It is possible and desirable. Usually, n - / p + towards the junction 16 is n - / n + hardly affected by the electric field strength than the junction 14, the junction depth is n - / n + shallower leak current from the junction 14 is suppressed Is done. Therefore, the minimum value in the practical range of the thickness of the p collector layer 15 may be 0.5 μm.

尚、前記のIGBTはプレーナゲート型であるが図示しないトレンチゲート型の場合も同様の効果が期待できる。   The IGBT is a planar gate type, but the same effect can be expected in the case of a trench gate type (not shown).

図4は、この発明の第3実施例の半導体装置の製造方法であり、同図(a)〜同図(c)は工程順に示した要部製造工程断面図である。この半導体装置はプレーナゲート型のMOSFETである。
FZウエハであるn半導体基板1の第1主面の表面層にpベース領域2を複数形成し、このpベース領域2の表面層にnソース領域21を形成し、nソース領域21とn半導体基板1に挟まれたpベース領域2上にゲート絶縁膜4を介してゲート電極5を形成することで、表面のプレーナ型セル構造を形成した後、表面を1μmのBPSG膜の層間絶縁膜6で覆う(同図(a))。
FIG. 4 shows a method of manufacturing a semiconductor device according to a third embodiment of the present invention. FIGS. 4A to 4C are cross-sectional views of the main part manufacturing process shown in the order of processes. This semiconductor device is a planar gate type MOSFET.
A plurality of p base regions 2 are formed on the surface layer of the first main surface of the n semiconductor substrate 1 which is an FZ wafer, and an n source region 21 is formed on the surface layer of the p base region 2. The gate electrode 5 is formed on the p base region 2 sandwiched between the substrates 1 through the gate insulating film 4 to form a planar cell structure on the surface, and then the interlayer insulating film 6 of a BPSG film having a surface of 1 μm. Cover with ((a) of the figure).

つぎに、裏面7を機械的に研削してウェハ厚を120μmにする。CMPにより裏面7を平坦化し、ウェハを110μmにする。フッ酸−硝酸系の混酸による裏面スピンエッチングで平坦化しても良い。エピタキシャル(以下、エピと略す)成長炉にて970℃で、シリコン原料ガスのDCS(ジクロロシラン)を200sccm、エッチングガスのHClを300sccm同時供給し、さらにn型不純物としてホスフィンガスを供給する。表面の層間絶縁膜6上にはシリコンを堆積させずに裏面8のシリコン面にn型エピシリコン(エピタキシャルのシリコン層)を成長させる。成長速度は0.3μm/分であり、40分で12μmのn型エピシリコンが成長し、n層であるnドレイン層22となる。熱履歴が少ないために表面構造は影響を受けない。n型ドーピング濃度は1×1019cm−3である(同図(b))。 Next, the back surface 7 is mechanically ground to a wafer thickness of 120 μm. The back surface 7 is flattened by CMP to make the wafer 110 μm. Planarization may be performed by back surface spin etching using a hydrofluoric acid-nitric acid mixed acid. In an epitaxial (hereinafter abbreviated as epi) growth furnace at 970 ° C., 200 sccm of DCS (dichlorosilane) as a silicon source gas and 300 sccm of HCl as an etching gas are simultaneously supplied, and phosphine gas is further supplied as an n-type impurity. N-type episilicon (epitaxial silicon layer) is grown on the silicon surface of the back surface 8 without depositing silicon on the interlayer insulating film 6 on the front surface. The growth rate is 0.3 μm / min. In 40 minutes, 12 μm of n-type episilicon grows to become an n drain layer 22 which is an n + layer. The surface structure is not affected due to the low thermal history. The n-type doping concentration is 1 × 10 19 cm −3 ((b) in the figure).

つぎに、フォトエッチングにより層間絶縁膜6にコンタクト孔を空け、アルミニウムのスパッタにより表面金属層を形成し、フォトエッチングにより表面電極(ソース電極23)を形成する。ポリイミド塗布およびフォトエッチングによりポリイミド膜11の保護膜を形成する。最後に裏面電極(ドレイン電極24)をAl/Ti/Ni/Auの四層蒸着により形成してウェハ工程が完了する(同図(c))。   Next, a contact hole is formed in the interlayer insulating film 6 by photoetching, a surface metal layer is formed by sputtering of aluminum, and a surface electrode (source electrode 23) is formed by photoetching. A protective film for the polyimide film 11 is formed by polyimide coating and photoetching. Finally, the back surface electrode (drain electrode 24) is formed by four-layer deposition of Al / Ti / Ni / Au, and the wafer process is completed ((c) in the figure).

つぎに図示しないがチップダイシング後にパッケージに組立てて製品が完成する。
裏面側のn層とn層のn/n接合25(界面)の位置が裏面17から10μm離れることで、工程中に数ミクロン深さの裏面キズ(裏面についたキズ)が発生しても耐圧は低下しない。
この場合も第1実施例と同様にエピタキシャル成長層の厚さを2μm〜50μmとし、望ましくは10μm程度以上とするとよい。
Next, although not shown, the product is completed by assembling into a package after chip dicing.
The back surface side n layer and the n + layer n / n + junction 25 (interface) are separated from the back surface 10 by 10 μm, resulting in back surface scratches (scratches on the back surface) of several microns in the process. However, the pressure resistance does not decrease.
Also in this case, the thickness of the epitaxial growth layer is set to 2 μm to 50 μm, preferably about 10 μm or more, as in the first embodiment.

尚、前記のMOSFETはプレーナゲート型であるが図示しないトレンチゲート型の場合も同様の効果が期待できる。   Although the MOSFET is a planar gate type, the same effect can be expected in the case of a trench gate type (not shown).

この発明の第1実施例の半導体装置の製造方法であり、(a)〜(c)は工程順に示した要部製造工程断面図BRIEF DESCRIPTION OF THE DRAWINGS It is a manufacturing method of the semiconductor device of 1st Example of this invention, (a)-(c) is principal part manufacturing process sectional drawing shown to process order この発明の第2実施例の半導体装置の製造方法であり、(a)〜(c)は工程順に示した要部製造工程断面図FIG. 2 is a method for manufacturing a semiconductor device according to a second embodiment of the present invention, wherein FIGS. 第2実施例により製造された1200V耐圧の逆阻止IGBTの逆漏れ電流を示す図The figure which shows the reverse leakage current of the reverse blocking IGBT of 1200V withstand voltage | pressure manufactured by 2nd Example. この発明の第3実施例の半導体装置の製造方法であり、(a)〜(c)は工程順に示した要部製造工程断面図FIG. 4 is a method for manufacturing a semiconductor device according to a third embodiment of the present invention, in which (a) to (c) are cross-sectional views of the main part manufacturing process shown in the order of processes; NPT(ノンパンチスルー)型IGBTの要部断面図Cross-sectional view of main parts of NPT (non-punch through) IGBT 従来のFS型IGBTの要部断面図Cross-sectional view of the main part of a conventional FS type IGBT 逆阻止IGBTの端部の要部断面図Main part sectional drawing of the edge part of reverse blocking IGBT

符号の説明Explanation of symbols

1 n半導体基板
2 pベース領域
3 nエミッタ領域
4 ゲート絶縁膜
5 ゲート電極
6 層間絶縁膜
7 裏面(研削前)
8 裏面(平坦化後)
9 FS層
10 エミッタ電極
11 ポリイミド膜
12、15 pコレクタ層
13 コレクタ電極
14、25 n/n接合
16 n/p接合
17 裏面(エピタキシャル成長層の表面)
21 nソース領域
22 nドレイン領域
23 ソース電極
24 ドレイン電極
1 n semiconductor substrate 2 p base region 3 n emitter region 4 gate insulating film 5 gate electrode 6 interlayer insulating film 7 back surface (before grinding)
8 Back side (after flattening)
9 FS layer 10 Emitter electrode 11 Polyimide film 12, 15 p Collector layer 13 Collector electrode 14, 25 n / n + junction 16 n / p + junction 17 Back surface (surface of epitaxial growth layer)
21 n source region 22 n drain region 23 source electrode 24 drain electrode

Claims (3)

半導体基板の一方の主面にMOSゲート構造を形成する工程と、前記MOSゲート構造上に層間絶縁膜を形成する工程と、他方の主面を研削し平坦化する工程と、平坦化した他方の主面にエピタキシャル成長層を形成する工程と、前記エピタキシャル成長層を形成した後前記層間絶縁膜上に第1主電極を形成する工程と、前記エピタキシャル成長層上に第2主電極を形成する工程とをこの順に有し、前記半導体基板のダイシングされる領域であってチップダイシング後に各チップの側面が覆われるよう該半導体基板と異なる導電型の不純物層を前記半導体基板の一方の主面にMOSゲート構造を形成する工程の前に各チップの枠状に形成し、前記エピタキシャル成長層が5μm以上50μm以下の厚さで前記半導体基板と異なる導電型で形成されることを特徴とする半導体装置の製造方法。 Forming a MOS gate structure on one main surface of the semiconductor substrate; forming an interlayer insulating film on the MOS gate structure; grinding and flattening the other main surface; forming an epitaxial growth layer on the main surface, forming a first main electrode on the interlayer insulating film after forming the epitaxial growth layer, and forming a second main electrode on the epitaxial growth layer on the turn having, a MOS gate structure on one principal surface of the semiconductor substrate with a conductivity type different from said semiconductor substrate an impurity layer of that side of each chip is covered an area which is diced the semiconductor substrate after chip dicing Before the forming step, each chip is formed in a frame shape, and the epitaxial growth layer is formed with a thickness of 5 μm or more and 50 μm or less and a conductivity type different from that of the semiconductor substrate. A method for manufacturing a semiconductor device. 前記エピタキシャル成長層を形成するときに原料ガスと同時にエッチングガスを流して、平坦化した他方の主面に半導体層をエピタキシャル成長させることを特徴とする請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein when the epitaxial growth layer is formed, an etching gas is flowed simultaneously with the source gas to epitaxially grow the semiconductor layer on the other planarized main surface. 前記MOSゲート構造が、プレーナゲート型またはトレンチゲート型であることを特徴とする請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the MOS gate structure is a planar gate type or a trench gate type.
JP2006230504A 2006-08-28 2006-08-28 Manufacturing method of semiconductor device Expired - Fee Related JP5301091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230504A JP5301091B2 (en) 2006-08-28 2006-08-28 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230504A JP5301091B2 (en) 2006-08-28 2006-08-28 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2008053611A JP2008053611A (en) 2008-03-06
JP5301091B2 true JP5301091B2 (en) 2013-09-25

Family

ID=39237340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230504A Expired - Fee Related JP5301091B2 (en) 2006-08-28 2006-08-28 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5301091B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5507118B2 (en) * 2009-05-20 2014-05-28 富士電機株式会社 Semiconductor device and manufacturing method thereof
KR20130091200A (en) 2012-02-07 2013-08-16 삼성전자주식회사 Transistor and method of manufacturing the same
JP6924593B2 (en) * 2017-03-21 2021-08-25 信越半導体株式会社 Manufacturing method of epitaxial wafer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223705A (en) * 1999-01-29 2000-08-11 Nissan Motor Co Ltd Semiconductor device
JP2003197633A (en) * 2001-12-26 2003-07-11 Toshiba Corp Manufacturing method for semiconductor device
JP4136503B2 (en) * 2002-03-12 2008-08-20 富士電機デバイステクノロジー株式会社 Insulated gate bipolar transistor
JP4487656B2 (en) * 2004-04-14 2010-06-23 株式会社デンソー Manufacturing method of semiconductor device
JP2006019556A (en) * 2004-07-02 2006-01-19 Toyota Motor Corp Semiconductor device and method for manufacturing the same
JP4882214B2 (en) * 2004-09-17 2012-02-22 富士電機株式会社 Reverse blocking insulated gate semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2008053611A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP5614451B2 (en) Manufacturing method of semiconductor device
JP3918625B2 (en) Semiconductor device and manufacturing method thereof
US7943439B2 (en) Method for manufacturing semiconductor apparatus
WO2012124190A1 (en) Semiconductor-device manufacturing method and semiconductor device
KR101923127B1 (en) Semiconductor device and method for manufacturing semiconductor device
US7713794B2 (en) Manufacturing method of a semiconductor device
JP2013012707A (en) Semiconductor device manufacturing method and semiconductor device
JPH1154519A (en) Semiconductor device and its manufacture
EP2897159B1 (en) High-voltage super-junction igbt manufacturing method
US5952679A (en) Semiconductor substrate and method for straightening warp of semiconductor substrate
US10249499B2 (en) Method for manufacturing a semiconductor device comprising a thin semiconductor wafer
JP5301091B2 (en) Manufacturing method of semiconductor device
US9530859B2 (en) Semiconductor device and manufacturing method of same
WO2013172140A1 (en) Semiconductor device
JP6125568B2 (en) Optimization layer for semiconductors
US9048093B2 (en) Method for manufacturing silicon carbide semiconductor device
JP5228308B2 (en) Manufacturing method of semiconductor device
JP4951872B2 (en) Manufacturing method of semiconductor device
JP3967045B2 (en) Semiconductor device and manufacturing method thereof
JP2012004174A (en) Reverse-blocking insulating gate type bipolar transistor and method of manufacturing the same
JP2006086414A (en) Reverse blocking insulated gate semiconductor device and its manufacturing method
KR20140033078A (en) Bipolar punch-through semiconductor device and method for manufacturing such a semiconductor device
KR101822166B1 (en) Method for manufacturing a power semiconductor device
JP4806908B2 (en) Manufacturing method of semiconductor device
JP5353036B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121207

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees