JP5179703B2 - Method of manufacturing reverse blocking insulated gate bipolar transistor - Google Patents

Method of manufacturing reverse blocking insulated gate bipolar transistor Download PDF

Info

Publication number
JP5179703B2
JP5179703B2 JP2005000147A JP2005000147A JP5179703B2 JP 5179703 B2 JP5179703 B2 JP 5179703B2 JP 2005000147 A JP2005000147 A JP 2005000147A JP 2005000147 A JP2005000147 A JP 2005000147A JP 5179703 B2 JP5179703 B2 JP 5179703B2
Authority
JP
Japan
Prior art keywords
layer
region
conductivity type
drift layer
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005000147A
Other languages
Japanese (ja)
Other versions
JP2006190730A (en
Inventor
邦雄 望月
達也 内藤
学 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005000147A priority Critical patent/JP5179703B2/en
Publication of JP2006190730A publication Critical patent/JP2006190730A/en
Application granted granted Critical
Publication of JP5179703B2 publication Critical patent/JP5179703B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Element Separation (AREA)

Description

本発明は電力変換装置などに使用される絶縁ゲート形バイポーラトランジスタ(IGBT)に関する。さらに詳しくは双方向の耐圧特性を有する双方向IGBTデバイスまたは逆阻止IGBTデバイスに関する。   The present invention relates to an insulated gate bipolar transistor (IGBT) used in a power converter and the like. More particularly, the present invention relates to a bidirectional IGBT device or a reverse blocking IGBT device having bidirectional withstand voltage characteristics.

図4に示したような従来のプレーナ型pn接合構造を有するIGBT(絶縁ゲート型バイポーラトランジスタ)は、主要な用途であるインバータ回路やチョパー回路では、直流電源下で使用されるので、順方向の耐圧さえ確保できれば問題はなく、素子設計の段階から逆方向耐圧確保を考慮せずに作られていた。
しかし、最近、半導体電力変換装置において、AC(交流)/AC変換、AC/DC(直流)変換、DC/AC変換を行うのに、直接リンク形変換回路等のマトリクスコンバータに双方向スイッチング素子を使用することにより、回路の小型化、軽量化、高効率化、高速応答化および低コスト化を図る研究がなされるようになった。そこで、IGBTを逆並列接続することにより前記双方向スイッチング素子とするために、逆耐圧を持ったIGBTが要望されるようになった。
An IGBT (insulated gate bipolar transistor) having a conventional planar type pn junction structure as shown in FIG. 4 is used under a direct current power source in an inverter circuit and a chopper circuit which are main applications. There was no problem as long as the withstand voltage could be secured, and it was made without considering the reverse withstand voltage from the element design stage.
However, recently, in a semiconductor power conversion device, a bi-directional switching element is used in a matrix converter such as a direct link type conversion circuit to perform AC (alternating current) / AC conversion, AC / DC (direct current) conversion, and DC / AC conversion. Research has been done to reduce the size, weight, efficiency, speed, and cost of the circuit. Therefore, in order to obtain the bidirectional switching element by connecting the IGBTs in reverse parallel, an IGBT having a reverse breakdown voltage has been demanded.

従来のIGBTは、前記したように、有効な逆阻止能力を確保するような素子設計および製造方法がとられていないので、逆耐圧を確保するためには直列にダイオードを接続して双方向スイッチング素子を構成する必要がある。その結果、ダイオードを直列に含むため発生損失が大きくなり、変換装置の変換効率の低下を招く。さらに、素子点数が多くなって変換装置の小型化、軽量化、低コスト化が困難である。これらの改善に、逆阻止能力を持ったIGBTの存在意義が生じる。
前記図4は、前述の逆耐圧を実質的に有しない従来のIGBTの要部断面図である。このIGBTについて説明すると、高比抵抗のn形半導体基板の第一主面115にpベース領域102が選択的に複数形成され、裏面側の第二主面116にpコレクタ層103が形成されている。pベース領域102とpコレクタ層103とによって前記半導体基板の厚み方向において挟まれた領域がもともと半導体基板でもあるnベース領域101である。矢印で示す活性領域114におけるpベース領域102内の表面層には選択的にnエミッタ領域104が形成されている。この活性領域114の外側には矢印で示すプレーナ形pn接合表面にガードリング構造などの耐圧構造113が形成され、このIGBTの順方向阻止耐圧を確保している。点線118は順方向電圧印加時のnベース側空乏層を示している。この耐圧構造113は、第一主面内で前記活性領域114の外側にあって、n形半導体基板の表面層にリング状に複数形成されるp領域111、酸化膜112および複数の金属膜124等を組み合わせて作られる。nエミッタ領域104とnベース領域101に挟まれたpベース領域102の表面と、複数のpベース領域102間のnベース領域101の表面とにはゲート酸化膜105を介してそれぞれゲート電極106が形成される。nエミッタ領域104表面にエミッタ電極108、pコレクタ層103表面にはコレクタ電極109がそれぞれ被覆される。エミッタ電極108とゲート電極106との層間には絶縁膜107が設けられている。
As described above, the conventional IGBT does not have an element design and manufacturing method for ensuring effective reverse blocking capability. Therefore, in order to ensure reverse breakdown voltage, a diode is connected in series and bidirectional switching is performed. It is necessary to configure the element. As a result, since the diodes are included in series, the generated loss is increased and the conversion efficiency of the conversion device is reduced. Furthermore, the number of elements increases, and it is difficult to reduce the size, weight, and cost of the conversion device. These improvements have the significance of the existence of IGBTs with reverse blocking ability.
FIG. 4 is a cross-sectional view of a main part of a conventional IGBT that does not substantially have the above-described reverse breakdown voltage. The IGBT will be described. A plurality of p base regions 102 are selectively formed on the first main surface 115 of the high resistivity n-type semiconductor substrate, and a p collector layer 103 is formed on the second main surface 116 on the back surface side. Yes. A region sandwiched between the p base region 102 and the p collector layer 103 in the thickness direction of the semiconductor substrate is an n base region 101 which is also a semiconductor substrate. An n emitter region 104 is selectively formed in a surface layer in the p base region 102 in the active region 114 indicated by an arrow. A breakdown voltage structure 113 such as a guard ring structure is formed on the surface of the planar pn junction indicated by an arrow outside the active region 114 to ensure the forward blocking breakdown voltage of the IGBT. A dotted line 118 indicates the n base side depletion layer when a forward voltage is applied. The breakdown voltage structure 113 is outside the active region 114 in the first main surface, and a plurality of p regions 111, oxide films 112, and a plurality of metal films 124 formed in a ring shape on the surface layer of the n-type semiconductor substrate. Etc. are combined. Gate electrodes 106 are respectively formed on the surface of the p base region 102 sandwiched between the n emitter region 104 and the n base region 101 and the surface of the n base region 101 between the plurality of p base regions 102 via the gate oxide film 105. It is formed. The surface of the n emitter region 104 is covered with an emitter electrode 108, and the surface of the p collector layer 103 is covered with a collector electrode 109. An insulating film 107 is provided between the emitter electrode 108 and the gate electrode 106.

前述の従来IGBTは逆バイアスされないことを前提として作製されているので、エミッタをグラウンド電位としコレクタを負電位とする逆バイアスを加えた場合に電界が集中しやすい符号Aで示すコレクタ接合表面近傍は、ダイシング等による機械的な切断歪を備えたままの切断部125で何らの処理もされておらず、当然ながら十分な逆耐圧は得られない。
また、図5に示したような分離層120を表面から拡散のみによって形成した分離層型の逆阻止IGBT300の場合(その他の機能領域は前記図4に示すIGBTと同じため、図5では同一符号を付けた。符号117はpコレクタ層103とnベース層101間のpn接合に付加される逆バイアスによる空乏層を示す。)は、NPT(Non Punch Through)ウェハ(100μm)を用いることができる。この場合はコレクタ層103を薄くし、その不純物濃度を低く制御することにより、従来問題となっていたオン電圧特性とターンオフ損失に関するトレードオフ関係をなくし、共に小さくすることが可能になる。
Since the above-mentioned conventional IGBT is manufactured on the premise that it is not reverse-biased, the vicinity of the collector junction surface indicated by the symbol A where the electric field tends to concentrate when a reverse bias is applied with the emitter as the ground potential and the collector as the negative potential No processing is performed in the cutting portion 125 with mechanical cutting distortion due to dicing or the like, and a sufficient reverse breakdown voltage cannot be obtained.
Further, in the case of a separation layer type reverse blocking IGBT 300 in which the separation layer 120 as shown in FIG. 5 is formed only by diffusion from the surface (other functional regions are the same as those of the IGBT shown in FIG. Reference numeral 117 denotes a reverse bias depletion layer added to the pn junction between the p collector layer 103 and the n base layer 101. An NPT (Non Punch Through) wafer (100 μm) can be used. . In this case, by reducing the collector layer 103 and controlling the impurity concentration to be low, the trade-off relationship between the on-voltage characteristic and the turn-off loss, which has been a problem in the past, can be eliminated and both can be reduced.

しかしながら、前記分離層の形成については、前記図5に示す逆阻止IGBT300のように基板厚さが100μm厚程度の薄いNPTウェハであっても、表面からボロン拡散により、120μm程度(逆阻止耐圧600V素子用ウェハの厚さ100μmの場合)の深さの分離層120を作るために分離層幅(面に平行な方向)は片側(一方の辺あたり)50μmの初期領域から熱拡散を始めると、横方向(面に平行な方向)にも約100μm程度、前記初期領域が拡がるために1チップあたり分離層は片側で150μmにもなる。両側を合わせると300μmとなる。これは、活性領域の面積を大幅に減少させ、同一電流容量あたりのチップ面積を増大させるので、チップ面積の利用効率が悪いだけでなく、コスト面でも不利益となる。ウェハ(基板)厚が150μmとした場合は、さらに分離領域120が横方向に大きく拡がるので、さらにチップ面積の利用効率が悪くなるばかりか、拡散時間も極めて長時間になるので、実用的で無くなる(下記特許文献1、2参照)という問題がある。   However, with respect to the formation of the separation layer, even a thin NPT wafer having a substrate thickness of about 100 μm as in the reverse blocking IGBT 300 shown in FIG. 5 is about 120 μm (reverse blocking breakdown voltage 600 V) due to boron diffusion from the surface. In order to make a separation layer 120 having a depth of 100 μm in the case of a device wafer, the separation layer width (in the direction parallel to the surface) starts thermal diffusion from an initial region of 50 μm on one side (per one side) In the lateral direction (direction parallel to the surface), the initial region is expanded by about 100 μm, so that the separation layer per chip is as large as 150 μm on one side. When both sides are combined, it becomes 300 μm. This greatly reduces the area of the active region and increases the chip area for the same current capacity, which not only results in poor chip area utilization efficiency but also is disadvantageous in terms of cost. When the thickness of the wafer (substrate) is 150 μm, the separation region 120 further expands in the horizontal direction, so that the utilization efficiency of the chip area is further deteriorated and the diffusion time becomes extremely long, which is not practical. (See Patent Documents 1 and 2 below).

また、図5において、n形半導体基板をドリフト層として用いる半導体装置を製造する場合に、前記分離層は、基板表面に選択的にボロンソースを塗布して所定の深さまで長時間拡散させることによって形成することができる。この場合に、例えば深さ200μmの拡散を行うには1300℃で200時間以上熱処理を行う必要がある。また、裏面のpコレクタ層103は表面工程終了後に分離層が現れる深さまで裏面を削った後に、p型イオンを注入してアニールすることによって形成される。このpコレクタ層は、高濃度p型基板上に低濃度n型エピタキシャル層を成長させてドリフト層を形成する場合であっても、エピタキシャル層成長後に長時間熱処理によってp型不純物を低濃度n型エピタキシャル層表面からp型基板の位置まで拡散させることでも実現できる。
特開2001−185727号公報 特開2002−319676号公報
Further, in FIG. 5, when manufacturing a semiconductor device using an n-type semiconductor substrate as a drift layer, the separation layer is formed by selectively applying a boron source to the substrate surface and diffusing it to a predetermined depth for a long time. Can be formed. In this case, for example, to perform diffusion at a depth of 200 μm, it is necessary to perform heat treatment at 1300 ° C. for 200 hours or more. Further, the p collector layer 103 on the back surface is formed by implanting p-type ions and annealing after the back surface is scraped to a depth at which the separation layer appears after completion of the surface process. This p collector layer is a case where a low-concentration n-type epitaxial layer is grown on a high-concentration p-type substrate to form a drift layer. It can also be realized by diffusing from the surface of the epitaxial layer to the position of the p-type substrate.
JP 2001-185727 A JP 2002-319676 A

以上、前記分離層を表面から拡散のみによって形成した分離層型の前記逆阻止IGBTの場合は、チップ面積の利用効率が悪いだけでなく、コスト面でも不利益という問題がある。
また、p型領域を形成するためのボロン拡散は、基板表面荒れを抑制するために、酸素ガスを含む雰囲気中で行う必要がある。そのため、ボロンの拡散時に高濃度の酸素イオンが基板中に取り込まれる。取り込まれた酸素は400℃〜500℃の熱処理によってドナー化する。
IGBT製造工程では、多数の熱処理が行われるので、この熱履歴によって取り込まれた酸素のドナー化が進み、ドリフト層のプロファイルが大きく変化する。また、n型半導体基板を用いて製造を行い、表面工程終了後に裏面にイオン注入と熱処理を施すことによってpコレクタ層を形成する場合、電極等の表面構造に損傷を与えないために500℃以上でのアニールを行うことが困難である。従って、著しいドナー化を避けるために裏面アニール温度は、400℃以下に抑えなければならない。しかし、このような低温アニールでは打ち込まれたボロンが十分に活性化されず、また打ち込みによる結晶欠陥も十分に修復されないため、逆バイアス印加時に大きな漏れ電流が発生してしまう。また、400℃以下の低温アニールであっても、取り込まれている一部の酸素がドナー化してドリフト層のプロファイルが変わるため、デバイス設計時に、この現象を考慮した上での設計が必要であり、デバイス設計の困難さがある。このため、ドリフト層に高濃度の酸素が取り込まれないように分離層を形成することが逆阻止IGBTの製造技術における大きな課題であった。
As described above, in the case of the separation layer type reverse blocking IGBT in which the separation layer is formed only by diffusion from the surface, there is a problem that not only the use efficiency of the chip area is bad but also the cost is disadvantageous.
Further, boron diffusion for forming the p-type region needs to be performed in an atmosphere containing oxygen gas in order to suppress substrate surface roughness. Therefore, a high concentration of oxygen ions is taken into the substrate during boron diffusion. The incorporated oxygen is converted into a donor by a heat treatment at 400 ° C. to 500 ° C.
In the IGBT manufacturing process, since a large number of heat treatments are performed, the oxygen taken in by the thermal history is converted into a donor, and the profile of the drift layer changes greatly. In addition, when a p-collector layer is formed by performing ion implantation and heat treatment on the back surface after completion of the surface process after manufacturing using an n-type semiconductor substrate, the surface structure such as an electrode is not damaged at 500 ° C. or higher. It is difficult to perform annealing at. Therefore, in order to avoid significant donor formation, the back surface annealing temperature must be suppressed to 400 ° C. or lower. However, in such low temperature annealing, the implanted boron is not sufficiently activated, and crystal defects due to the implantation are not sufficiently repaired, so that a large leakage current is generated when a reverse bias is applied. In addition, even with low-temperature annealing at 400 ° C or lower, some of the oxygen that is incorporated becomes donors and the profile of the drift layer changes, so it is necessary to design this device while taking this phenomenon into account. There is difficulty in device design. For this reason, forming a separation layer so that a high concentration of oxygen is not taken into the drift layer is a major problem in the reverse blocking IGBT manufacturing technology.

本発明は、これらの問題点に鑑みてなされたものであり、その目的は、オン電圧特性とターンオフ損失とのトレードオフを回避できる薄いウェハ(半導体基板)の場合でも問題となる一チップあたりの分離領域の占有面積比率を小さくすることができ、酸素のドナー化による影響の低減も図れる逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法を提供することである。   The present invention has been made in view of these problems, and an object of the present invention is to provide a problem per chip which is a problem even in the case of a thin wafer (semiconductor substrate) that can avoid a trade-off between on-voltage characteristics and turn-off loss. It is an object of the present invention to provide a method for manufacturing a reverse blocking insulated gate bipolar transistor that can reduce the occupied area ratio of the isolation region and can reduce the influence of oxygen donor formation.

特許請求の範囲の請求項1記載の発明によれば、前記目的は、第1導電型のドリフト層の表面に選択的に形成される第2導電型のベース領域と、該ベース領域の表面に選択的に形成される第1導電型のエミッタ領域と、前記ドリフト層と前記エミッタ領域とに挟まれた前記ベース領域上にゲート絶縁膜を介して形成されるゲート電極と、前記ドリフト層の裏面から側部に亘って前記ベース領域の周囲を取り囲むようにして形成される第2導電型のコレクタ領域と、を有する半導体装置の製造方法において、
前記ドリフト層となる層の表面に絶縁膜、レジストをこの順に形成し、かつ絶縁膜よりもレジストを厚く形成し、前記ベース領域が形成される領域の周囲を側部側から取り囲むように前記絶縁膜と前記レジストのマスクを形成し、該マスクを用いて格子状で幅が10〜20μm、深さが100〜200μmのトレンチを形成する工程と、
前記トレンチに不純物濃度が1×1017cm−3以上の第2導電型のエピタキシャル層を形成して前記コレクタ領域の一部となる分離層を形成する工程と、 前記ドリフト層の裏面を前記エピタキシャル層に到達するまで削り、該削ったドリフト層の裏面に第2導電型のコレクタ領域をイオン注入で形成する工程と、
を有することにより、達成される。
According to the first aspect of the present invention, the object is to provide a base region of the second conductivity type selectively formed on the surface of the drift layer of the first conductivity type, and a surface of the base region. A first conductivity type emitter region selectively formed; a gate electrode formed on the base region sandwiched between the drift layer and the emitter region via a gate insulating film; and a back surface of the drift layer A second conductivity type collector region formed so as to surround the periphery of the base region from side to side,
Surface insulating film layer of said drift layer, a resist was formed in this order, and a resist is thicker than the insulating film, wherein the surrounding region where the base region is formed so as to surround taken from the side side Forming an insulating film and a mask of the resist, and using the mask, forming a lattice-like trench having a width of 10 to 20 μm and a depth of 100 to 200 μm;
Forming an isolation layer to be a part of said impurity concentration to form an epitaxial layer of a second conductivity type 1 × 10 17 cm -3 or more into the trench collector region, said epitaxial a back surface of the drift layer Cutting until reaching the layer, and forming a second conductivity type collector region on the back surface of the scraped drift layer by ion implantation;
Is achieved.

本発明によれば、オン電圧特性とターンオフ損失とのトレードオフを回避できる薄いウェハ(半導体基板)の場合でも問題となる一チップあたりの分離領域の占有面積比率を小さくすることができ、酸素のドナー化による影響の低減も図れる逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法を提供できる。   According to the present invention, even in the case of a thin wafer (semiconductor substrate) that can avoid the trade-off between the on-voltage characteristics and the turn-off loss, it is possible to reduce the occupation area ratio of the separation region per chip, which is a problem. It is possible to provide a method of manufacturing a reverse blocking insulated gate bipolar transistor that can reduce the influence due to donor formation.

図1〜図3はそれぞれ本発明にかかる逆阻止型絶縁ゲート形バイポーラトランジスタ(以下IGBTと略す)の製造方法をシリコン基板の要部の断面により示した製造工程図である。本発明の要旨を超えない限り、本発明は以下説明する実施例の記載に限定されるものではない。半導体基板の表面からトレンチ溝を形成し、そのトレンチ溝内にp型エピタキシャル層を成長させることで前記の課題を解決することができる。但し、トレンチ溝形成のためのマスク材として酸化膜(SiO)を用いる場合、一般に酸化膜とシリコンのエッチングの選択比は最適化を行っても50程度であり、深さ200μmのトレンチ溝を形成するのに、必要な酸化膜の膜厚はマージンを考慮して5.0μm程度必要である。しかし、これだけの厚さの酸化膜を形成するのは非常に困難であり、実際にIGBTを製造した場合に、酸化膜形成のコストが増大してしまう。そこで、酸化膜を厚くせずとも200μmのトレンチ溝のエッチングができるように、マスク材としてレジストを用いる。レジストは厚膜化が容易に行える。分離層の開口部の幅は10〜20μmであり、微細加工の必要がないので、レジストの厚膜化を行ってもパターニングの精度が落ちることはない。 1 to 3 are each a manufacturing process diagram showing a manufacturing method of a reverse blocking insulated gate bipolar transistor (hereinafter abbreviated as IGBT) according to the present invention by a cross section of a main part of a silicon substrate. As long as the gist of the present invention is not exceeded, the present invention is not limited to the description of the examples described below. The above-described problem can be solved by forming a trench groove from the surface of the semiconductor substrate and growing a p-type epitaxial layer in the trench groove. However, when an oxide film (SiO 2 ) is used as a mask material for forming the trench groove, the etching selectivity between the oxide film and silicon is generally about 50 even when optimized, and a trench groove having a depth of 200 μm is formed. The thickness of the oxide film required for the formation is about 5.0 μm in consideration of the margin. However, it is very difficult to form an oxide film having such a thickness, and when an IGBT is actually manufactured, the cost of forming the oxide film increases. Therefore, a resist is used as a mask material so that a 200 μm trench can be etched without increasing the thickness of the oxide film. The resist can be easily thickened. Since the width of the opening of the separation layer is 10 to 20 μm and there is no need for fine processing, the accuracy of patterning does not drop even if the resist is thickened.

この発明にかかる逆阻止型IGBTの製造方法の実施例について、図1、図2(それぞれ断面図)を用いて詳細に説明する。図1と図2はIGBTの製造方法をシリコン基板の要部の断面により示した製造工程図である。本発明の要旨を超えない限り、本発明は以下説明する実施例の記載に限定されるものではない。この逆阻止型IGBTは600V耐圧の逆阻止IGBTである。まず厚さ525μm、n導電型不純物濃度1.5×1014cm−3(抵抗率約30Ωcm)のFZシリコン基板(ウェハ)1を準備する(図1(a))。そして、このFZシリコン基板1(ドリフト層となる)の表面に厚さ1.0μmの初期酸化膜12を形成し、厚さ10μmのレジスト13を塗布する。次に露光、現像を行い、チップ外周部の分離領域相当部に窓開け部を形成するためのパターンニングを行い、幅10μmでリング状または格子状の開口部を形成する(図1(b))。引き続き、レジスト13の剥離を行わずに前記パターニングされた酸化膜上のレジストをマスクとしてトレンチエッチングを行う。前記開口部に幅10μmで深さ100μmのトレンチ溝23を、SFをエッチングガスとして用い、側壁保護膜形成のためにCガスを流してボッシュプロセス法を用いてエッチングを行う(図1(c))。このようなエッチングを行うことによりレジストとシリコンの選択比は50前後になり、例えば200μm(ドリフト層の抵抗率が60〜80Ωcmとして耐圧1200Vの逆阻止IGBTを製造する場合、トレンチの深さは180〜200μmになる。)のエッチングを行う場合にもレジストをマスクとして充分にマージンを持ってエッチングが行える。そして、トレンチエッチング終了後、レジスト13の剥離を行う。 An embodiment of a method for manufacturing a reverse blocking IGBT according to the present invention will be described in detail with reference to FIGS. 1 and 2 (each a sectional view). FIG. 1 and FIG. 2 are manufacturing process diagrams showing a method of manufacturing an IGBT by a cross section of a main part of a silicon substrate. As long as the gist of the present invention is not exceeded, the present invention is not limited to the description of the examples described below. This reverse blocking IGBT is a reverse blocking IGBT having a withstand voltage of 600V. First, an FZ silicon substrate (wafer) 1 having a thickness of 525 μm and an n conductivity type impurity concentration of 1.5 × 10 14 cm −3 (resistivity of about 30 Ωcm) is prepared (FIG. 1A). Then, an initial oxide film 12 having a thickness of 1.0 μm is formed on the surface of the FZ silicon substrate 1 (which will be a drift layer), and a resist 13 having a thickness of 10 μm is applied. Next, exposure and development are performed, and patterning is performed to form a window opening in a portion corresponding to the separation region on the outer periphery of the chip, thereby forming a ring-shaped or grid-shaped opening having a width of 10 μm (FIG. 1B). ). Subsequently, trench etching is performed using the resist on the patterned oxide film as a mask without removing the resist 13. The trench groove 23 having a width of 10 μm and a depth of 100 μm is etched in the opening by using the Bosch process method with SF 6 as an etching gas and a C 2 F 8 gas flowing to form a sidewall protective film (FIG. 1 (c)). By performing such etching, the selectivity ratio between the resist and silicon is about 50. For example, when manufacturing a reverse blocking IGBT having a withstand voltage of 1200 V with a drift layer resistivity of 60 to 80 Ωcm, the trench depth is 180. In the case of the etching of 200 μm), the etching can be performed with a sufficient margin using the resist as a mask. Then, after completion of the trench etching, the resist 13 is removed.

次いで、トレンチ開口部に、不純物濃度1×1017cm−3以上の高濃度p型エピタキシャル層3を、トレンチ溝が完全に埋まるまで成長させる。この時、エピタキシャル成長の選択性により、酸化膜12上にはエピタキシャル層3が成長しない(図1(d))。
次いで、図1(e)に示すように、絶縁膜12を除去して表面の平坦化を行い、その後は、図1(f)に示すように、プレーナ型IGBTと同様のプロセスで、イオン注入と熱処理により、p型ベース領域、ゲート酸化膜、ゲート電極、n+型エミッタ領域、エミッタ電極等を有する活性部4を高濃度p型エピタキシャル層3の内側の領域に形成して表面構造を完成させる。なお、この活性部4の構造は、平面型、トレンチ型のいずれであってもよい。そして、セル形状については、多角形、ストライプ形又は格子状のいずれであってもよい。また、分離層と活性部4との間には、図示しないが、耐圧構造部が設けられる。 この活性部4の形成工程では、各構成要素の形成に際して複数の熱処理が行われる。そして、その熱処理によって高濃度p型エピタキシャル層3もアニールされてp型不純物の熱拡散が引き起こされ、図1(f)に示したような分離層3aが形成されるようになる。この時の熱処理は合計でも1100℃程度で数時間行うだけであるので、長時間かけて基板表面から熱拡散させる従来の方法に比べて高温熱処理時間が大幅に短縮され、低濃度n型シリコン基板1内にはほとんど酸素は取り込まれない。
Next, a high-concentration p-type epitaxial layer 3 having an impurity concentration of 1 × 10 17 cm −3 or higher is grown in the trench opening until the trench groove is completely filled. At this time, the epitaxial layer 3 does not grow on the oxide film 12 due to the selectivity of the epitaxial growth (FIG. 1D).
Next, as shown in FIG. 1E, the insulating film 12 is removed and the surface is flattened. Thereafter, as shown in FIG. 1F, ion implantation is performed in the same process as the planar IGBT. And the heat treatment, an active portion 4 having a p-type base region, a gate oxide film, a gate electrode, an n + -type emitter region, an emitter electrode and the like is formed in a region inside the high-concentration p-type epitaxial layer 3 to complete the surface structure. . The structure of the active part 4 may be either a planar type or a trench type. The cell shape may be any of a polygonal shape, a stripe shape, or a lattice shape. Further, although not shown, a breakdown voltage structure portion is provided between the isolation layer and the active portion 4. In the process of forming the active portion 4, a plurality of heat treatments are performed when forming each component. Then, the high-concentration p-type epitaxial layer 3 is also annealed by the heat treatment, causing thermal diffusion of the p-type impurities, and the separation layer 3a as shown in FIG. 1 (f) is formed. Since the heat treatment at this time is only performed for several hours at a total temperature of about 1100 ° C., the high-temperature heat treatment time is greatly shortened compared to the conventional method of thermally diffusing from the substrate surface over a long time, and the low concentration n-type silicon substrate Almost no oxygen is taken into 1.

活性部4および分離層3aの形成後は、図2(a)に点線で示すように、FZシリコン基板1の裏面を、分離層3aに到達するまで削る(図2(b))。
そして、図2(c)に示すように、FZシリコン基板1の裏面に高濃度のp型不純物をイオン注入し、活性部4や電極等の表面構造に損傷を与えないように500℃以下のアニールを行って裏面高濃度p層であるコレクタ層5を形成する。
FZシリコン基板1の裏面にイオン注入したp型不純物を十分に活性化させ、また、イオン注入によって生じた結晶欠陥を修復するためには、できるだけ高温でアニールする必要がある。従来の分離層形成方法では、基板内に高濃度の酸素が取り込まれてしまっているため、取り込まれた酸素をドナー化させないためにアニール温度は400℃未満に制限されていた。これに対し、この実施例1では、FZシリコン基板1内に酸素がほとんど取り込まれていないため、酸素のドナー化を考慮せずに済み、表面構造に損傷を与えないことだけ考慮すれば足り、したがって、400℃以上500℃以下のアニールが可能になる。
After the formation of the active portion 4 and the separation layer 3a, as shown by a dotted line in FIG. 2A, the back surface of the FZ silicon substrate 1 is shaved until it reaches the separation layer 3a (FIG. 2B).
Then, as shown in FIG. 2 (c), high-concentration p-type impurities are ion-implanted into the back surface of the FZ silicon substrate 1 so that the surface structure such as the active portion 4 and the electrode is not damaged at 500 ° C. or lower. Annealing is performed to form the collector layer 5 which is the back surface high concentration p layer.
In order to sufficiently activate the p-type impurity ion-implanted into the back surface of the FZ silicon substrate 1 and repair crystal defects caused by the ion implantation, it is necessary to anneal at as high a temperature as possible. In the conventional separation layer forming method, since a high concentration of oxygen has been taken into the substrate, the annealing temperature has been limited to less than 400 ° C. in order to prevent the taken-in oxygen from becoming a donor. On the other hand, in Example 1, since almost no oxygen is taken into the FZ silicon substrate 1, it is not necessary to consider oxygen donor formation, and it is sufficient to consider only that the surface structure is not damaged. Therefore, annealing at 400 ° C. or higher and 500 ° C. or lower becomes possible.

また、上記のトレンチ形成およびエピタキシャル成長は、1:10程度の高いアスペクト比まで可能であるので、高温熱処理時間の短縮と相俟って、従来の分離層形成方法に比べて分離層3a領域の横方向の広がりを大幅に低減することができる。
裏面にイオン注入したp型不純物のアニール後は、各分離層3aの位置(図2(d)の鎖線の位置)でダイシングが行われ、個々の逆阻止IGBTに切り分けられる。
なお、この実施例1のIGBTの形成方法においては、高アスペクト比の深いトレンチ溝23を高濃度p型エピタキシャル層3で埋めるためのエピタキシャル成長の際、トレンチ溝23の上端が先に塞がって内部に空洞が残ってしまう可能性がある点に留意する必要がある。このような場合には、トレンチ溝23底部からの成長速度を高めるなどして対処することができる。また、例えば特開2003−229569号公報において提案されているように、空洞が残らないようにエピタキシャル成長を行い、残ってしまった空洞は水素還元雰囲気アニールを行って塞ぐ、といった方法を用いることもできる。
[参考例1]
In addition, since the trench formation and epitaxial growth described above can be performed up to an aspect ratio as high as about 1:10, coupled with the shortening of the high-temperature heat treatment time, the width of the isolation layer 3a region can be reduced compared with the conventional isolation layer forming method. Directional spread can be greatly reduced.
After the annealing of the p-type impurity ion-implanted on the back surface, dicing is performed at the position of each separation layer 3a (the position of the chain line in FIG. 2D) to divide into individual reverse blocking IGBTs.
In the IGBT forming method of the first embodiment, the upper end of the trench groove 23 is closed first during the epitaxial growth for filling the deep trench groove 23 having a high aspect ratio with the high-concentration p-type epitaxial layer 3. It should be noted that cavities can remain. Such a case can be dealt with by increasing the growth rate from the bottom of the trench 23. Further, as proposed in, for example, Japanese Patent Application Laid-Open No. 2003-229569, it is possible to use a method in which epitaxial growth is performed so that cavities do not remain, and the remaining cavities are closed by performing hydrogen reduction atmosphere annealing. .
[Reference Example 1]

次に、参考例1について説明する。
図3は参考例1の逆阻止IGBT形成フローの概略説明図である。
(a)に示すように、高濃度p型シリコン基板20上に、ドリフト層となる低濃度n層21をエピタキシャル成長させたものを準備する。そして、(b)に示すように、この低濃度n層21の表面に、トレンチ形成およびエピタキシャル成長のためのマスクとなる厚さ1.0μmの酸化膜22と厚さ10μmのレジスト24をこの順で形成し、分離層となる箇所に窓開け部を形成する。
次いで、上記実施例1と同様にして、(c)に示すように、レジスト24の剥離を行わずに窓開け部の低濃度n層21を高濃度p型シリコン基板20に達するまでエッチングし、トレンチ溝23aを形成する。トレンチエッチング終了後、レジスト24の剥離を行う。その後、(d)に示すように、高濃度p型エピタキシャル層25をそのトレンチ溝23aが完全に埋まるまで成長させた後、(e)に示すように、酸化膜22を除去して表面の平坦化を行う。
Next, Reference Example 1 will be described.
FIG. 3 is a schematic explanatory diagram of the reverse blocking IGBT formation flow of Reference Example 1 .
As shown to (a), what made the low concentration n layer 21 used as a drift layer epitaxially grow on the high concentration p-type silicon substrate 20 is prepared. Then, as shown in (b), a 1.0 μm thick oxide film 22 and a 10 μm thick resist 24 serving as a mask for trench formation and epitaxial growth are formed in this order on the surface of the low concentration n layer 21. A window opening portion is formed at a location to be the separation layer.
Next, in the same manner as in Example 1 above, as shown in (c), the low-concentration n layer 21 in the window opening part is etched until the high-concentration p-type silicon substrate 20 is reached without peeling off the resist 24. A trench groove 23a is formed. After the trench etching is completed, the resist 24 is removed. Thereafter, as shown in (d), the high-concentration p-type epitaxial layer 25 is grown until the trench groove 23a is completely filled. Then, as shown in (e), the oxide film 22 is removed to flatten the surface. To do.

最後に、イオン注入と熱処理により、(f)に示すように、平面型あるいはトレンチ型の活性部26を形成する。この活性部26の形成工程における熱処理により、高濃度p型エピタキシャル層25がアニールされ、コレクタ層としての高濃度p型シリコン基板20に接続された分離層25aが形成されるようになる。
上記実施例1で述べたように、この活性部26の形成工程における熱処理は合計でも1100℃程度で数時間行うだけであるので、従来に比べて高温熱処理時間が大幅に短縮され、低濃度n層21内には高濃度の酸素が取り込まれない。また、高温熱処理時間の短縮により、分離層25aの横方向の広がりが大幅に低減されるようになるため、1素子当たりのエッジ領域を小さくすることができるようになる。
以上説明したように、逆阻止IGBTの形成における高温熱処理時間を短縮することにより、ドリフト層にドナー化をもたらし得る酸素の取り込み量を低減することができるとともに、分離層の横方向の広がりを抑えて1素子当たりのエッジ領域を低減することができるようになる。それにより、小型で高品質の逆阻止IGBTを形成することが可能になる。
Finally, a planar or trench type active portion 26 is formed by ion implantation and heat treatment, as shown in FIG. By the heat treatment in the process of forming the active portion 26, the high-concentration p-type epitaxial layer 25 is annealed, and the separation layer 25a connected to the high-concentration p-type silicon substrate 20 as the collector layer is formed.
As described in the first embodiment, since the heat treatment in the formation process of the active portion 26 is only performed at a total temperature of about 1100 ° C. for several hours, the high temperature heat treatment time is significantly shortened compared to the conventional case, and the low concentration n High concentration of oxygen is not taken into the layer 21. In addition, the shortening of the high-temperature heat treatment time greatly reduces the lateral spread of the separation layer 25a, so that the edge region per element can be reduced.
As described above, by shortening the high-temperature heat treatment time in the formation of the reverse blocking IGBT, it is possible to reduce the oxygen uptake amount that can cause donor formation in the drift layer and to suppress the lateral extension of the separation layer. Thus, the edge area per element can be reduced. Thereby, it is possible to form a small and high quality reverse blocking IGBT.

(a)〜(f)は本発明にかかる逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法を示す工程断面図(A)-(f) Process sectional drawing which shows the manufacturing method of the reverse blocking insulated gate bipolar transistor concerning this invention (a)〜(d)は図1(f)に続く工程断面図(A)-(d) is process sectional drawing following FIG.1 (f). (a)〜(f)は本発明にかかる逆阻止型絶縁ゲート形バイポーラトランジスタの他の製造方法を示す工程断面図(A)-(f) Process sectional drawing which shows the other manufacturing method of the reverse blocking type insulated gate bipolar transistor concerning this invention 従来の絶縁ゲート形バイポーラトランジスタの模式的断面図Schematic sectional view of a conventional insulated gate bipolar transistor 従来の逆阻止型絶縁ゲート形バイポーラトランジスタの模式的断面図Schematic cross section of a conventional reverse blocking insulated gate bipolar transistor

符号の説明Explanation of symbols

1 FZシリコン基板
3、25 高濃度p型エピタキシャル層
3a、25a 分離層
4、26 活性部
12、22 酸化膜
13、24 レジスト
20 高濃度p型シリコン基板
21 低濃度n層
23、23a トレンチ溝
31、32 分離領域
35 ポリシリコン
102 pベース領域
103 p+コレクタ層
104 n+エミッタ領域
105 ゲート酸化膜
106 ゲート電極
108 エミッタ電極
109 コレクタ電極
DESCRIPTION OF SYMBOLS 1 FZ silicon substrate 3, 25 High concentration p-type epitaxial layer 3a, 25a Separation layer 4, 26 Active part 12, 22 Oxide film 13, 24 Resist 20 High concentration p type silicon substrate 21 Low concentration n layer 23, 23a Trench groove 31 32 isolation region 35 polysilicon 102 p base region
103 p + collector layer 104 n + emitter region 105 gate oxide film
106 Gate electrode 108 Emitter electrode
109 Collector electrode

Claims (1)

第1導電型のドリフト層の表面に選択的に形成される第2導電型のベース領域と、該ベース領域の表面に選択的に形成される第1導電型のエミッタ領域と、前記ドリフト層と前記エミッタ領域とに挟まれた前記ベース領域上にゲート絶縁膜を介して形成されるゲート電極と、前記ドリフト層の裏面から側部に亘って前記ベース領域の周囲を取り囲むようにして形成される第2導電型のコレクタ領域と、を有する半導体装置の製造方法において、
前記ドリフト層となる層の表面に絶縁膜、レジストをこの順に形成し、かつ絶縁膜よりもレジストを厚く形成し、前記ベース領域が形成される領域の周囲を側部側から取り囲むように前記絶縁膜と前記レジストのマスクを形成し、該マスクを用いて格子状で幅が10〜20μm、深さが100〜200μmのトレンチを形成する工程と、
前記トレンチに不純物濃度が1×1017cm−3以上の第2導電型のエピタキシャル層を形成して前記コレクタ領域の一部となる分離層を形成する工程と、 前記ドリフト層の裏面を前記エピタキシャル層に到達するまで削り、該削ったドリフト層の裏面に第2導電型のコレクタ領域をイオン注入で形成する工程と、
を有することを特徴とする逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法。
A second conductivity type base region selectively formed on the surface of the first conductivity type drift layer; a first conductivity type emitter region selectively formed on the surface of the base region; and the drift layer; A gate electrode is formed on the base region sandwiched between the emitter regions via a gate insulating film, and is formed so as to surround the periphery of the base region from the back surface to the side of the drift layer. In a method for manufacturing a semiconductor device having a collector region of a second conductivity type,
Surface insulating film layer of said drift layer, a resist was formed in this order, and a resist is thicker than the insulating film, wherein the surrounding region where the base region is formed so as to surround taken from the side side Forming an insulating film and a mask of the resist, and using the mask, forming a lattice-like trench having a width of 10 to 20 μm and a depth of 100 to 200 μm;
Forming an isolation layer to be a part of said impurity concentration to form an epitaxial layer of a second conductivity type 1 × 10 17 cm -3 or more into the trench collector region, said epitaxial a back surface of the drift layer Cutting until reaching the layer, and forming a second conductivity type collector region on the back surface of the scraped drift layer by ion implantation;
A method of manufacturing a reverse blocking insulated gate bipolar transistor characterized by comprising:
JP2005000147A 2005-01-04 2005-01-04 Method of manufacturing reverse blocking insulated gate bipolar transistor Expired - Fee Related JP5179703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000147A JP5179703B2 (en) 2005-01-04 2005-01-04 Method of manufacturing reverse blocking insulated gate bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000147A JP5179703B2 (en) 2005-01-04 2005-01-04 Method of manufacturing reverse blocking insulated gate bipolar transistor

Publications (2)

Publication Number Publication Date
JP2006190730A JP2006190730A (en) 2006-07-20
JP5179703B2 true JP5179703B2 (en) 2013-04-10

Family

ID=36797676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000147A Expired - Fee Related JP5179703B2 (en) 2005-01-04 2005-01-04 Method of manufacturing reverse blocking insulated gate bipolar transistor

Country Status (1)

Country Link
JP (1) JP5179703B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5290491B2 (en) * 2005-07-04 2013-09-18 富士電機株式会社 Method of manufacturing reverse blocking insulated gate bipolar transistor
JP2008071916A (en) * 2006-09-14 2008-03-27 Fuji Electric Device Technology Co Ltd Testing method of semiconductor device
JP5596278B2 (en) * 2007-07-10 2014-09-24 富士電機株式会社 Trench type insulated gate MOS semiconductor device
JP2009141307A (en) * 2007-11-15 2009-06-25 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor device
JP5507118B2 (en) * 2009-05-20 2014-05-28 富士電機株式会社 Semiconductor device and manufacturing method thereof
JP5621441B2 (en) * 2010-09-14 2014-11-12 株式会社デンソー Manufacturing method of semiconductor device
CN110620147B (en) * 2018-09-14 2023-05-23 电子科技大学 Ultra-high-speed large-current longitudinal insulated gate bipolar transistor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124087A (en) * 1977-04-05 1978-10-30 Mitsubishi Electric Corp Manufacture of semiconductor device
JP3352840B2 (en) * 1994-03-14 2002-12-03 株式会社東芝 Reverse parallel connection type bidirectional semiconductor switch
JP4747260B2 (en) * 2003-04-16 2011-08-17 富士電機株式会社 Method of manufacturing reverse blocking insulated gate bipolar transistor

Also Published As

Publication number Publication date
JP2006190730A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP6844163B2 (en) Silicon carbide semiconductor device
JP6946764B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
KR101413197B1 (en) Silicon carbide semiconductor device and manufacturing method therefor
US8933466B2 (en) Semiconductor element
US8772788B2 (en) Semiconductor element and method of manufacturing thereof
JP6864288B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP5439215B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2017079251A (en) Semiconductor device and semiconductor device manufacturing method
JP4746927B2 (en) Manufacturing method of semiconductor device
JP2004363328A (en) Semiconductor device and its manufacturing method
JP2001160559A (en) Method of manufacturing semiconductor device
JP4747260B2 (en) Method of manufacturing reverse blocking insulated gate bipolar transistor
JP5011634B2 (en) Semiconductor device and bidirectional switch element using the semiconductor device
JP4910894B2 (en) Semiconductor device manufacturing method and semiconductor device
JP5179703B2 (en) Method of manufacturing reverse blocking insulated gate bipolar transistor
JP2002261281A (en) Manufacturing method of insulated gate bipolar transistor
JP5028749B2 (en) Manufacturing method of semiconductor device
JP5114832B2 (en) Semiconductor device and manufacturing method thereof
US9385210B2 (en) Method for manufacturing semiconductor device using a gettering layer
JP4951872B2 (en) Manufacturing method of semiconductor device
US20170005183A1 (en) Trenched and implanted bipolar junction transistor
JP2006080269A (en) High breakdown voltage semiconductor device and its manufacturing method
JP2003218354A (en) Semiconductor device and its manufacturing method
JP4747261B2 (en) Method of manufacturing reverse blocking insulated gate bipolar transistor
JP5524403B2 (en) Semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20071213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120308

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

LAPS Cancellation because of no payment of annual fees