JP4951872B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4951872B2
JP4951872B2 JP2005111590A JP2005111590A JP4951872B2 JP 4951872 B2 JP4951872 B2 JP 4951872B2 JP 2005111590 A JP2005111590 A JP 2005111590A JP 2005111590 A JP2005111590 A JP 2005111590A JP 4951872 B2 JP4951872 B2 JP 4951872B2
Authority
JP
Japan
Prior art keywords
main surface
phosphorus
layer
manufacturing
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005111590A
Other languages
Japanese (ja)
Other versions
JP2006294772A (en
Inventor
達也 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005111590A priority Critical patent/JP4951872B2/en
Publication of JP2006294772A publication Critical patent/JP2006294772A/en
Application granted granted Critical
Publication of JP4951872B2 publication Critical patent/JP4951872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)

Description

本発明は、MOSFET(絶縁ゲート型電界効果トランジスタ)、IGBT(絶縁ゲート型バイポーラトランジスタ)、超接合半導体装置、BJT(バイポーラ接合トランジスタ)、サイリスタ、ダイオードなどの深いプレーナ型主接合を有する高耐圧パワー半導体装置の製造方法に関し、詳しくは、半導体特性に悪影響を及ぼす結晶欠陥などをゲッタリングにより減少させることにより特性向上を図る高耐圧パワー半導体装置の製造方法に関する。本発明は、特には、電力変換装置などに使用される逆阻止IGBTなどの半導体装置の製造方法に関する。   The present invention is a high withstand voltage power having a deep planar type main junction such as MOSFET (insulated gate field effect transistor), IGBT (insulated gate bipolar transistor), super junction semiconductor device, BJT (bipolar junction transistor), thyristor, diode. More particularly, the present invention relates to a method for manufacturing a high breakdown voltage power semiconductor device that improves characteristics by reducing crystal defects or the like that adversely affect semiconductor characteristics by gettering. In particular, the present invention relates to a method for manufacturing a semiconductor device such as a reverse blocking IGBT used in a power conversion device or the like.

図15に示したような従来のプレーナ型接合構造を有するIGBT(絶縁ゲート型バイポーラトランジスタ)は、その主要な搭載回路であるインバータ回路やチョパー回路では、直流電源下で使用されるので、順方向の耐圧さえ確保できれば問題なかった。
一方、よりいっそうの電力変換効率改善のために開発されたマトリクスコンバータでは、搭載される高速スイッチング素子用として逆阻止IGBTが求められるようになった。逆阻止IGBTは双方向の耐圧特性を有するので、双方向IGBTとも言われる。
逆阻止IGBTを図16に示す。逆阻止IGBTは逆阻止耐圧を確保するために不純物拡散層が半導体基板1の一方の主面から他方の主面に達する分離層2を有している。この分離層2の形成はシリコン基板1の第一主面の面荒れを防ぐために酸素雰囲気で高温長時間の不純物拡散を必要とする。この不純物拡散の条件は、たとえば、耐圧600V用デバイスでは1300℃で100時間程度、1200V用の耐圧デバイスでは1300℃で200時間程度である。このような高温長時間の熱処理が酸素雰囲気でシリコン基板1に加えられると、1300℃の高温シリコン基板1中では酸素の拡散係数が極めて大きいことに加えて、高温の処理時間が長いので(100時間以上)、酸素は基板1の厚さ全体に亘ってほぼ一様に高濃度に取り込まれ、その結果、基板1はフラットな固溶限濃度分布を持つようになる。しかも、取り込まれた酸素は、ドナー化してドリフト層の不純物濃度を高くして耐圧を低下させたり、この高濃度酸素に起因する結晶欠陥を引き起こし、逆阻止IGBTの順逆漏れ電流を増大させ、順耐圧、逆耐圧低下の原因となるという問題を抱えている。
An IGBT (insulated gate bipolar transistor) having a conventional planar junction structure as shown in FIG. 15 is used under a direct current power source in an inverter circuit and a chopper circuit, which are the main mounted circuits. There was no problem as long as the withstand voltage was secured.
On the other hand, in a matrix converter developed for further improving power conversion efficiency, a reverse blocking IGBT has been required for a high-speed switching element to be mounted. Since the reverse blocking IGBT has a bidirectional withstand voltage characteristic, it is also referred to as a bidirectional IGBT.
A reverse blocking IGBT is shown in FIG. The reverse blocking IGBT has a separation layer 2 in which the impurity diffusion layer reaches from the one main surface of the semiconductor substrate 1 to the other main surface in order to ensure a reverse blocking breakdown voltage. The formation of the separation layer 2 requires high-temperature and long-time impurity diffusion in an oxygen atmosphere in order to prevent surface roughness of the first main surface of the silicon substrate 1. The impurity diffusion condition is, for example, about 1 hour at 1300 ° C. for a device with a withstand voltage of 600V and about 200 hours at 1300 ° C. with a withstand voltage device for 1200V. When such a high-temperature and long-time heat treatment is applied to the silicon substrate 1 in an oxygen atmosphere, the high-temperature silicon substrate 1 at 1300 ° C. has a very high oxygen diffusion coefficient and a long high-temperature treatment time (100 Over a period of time), oxygen is taken in a high concentration almost uniformly throughout the entire thickness of the substrate 1, so that the substrate 1 has a flat solid solution concentration distribution. In addition, the incorporated oxygen becomes a donor and increases the impurity concentration of the drift layer to lower the breakdown voltage, or causes crystal defects due to the high concentration oxygen, and increases the forward and reverse leakage currents of the reverse blocking IGBT. It has a problem of causing a decrease in breakdown voltage and reverse breakdown voltage.

このような問題への対策として、分離層の形成に伴って発生した前記結晶欠陥を除去するための技術としてゲッタリング法が知られている。前述した高濃度酸素に起因する結晶欠陥に対しては、基板の第二主面にゲッタリングサイトを形成するエクストリンシックゲッタリング(Extrinsic Gettering:EG)と言われる方法が用いられる。このEG法では、第二主面に、機械的歪み層を形成するサンドブラスト法や多結晶シリコン膜を堆積するポリバックシール法(Poly−Si Back Seal:PBS(登録商標))があるが、逆阻止IGBTではポリバックシール法が用いられる。
その他、分離層形成による半導体特性に及ぼす悪影響を低減することに関する公知技術として、分離層を備える逆阻止IGBTを形成する際に、分離層の形成位置に予めトレンチを形成して拡散時間を短縮することにより、前述した酸素雰囲気での高温長時間の熱処理によるストレスを軽減して耐圧劣化を防ぐようにした発明が知られている(特許文献1)。
特開2004−336008号公報
As a countermeasure against such a problem, a gettering method is known as a technique for removing the crystal defects generated with the formation of the separation layer. For the above-described crystal defects caused by high-concentration oxygen, a method called extrinsic gettering (EG) for forming a gettering site on the second main surface of the substrate is used. In the EG method, there are a sand blast method for forming a mechanical strain layer and a poly back seal method (Poly-Si Back Seal: PBS (registered trademark)) for depositing a polycrystalline silicon film on the second main surface. A poly back seal method is used for the blocking IGBT.
In addition, as a known technique for reducing the adverse effect on the semiconductor characteristics due to the formation of the separation layer, when forming the reverse blocking IGBT having the separation layer, a trench is formed in advance at the formation position of the separation layer to shorten the diffusion time. Thus, an invention is known in which the stress caused by the above-described high-temperature and long-time heat treatment in an oxygen atmosphere is reduced to prevent deterioration of the breakdown voltage (Patent Document 1).
JP 2004-336008 A

しかしながら、前記EGとして、厚さ1.5μmの多結晶シリコンからなるポリバックシールを第二主面側に形成し、第一主面側に形成した酸化膜をマスクとして分離層拡散をして、その後第一主面側のマスク酸化膜除去後、第一主面側にMOSゲート構造を形成し、第二主面を、必要な厚さにまで研削により減厚して第二主面側にコレクタ層を形成して得られる逆阻止IGBTでは、第二主面に形成された前記ポリバックシールは分離拡散用マスク酸化膜形成後の段階で、既にほとんど単結晶化しており、ゲッタリング効果はほとんど見られなかった。
本発明は、以上述べた高温長時間の分離拡散を必要とする半導体装置の製造方法に伴う問題点に鑑みてなされたものであり、その目的とするところは、高温長時間の分離拡散に伴って半導体基板に導入される高濃度酸素に起因する結晶欠陥による耐圧特性への影響を低減できる半導体装置の製造方法を提供することである。
However, as the EG, a polyback seal made of polycrystalline silicon having a thickness of 1.5 μm is formed on the second main surface side, and the oxide layer formed on the first main surface side is used as a mask to diffuse the separation layer, Then, after removing the mask oxide film on the first main surface side, a MOS gate structure is formed on the first main surface side, and the second main surface is reduced to the required thickness by grinding to the second main surface side. In the reverse blocking IGBT obtained by forming the collector layer, the polyback seal formed on the second main surface is already almost single-crystallized at the stage after the formation of the separation diffusion mask oxide film, and the gettering effect is It was hardly seen.
The present invention has been made in view of the problems associated with the above-described method for manufacturing a semiconductor device that requires high-temperature and long-time separation and diffusion. The object of the present invention is to accompany high-temperature and long-time separation and diffusion. Another object of the present invention is to provide a method of manufacturing a semiconductor device that can reduce the influence on the breakdown voltage characteristics due to crystal defects caused by high concentration oxygen introduced into the semiconductor substrate.

特許請求の範囲の請求項1記載の発明によれば、前記目的は、n型の半導体基板の第一主面から前記半導体基板に酸化膜をマスクとしてp型の不純物を導入する第1の工程と、
前記第1の工程よりも後に、酸素雰囲気で高温熱処理することにより所要の深さのp型の分離層を形成し、それに伴って高濃度酸素に起因する結晶欠陥が前記半導体基板に生じる第2の工程と、
前記第2の工程よりも後に、リン元素を含む気体を用いて高温熱処理することにより第一主面と第二主面に高濃度のリンドープ層を形成すると共に、前記第二主面に形成された前記リンドープ層によって生ずる格子不整合が転位を起こし、ゲッタリング源となる第3の工程と、
前記第3の工程よりも後に、第二主面にアルゴンのイオン注入を行うことにより、第二主面にゲッタリング源となる結晶歪層を形成する第4の工程と、
前記第4の工程よりも後に、1000℃以上の熱処理を含む工程により、第一主面に所要の半導体機能領域を形成すると同時に、動作領域から前記ゲッタリング源に前記高濃度酸素に起因する結晶欠陥を取り込み、前記動作領域内の結晶欠陥の密度を小さくする第5の工程と、
前記第5の工程よりも後に、前記第二主面側の前記リンドープ層を除去するとともに前記分離層が露出するまで第二主面側から減厚する第6の工程と、
を有することを特徴とする半導体装置の製造方法とすることにより、達成される。
特許請求の範囲の請求項2記載の発明によれば、前記第3の工程は、前記第一主面の前記分離層に囲まれた所定領域にゲート絶縁膜と多結晶シリコン領域を形成した後、前記第一主面と前記第二主面の両面にリンドープを行うことにより、前記第一主面の前記多結晶シリコン領域をリンドープ導電層にすると共に、前記第二主面にも前記リンドープ層を形成するものであり、
前記第5の工程は、当該工程によって前記第一主面に所要のMOS構造を形成するものである、
ことを特徴とする特許請求の範囲の請求項1記載の半導体装置の製造方法とすることが好ましい。
According to the invention of claim 1, wherein the appended claims, the object is first to introduce p-type impurity of the first major surface or found before Symbol semiconductor substrate an oxide film of the n-type semiconductor substrate as a mask And the process of
After the first step , a high-temperature heat treatment is performed in an oxygen atmosphere to form a p-type separation layer having a required depth. Along with this, a crystal defect caused by high concentration oxygen occurs in the semiconductor substrate. And the process of
After the second step, a high-concentration phosphorus- doped layer is formed on the first main surface and the second main surface by high-temperature heat treatment using a gas containing phosphorus element, and is formed on the second main surface. A third step in which the lattice mismatch caused by the phosphorus-doped layer causes dislocation and becomes a gettering source;
Later than the third step, the line Ukoto ion implantation argon second principal, a fourth step of forming a crystal strain layer on the second main surface serves as a gettering source,
After the fourth step , a required semiconductor functional region is formed on the first main surface by a step including heat treatment at 1000 ° C. or higher, and at the same time, a crystal caused by the high concentration oxygen from the operation region to the gettering source A fifth step of capturing defects and reducing the density of crystal defects in the operating region;
Later than the fifth step, a sixth step the separation layer to the thickness reduced from the second main surface side to expose with removing the phosphorus-doped layer of the second main surface side,
This is achieved by providing a method for manufacturing a semiconductor device characterized by comprising:
According to the second aspect of the present invention, the third step includes forming a gate insulating film and a polycrystalline silicon region in a predetermined region surrounded by the isolation layer on the first main surface. the phosphorus-doped by a row Ukoto on both sides of the first main surface and the second major surface, the polycrystalline silicon region of said first main surface as well as the phosphorus-doped conductive layer, said well to said second major surface phosphorous doping Forming a layer ,
In the fifth step , a required MOS structure is formed on the first main surface by the step .
The method of manufacturing a semiconductor device according to claim 1 is preferable.

特許請求の範囲の請求項3記載の発明によれば、前記第1の工程は、前記第二主面にポリシリコンバックシールが形成された前記半導体基板に前記分離層を形成することを特徴とする特許請求の範囲の請求項2記載の半導体装置の製造方法とすることがより好ましい。
許請求の範囲の請求項記載の発明によれば、前記リンドープ層の形成に用いる前記リン元素を含む材料としてオキシ塩化リンまたはホスフィンを用いることを特徴とする特許請求の範囲の請求項1乃至3のいずれか一項に記載の半導体装置の製造方法とすることがより望ましい。
According to the invention of claim 3, wherein in the claims, the first step includes a comprising forming said isolation layer on said semiconductor substrate polysilicon back seal is formed on the second main surface and more preferably in the method according to claim 2, wherein the range of the claims.
According to the invention of claim 4, wherein the range of patent claims, appended claims, which comprises using a material as phosphorus oxychloride or phosphine containing the phosphorus element to be used for formation of the phosphorus-doped layer 1 It is more desirable to use the method for manufacturing a semiconductor device according to any one of Items 1 to 3.

特許請求の範囲の請求項記載の発明によれば、半導体装置が逆阻止IGBT(絶縁ゲート型バイポーラトランジスタ)である特許請求の範囲の請求項1乃至のいずれか一項に記載の半導体装置の製造方法とすることが好適である。 According to the invention described in claim 5 , the semiconductor device according to any one of claims 1 to 4 , wherein the semiconductor device is a reverse blocking IGBT (insulated gate bipolar transistor). It is preferable to use this manufacturing method.

本発明によれば、高温長時間の分離拡散に伴って半導体基板に導入される高濃度酸素に起因する結晶欠陥による耐圧特性への影響を低減できる半導体装置の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the semiconductor device which can reduce the influence on the pressure | voltage resistance characteristic by the crystal defect resulting from the high concentration oxygen introduce | transduced into a semiconductor substrate with high temperature long time separation diffusion can be provided.

以下、本発明の半導体装置の製造方法に関し、具体的には逆阻止IGBTを例に挙げて、図面を用いて詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。
以下説明する半導体装置は1200V耐圧の逆阻止IGBTの例である。以下説明する断面図はシリコン基板のうち、IGBTの一素子分に相当する個所の断面である。厚さ525μmで不純物濃度7.5×1013cm−3のFZ−n型半導体基板1(図1)の第二主面9−1にCVD法により1.5μmの厚さのポリシコン膜を形成してポリバックシール1aとする(図2)。ポリバックシールの形成は結晶歪層のゲッタリングすることを目的とするものであるが、逆阻止IGBTの場合は、ポリバックシール形成後のプロセスで、分離層拡散用マスクとなる厚い初期酸化膜の形成と分離層形成による長時間拡散によって、多量の酸素起因の欠陥が生成される。その際、ポリシリコンが単結晶化して、ほとんどゲッタリング効果が無くなり、ポリバックシール単独では、逆阻止IGBTは順逆漏れ電流が大きくなり、耐圧の良品率が小さくなってしまうので、ポリバックシールの形成工程は省略することもできる。
Hereinafter, a method for manufacturing a semiconductor device according to the present invention will be described in detail with reference to the drawings, taking a reverse blocking IGBT as an example. The present invention is not limited to the description of the examples described below unless it exceeds the gist.
The semiconductor device described below is an example of a reverse blocking IGBT having a withstand voltage of 1200V. The cross-sectional view described below is a cross section of a portion corresponding to one element of the IGBT in the silicon substrate. A polysilicon film having a thickness of 1.5 μm is formed on the second main surface 9-1 of the FZ-n type semiconductor substrate 1 (FIG. 1) having a thickness of 525 μm and an impurity concentration of 7.5 × 10 13 cm −3 by the CVD method. Thus, a poly back seal 1a is obtained (FIG. 2). The formation of the poly back seal is intended to getter the crystal strain layer. However, in the case of reverse blocking IGBT, a thick initial oxide film serving as a separation layer diffusion mask in the process after the poly back seal is formed. A large amount of oxygen-induced defects are generated by the long-time diffusion due to the formation of the oxide and the separation layer. At that time, the polysilicon becomes a single crystal and almost no gettering effect is obtained. With the poly back seal alone, the reverse blocking IGBT has a large forward / reverse leakage current, and the yield rate of the withstand voltage is reduced. The formation process can be omitted.

続いて、第一主面9−2に厚さ2.4μm(耐圧クラスが600Vの場合は1.6μm)の初期酸化膜11を形成し、後の工程でpベース領域2が形成される箇所の周辺部に幅100μmの開口部12をフォトエッチングにより形成する(図3)。次に、第一主面9−2にボロンソースを塗布後、熱処理によりボロンのデポジション領域を形成し、1200℃以上の温度において酸素雰囲気中で深さ200μm(耐圧クラスが600Vの場合は100μm)までボロンを拡散し、分離層2を形成する(図4)。
分離層拡散用のマスク酸化膜を除去後(図5)に、ゲート酸化膜5と多結晶シリコン膜6形成後(図6)に、多結晶シリコン膜6に導電性を持たせてゲート電極とするためのリンドープをする際に、あらかじめ第二主面側のゲート酸化膜5、多結晶シリコン膜6を除去してからPOCl(オキシ塩化リン)やPH(ホスフィン)などの気体を用いて高温熱処理、たとえば、キャリアガスとしてN(窒素)を用いて、920℃で1時間の条件によりドープすることで、リンの表面濃度が、1×1020cm−3の高濃度リンドープ層が第二主面にも形成される(図7)。第二主面側に形成される高濃度のリンドープ層によって生ずる格子不整合が転位を起こし、それがゲッタリング源となる。このゲッタリング源により、分離拡散の際に形成された結晶歪層が改善され、結晶性を向上させて半導体特性を改善することができるのである。このリンゲッタプロセスが本発明に関して、最も重要な点である。さらに、この段階で、第二主面からAr(アルゴン)をドーズ量1×1015cm−2、加速電圧100keVでイオン注入してもよい。Arのイオン注入によっても第二主面にゲッタリング源となる結晶歪層が形成される。その後、第一主面側に所要のパターニングを施し(図8)、セルフアライメント法などにより、pウエル層3aの形成を1100℃/200分、pベース層(チャネル層)3bの形成を1150℃/120分で行う。これらの1000℃以上の高温熱処理の際に、IGBTの動作領域から、前記ゲッタリング源に酸素起因の欠陥を取り込むことができる(エクストリンシックゲッタリング)ので、前記動作領域内の結晶欠陥の密度を小さくすることができる。次に、nエミッタ層4および第二p層3cをそれぞれ砒素およびボロンのイオン注入により形成し、1000℃/30分のアニール処理により活性化させ、エミッタ金属電極7を形成し、必要に応じてポリイミド膜等の保護膜(図示せず)を被着する(図9)。またさらに、IGBTの第一主面にMOS構造形成後に逆漏れ電流を低減するために、電子線を6Mradで導入する。また、高速化を図るために、電子線照射やヘリウム照射を行うこともある。
Subsequently, an initial oxide film 11 having a thickness of 2.4 μm (1.6 μm when the withstand voltage class is 600 V) is formed on the first main surface 9-2, and the p base region 2 is formed in a later process. An opening 12 having a width of 100 μm is formed in the periphery of the substrate by photoetching (FIG. 3). Next, after applying a boron source to the first main surface 9-2, a boron deposition region is formed by heat treatment, and the depth is 200 μm in an oxygen atmosphere at a temperature of 1200 ° C. or higher (100 μm when the withstand voltage class is 600 V). Boron is diffused until a separation layer 2 is formed (FIG. 4).
After removing the separation layer diffusion mask oxide film (FIG. 5), after forming the gate oxide film 5 and the polycrystalline silicon film 6 (FIG. 6), the polycrystalline silicon film 6 is made conductive so that the gate electrode and When phosphorus doping is performed, a gas such as POCl 3 (phosphorus oxychloride) or PH 3 (phosphine) is used after removing the gate oxide film 5 and the polycrystalline silicon film 6 on the second main surface side in advance. A high-concentration phosphorus-doped layer having a surface concentration of phosphorus of 1 × 10 20 cm −3 can be obtained by performing high-temperature heat treatment, for example, using N 2 (nitrogen) as a carrier gas and doping at 920 ° C. for 1 hour. It is also formed on the two principal surfaces (FIG. 7). The lattice mismatch caused by the high-concentration phosphorus-doped layer formed on the second main surface side causes dislocation, which becomes a gettering source. This gettering source improves the crystal strain layer formed during the separation and diffusion, and improves the crystallinity and improves the semiconductor characteristics. This ring getter process is the most important aspect of the present invention. Further, at this stage, Ar (argon) may be ion-implanted from the second main surface at a dose of 1 × 10 15 cm −2 and an acceleration voltage of 100 keV. A crystal strain layer serving as a gettering source is also formed on the second main surface by Ar ion implantation. Thereafter, required patterning is performed on the first main surface side (FIG. 8), and the p + well layer 3a is formed at 1100 ° C./200 minutes and the p base layer (channel layer) 3b is formed by 1150 by a self-alignment method or the like. C./120 minutes. During these high-temperature heat treatments at 1000 ° C. or higher, oxygen-induced defects can be taken into the gettering source from the IGBT operating region (extrinsic gettering), so that the density of crystal defects in the operating region can be reduced. Can be small. Next, the n + emitter layer 4 and the second p + layer 3c are formed by ion implantation of arsenic and boron, respectively, and activated by annealing at 1000 ° C./30 minutes to form the emitter metal electrode 7, Accordingly, a protective film (not shown) such as a polyimide film is applied (FIG. 9). Furthermore, an electron beam is introduced at 6 Mrad in order to reduce the reverse leakage current after forming the MOS structure on the first main surface of the IGBT. In addition, electron beam irradiation or helium irradiation may be performed in order to increase the speed.

次に、第二主面を200μmまで機械的に削る(耐圧クラスが600Vの場合は100μm)。第二主面を削った時のストレスや歪を除去するために、化学的エッチングや化学的機械的ポリッシングを行う。化学的エッチングの場合では、薬液のエッチングレートは、0.25〜0.45μm/secで処理すると面状態が良好になる。化学的機械的ポリシングの場合では、ポリシング量を3μm程度で行う。化学的機械的ポリシング処理を行うと、研削後の荒れた面を鏡面にすることができる。逆阻止IGBTの逆耐圧特性の改善に非常に有効である(図10)。最終的にFZシリコン基板1の厚さを180μm程度にし、その削り面10にp型分離拡散層2を露出させる。
次に第二主面に、ドーズ量5×1013cm−2のボロンをイオン注入し400℃程度で1時間程度の低温アニ−ルを行い、活性化したボロンのピーク濃度が1×1017cm−3程度で厚さが1μm程度のコレクタ層8を形成し(図11)、さらに第二主面にコレクタ電極膜8−1をオーム接触になるように形成する。最後に分離層の中心2−1で半導体基板を切断し、図12に示す逆阻止IGBTが作られる。この逆阻止IGBTは図16に示すIGBTと同じものである。
Next, the second main surface is mechanically cut down to 200 μm (100 μm when the withstand voltage class is 600 V). Chemical etching or chemical mechanical polishing is performed in order to remove stress and strain when the second main surface is cut. In the case of chemical etching, the surface condition is improved by processing the chemical solution at an etching rate of 0.25 to 0.45 μm / sec. In the case of chemical mechanical polishing, the polishing amount is about 3 μm. When the chemical mechanical polishing process is performed, the rough surface after grinding can be made into a mirror surface. This is very effective in improving the reverse breakdown voltage characteristics of the reverse blocking IGBT (FIG. 10). Finally, the thickness of the FZ silicon substrate 1 is set to about 180 μm, and the p + type separation diffusion layer 2 is exposed on the shaving surface 10.
Next, boron having a dose of 5 × 10 13 cm −2 is ion-implanted into the second main surface, and low-temperature annealing is performed at about 400 ° C. for about 1 hour. The peak concentration of activated boron is 1 × 10 17. A collector layer 8 having a thickness of about cm −3 and a thickness of about 1 μm is formed (FIG. 11), and a collector electrode film 8-1 is formed on the second main surface so as to be in ohmic contact. Finally, the semiconductor substrate is cut at the center 2-1 of the separation layer to produce the reverse blocking IGBT shown in FIG. This reverse blocking IGBT is the same as the IGBT shown in FIG.

また、前記の第二主面のpコレクタ層8のピーク濃度が5×1016cm−3未満では、注入効率が低下して、オン電圧が上昇する。また、逆電圧印加時にpコレクタ層8が完全に空乏化して逆耐圧も低下する。一方、1×1018cm−3を超える注入される少数キャリアが増加して逆回復電流も増大するので、ピーク濃度は5×1016cm−3以上で1×1018cm−3以下が望ましい。
図13に、前述のリンゲッタプロセス有無の場合の室温における順漏れ電流値の比較、図14にリンゲッタプロセス有無の場合の室温における逆漏れ電流値の比較を示した。これらの図から、リンゲッタプロセスを行うと順漏れ、逆漏れ電流値は、行わない場合に比べて約半分になることが分かる。その結果、リンゲッタプロセスを行うことにより、順耐圧、逆耐圧の良品率を90%以上にすることができる。
前記結晶欠陥を含有するリンゲッタ層は前記ゲッタリング効果を奏した後に、第二主面研削工程により除去されるので、完成した逆阻止IGBTに残って二次的な悪影響を及ぼすこともない。
Further, when the peak concentration of the p + collector layer 8 on the second main surface is less than 5 × 10 16 cm −3 , the injection efficiency is lowered and the on-voltage is increased. In addition, the p + collector layer 8 is completely depleted when a reverse voltage is applied, and the reverse breakdown voltage is also reduced. On the other hand, since the number of injected minority carriers exceeding 1 × 10 18 cm −3 increases and the reverse recovery current also increases, the peak concentration is preferably 5 × 10 16 cm −3 or more and 1 × 10 18 cm −3 or less. .
FIG. 13 shows a comparison of the forward leakage current value at room temperature with and without the above-described ring getter process, and FIG. 14 shows a comparison of the reverse leakage current value at room temperature with and without the ring getter process. From these figures, it can be seen that when the ring getter process is performed, the forward leakage and reverse leakage current values are about half that of the case where the ring leakage process is not performed. As a result, by performing the ring getter process, the non-defective product ratio of the forward breakdown voltage and the reverse breakdown voltage can be made 90% or more.
Since the ring getter layer containing the crystal defect exhibits the gettering effect and is removed by the second main surface grinding step, it does not remain in the completed reverse blocking IGBT and does not have a secondary adverse effect.

また、前述の実施例では、逆阻止IGBTの製造方法について説明したが、本発明は、逆阻止IGBTだけでなく、分離拡散層を備えるダイオード、従来のIGBTなど他の半導体装置にも同様に適用できる。   In the above-described embodiment, the manufacturing method of the reverse blocking IGBT has been described. However, the present invention is applied not only to the reverse blocking IGBT but also to other semiconductor devices such as a diode having a separation diffusion layer and a conventional IGBT. it can.

本発明にかかる逆阻止IGBTの製造方法を示す断面図(その1)である。It is sectional drawing (the 1) which shows the manufacturing method of reverse blocking IGBT concerning this invention. 本発明にかかる逆阻止IGBTの製造方法を示す断面図(その2)である。It is sectional drawing (the 2) which shows the manufacturing method of reverse blocking IGBT concerning this invention. 本発明にかかる逆阻止IGBTの製造方法を示す断面図(その3)である。It is sectional drawing (the 3) which shows the manufacturing method of reverse blocking IGBT concerning this invention. 本発明にかかる逆阻止IGBTの製造方法を示す断面図(その4)である。It is sectional drawing (the 4) which shows the manufacturing method of reverse blocking IGBT concerning this invention. 本発明にかかる逆阻止IGBTの製造方法を示す断面図(その5)である。It is sectional drawing (the 5) which shows the manufacturing method of reverse blocking IGBT concerning this invention. 本発明にかかる逆阻止IGBTの製造方法を示す断面図(その6)である。It is sectional drawing (the 6) which shows the manufacturing method of reverse blocking IGBT concerning this invention. 本発明にかかる逆阻止IGBTの製造方法を示す断面図(その7)である。It is sectional drawing (the 7) which shows the manufacturing method of reverse blocking IGBT concerning this invention. 本発明にかかる逆阻止IGBTの製造方法を示す断面図(その8)である。It is sectional drawing (the 8) which shows the manufacturing method of reverse blocking IGBT concerning this invention. 本発明にかかる逆阻止IGBTの製造方法を示す断面図(その9)である。It is sectional drawing (the 9) which shows the manufacturing method of reverse blocking IGBT concerning this invention. 本発明にかかる逆阻止IGBTの製造方法を示す断面図(その10)である。It is sectional drawing (the 10) which shows the manufacturing method of reverse blocking IGBT concerning this invention. 本発明にかかる逆阻止IGBTの製造方法を示す断面図(その11)である。It is sectional drawing (the 11) which shows the manufacturing method of reverse blocking IGBT concerning this invention. 本発明にかかる逆阻止IGBTの製造方法を示す断面図(その12)である。It is sectional drawing (the 12) which shows the manufacturing method of reverse blocking IGBT concerning this invention. 本発明の効果を示すグラフ図である。It is a graph which shows the effect of this invention. 本発明の効果を示すグラフ図である。It is a graph which shows the effect of this invention. 従来の順方向IGBTの断面図である。It is sectional drawing of the conventional forward direction IGBT. 本発明により得られる逆阻止IGBTの断面図である。It is sectional drawing of reverse blocking IGBT obtained by this invention.

符号の説明Explanation of symbols

1、 半導体基板
1a ポリバックシール
2、 分離層
3a、 pウエル層
3b、 チャネル層
3c、 第二p
4、 nエミッタ層
5 ゲート酸化膜
6 ゲート電極
7 エミッタ電極
8 コレクタ層
8−1、 コレクタ電極。
DESCRIPTION OF SYMBOLS 1, Semiconductor substrate 1a Polyback seal 2, Separation layer 3a, p well layer 3b, channel layer 3c, second p + layer 4, n emitter layer 5 gate oxide film 6 gate electrode 7 emitter electrode 8 collector layer 8-1, Collector electrode.

Claims (5)

n型の半導体基板の第一主面から前記半導体基板に酸化膜をマスクとしてp型の不純物を導入する第1の工程と、
前記第1の工程よりも後に、酸素雰囲気で高温熱処理することにより所要の深さのp型の分離層を形成し、それに伴って高濃度酸素に起因する結晶欠陥が前記半導体基板に生じる第2の工程と、
前記第2の工程よりも後に、リン元素を含む気体を用いて高温熱処理することにより第一主面と第二主面に高濃度のリンドープ層を形成すると共に、前記第二主面に形成された前記リンドープ層によって生ずる格子不整合が転位を起こし、ゲッタリング源となる第3の工程と、
前記第3の工程よりも後に、第二主面にアルゴンのイオン注入を行うことにより、第二主面にゲッタリング源となる結晶歪層を形成する第4の工程と、
前記第4の工程よりも後に、1000℃以上の熱処理を含む工程により、第一主面に所要の半導体機能領域を形成すると同時に、動作領域から前記ゲッタリング源に前記高濃度酸素に起因する結晶欠陥を取り込み、前記動作領域内の結晶欠陥の密度を小さくする第5の工程と、
前記第5の工程よりも後に、前記第二主面側の前記リンドープ層を除去するとともに前記分離層が露出するまで第二主面側から減厚する第6の工程と、
を有することを特徴とする半導体装置の製造方法。
a first step of introducing the p-type impurity to n-type first major surface or found before Symbol semiconductor substrate an oxide film of the semiconductor substrate as a mask,
After the first step , a high-temperature heat treatment is performed in an oxygen atmosphere to form a p-type separation layer having a required depth. Along with this, a crystal defect caused by high concentration oxygen occurs in the semiconductor substrate. And the process of
After the second step, a high-concentration phosphorus- doped layer is formed on the first main surface and the second main surface by high-temperature heat treatment using a gas containing phosphorus element, and is formed on the second main surface. A third step in which the lattice mismatch caused by the phosphorus-doped layer causes dislocation and becomes a gettering source;
Later than the third step, the line Ukoto ion implantation argon second principal, a fourth step of forming a crystal strain layer on the second main surface serves as a gettering source,
After the fourth step , a required semiconductor functional region is formed on the first main surface by a step including heat treatment at 1000 ° C. or higher, and at the same time, a crystal caused by the high concentration oxygen from the operation region to the gettering source A fifth step of capturing defects and reducing the density of crystal defects in the operating region;
Later than the fifth step, a sixth step the separation layer to the thickness reduced from the second main surface side to expose with removing the phosphorus-doped layer of the second main surface side,
A method for manufacturing a semiconductor device, comprising:
前記第3の工程は、前記第一主面の前記分離層に囲まれた所定領域にゲート絶縁膜と多結晶シリコン領域を形成した後、前記第一主面と前記第二主面の両面にリンドープを行うことにより、前記第一主面の前記多結晶シリコン領域をリンドープ導電層にすると共に、前記第二主面にも前記リンドープ層を形成するものであり、
前記第5の工程は、当該工程によって前記第一主面に所要のMOS構造を形成するものである、
ことを特徴とする請求項1記載の半導体装置の製造方法。
The third step includes forming a gate insulating film and a polycrystalline silicon region in a predetermined region surrounded by the isolation layer on the first main surface, and then forming both on the first main surface and the second main surface. the rows Ukoto phosphorus-doped, the polysilicon region of the first main surface as well as the phosphorus-doped conductive layer, which also form the phosphorus-doped layer on said second major surface,
In the fifth step , a required MOS structure is formed on the first main surface by the step .
The method of manufacturing a semiconductor device according to claim 1.
前記第1の工程は、前記第二主面にポリシリコンバックシールが形成された前記半導体基板に前記分離層を形成することを特徴とする請求項2記載の半導体装置の製造方法。 The first step is a method of manufacturing a semiconductor device according to claim 2, wherein forming said isolation layer on the semiconductor substrate having the a second main polysilicon back seal is formed. 前記リンドープ層の形成に用いる前記リン元素を含む材料としてオキシ塩化リンまたはホスフィンを用いることを特徴とする請求項1乃至3のいずれか一項に記載の半導体装置の製造方法。 4. The method of manufacturing a semiconductor device according to claim 1, wherein phosphorus oxychloride or phosphine is used as a material containing the phosphorus element used for forming the phosphorus doped layer. 5. 半導体装置が逆阻止IGBTであることを特徴とする請求項1乃至4のいずれか一項に記載の半導体装置の製造方法。 The semiconductor device manufacturing method according to claim 1, wherein the semiconductor device is a reverse blocking IGBT.
JP2005111590A 2005-04-08 2005-04-08 Manufacturing method of semiconductor device Expired - Fee Related JP4951872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005111590A JP4951872B2 (en) 2005-04-08 2005-04-08 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005111590A JP4951872B2 (en) 2005-04-08 2005-04-08 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2006294772A JP2006294772A (en) 2006-10-26
JP4951872B2 true JP4951872B2 (en) 2012-06-13

Family

ID=37415037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005111590A Expired - Fee Related JP4951872B2 (en) 2005-04-08 2005-04-08 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4951872B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104285285B (en) 2012-08-22 2017-03-01 富士电机株式会社 The manufacture method of semiconductor device
JP2015041720A (en) * 2013-08-23 2015-03-02 富士電機株式会社 Semiconductor device manufacturing method
JP6766522B2 (en) 2016-08-23 2020-10-14 富士電機株式会社 Semiconductor devices and methods for manufacturing semiconductor devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159741A (en) * 1984-12-31 1986-07-19 Sony Corp Manufacture of semiconductor device
JPH04262537A (en) * 1991-02-15 1992-09-17 Canon Inc Manufacture of photoelectric conversion device
JP3076202B2 (en) * 1994-07-12 2000-08-14 三菱マテリアルシリコン株式会社 Method of depositing polysilicon film for EG
JP3921764B2 (en) * 1997-12-04 2007-05-30 株式会社デンソー Manufacturing method of semiconductor device
JP4967200B2 (en) * 2000-08-09 2012-07-04 富士電機株式会社 Bidirectional IGBT with reverse blocking IGBTs connected in antiparallel

Also Published As

Publication number Publication date
JP2006294772A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
US10950461B2 (en) Method for manufacturing semiconductor device
US20160307993A1 (en) Semiconductor device and method of manufacturing semiconductor device
JP3684962B2 (en) Manufacturing method of semiconductor device
JP5641055B2 (en) Semiconductor device and manufacturing method thereof
JP4746927B2 (en) Manufacturing method of semiconductor device
WO2013141181A1 (en) Semiconductor device and semiconductor device manufacturing method
JP2006332199A (en) SiC SEMICONDUCTOR DEVICE
US5952679A (en) Semiconductor substrate and method for straightening warp of semiconductor substrate
JP7479315B2 (en) Semiconductor device and method for manufacturing the same
CN108010964B (en) IGBT device and manufacturing method thereof
JP4951872B2 (en) Manufacturing method of semiconductor device
US9385210B2 (en) Method for manufacturing semiconductor device using a gettering layer
JP4096722B2 (en) Manufacturing method of semiconductor device
JPH10326793A (en) Manufacture of semiconductor device
JP4892825B2 (en) Manufacturing method of semiconductor device
JP5179703B2 (en) Method of manufacturing reverse blocking insulated gate bipolar transistor
JP4882214B2 (en) Reverse blocking insulated gate semiconductor device and method for manufacturing the same
JP2006080269A (en) High breakdown voltage semiconductor device and its manufacturing method
JP4904635B2 (en) Semiconductor device and manufacturing method thereof
CN107452621B (en) Fast recovery diode and manufacturing method thereof
JP4821088B2 (en) Method of manufacturing reverse blocking insulated gate bipolar transistor
JP2008053610A (en) Insulated-gate bipolar transistor
JP2015041720A (en) Semiconductor device manufacturing method
JPH10335630A (en) Semiconductor device and its manufacture
JP5290491B2 (en) Method of manufacturing reverse blocking insulated gate bipolar transistor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees