JP2008071916A - Testing method of semiconductor device - Google Patents

Testing method of semiconductor device Download PDF

Info

Publication number
JP2008071916A
JP2008071916A JP2006248893A JP2006248893A JP2008071916A JP 2008071916 A JP2008071916 A JP 2008071916A JP 2006248893 A JP2006248893 A JP 2006248893A JP 2006248893 A JP2006248893 A JP 2006248893A JP 2008071916 A JP2008071916 A JP 2008071916A
Authority
JP
Japan
Prior art keywords
semiconductor device
main surface
electrode
wafer
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006248893A
Other languages
Japanese (ja)
Inventor
Akio Shimizu
明夫 清水
Masahiro Kato
正博 加藤
Takashi Kobayashi
小林  孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2006248893A priority Critical patent/JP2008071916A/en
Publication of JP2008071916A publication Critical patent/JP2008071916A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a testing method capable of protecting a back electrode against damage caused by the pressing force of a probe needle when a wafer is checked. <P>SOLUTION: The sum of the pressing forces of probe needles 42 applied to the surface electrode of a chip is limited to 50 gf or below when a wafer is checked. In this way, a scratch 36, made on a collector electrode 35 by a foreign object 43 etc. located on a wafer check stage 41, is prevented from penetrating through the collector electrode 35. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、半導体装置の試験方法に関し、特に電力変換装置などに用いられるパワー半導体装置の試験方法に関する。   The present invention relates to a test method for a semiconductor device, and more particularly to a test method for a power semiconductor device used in a power conversion device or the like.

近年、フィールドストップ型の絶縁ゲート型バイポーラトランジスタ(以下、FS型IGBTとする)が主流になりつつある。FS型IGBTは、例えばnチャネル型の場合、低濃度のn型ドリフト層と裏面の高濃度のp型コレクタ層の間に高濃度のn型バッファ層を有しており、裏面側に電界がかかってもブレークダウンを起こし難い構造となっている。そのため、FS型IGBTは、低損失で、かつ高耐圧であるという特性を有する。   In recent years, field stop type insulated gate bipolar transistors (hereinafter referred to as FS type IGBTs) are becoming mainstream. For example, in the case of the n-channel type, the FS-type IGBT has a high-concentration n-type buffer layer between a low-concentration n-type drift layer and a high-concentration p-type collector layer on the back surface. Even if it takes, it has a structure that is unlikely to cause breakdown. Therefore, the FS type IGBT has characteristics of low loss and high breakdown voltage.

FS型IGBTの製造方法として、エピタキシャルウェハを用いる方法がある。エピタキシャルウェハは、コレクタ層となる半導体基板上に、バッファ層およびドリフト層となる半導体層をエピタキシャル成長させたウェハである。別の方法として、フローティングゾーン(FZ)法により作製されたFZ結晶からウェハを切り出して用いる方法がある。この製造方法では、FZウェハに表面素子構造を形成した後にウェハの裏面をグラインドして削り、その削った面に対してイオン注入と熱処理を行うことによって、バッファ層とコレクタ層を形成する。そして、蒸着またはスパッタによりコレクタ電極を形成する。FZウェハを用いる方法では、コレクタ層の総ドーズ量を容易に制御できるので、スイッチング損失の少ないIGBTを製造できるという長所がある。   As a method for manufacturing the FS type IGBT, there is a method using an epitaxial wafer. An epitaxial wafer is a wafer obtained by epitaxially growing a semiconductor layer serving as a buffer layer and a drift layer on a semiconductor substrate serving as a collector layer. As another method, there is a method in which a wafer is cut out from an FZ crystal produced by a floating zone (FZ) method. In this manufacturing method, after the surface element structure is formed on the FZ wafer, the back surface of the wafer is ground and shaved, and ion implantation and heat treatment are performed on the shaved surface to form a buffer layer and a collector layer. Then, a collector electrode is formed by vapor deposition or sputtering. In the method using the FZ wafer, the total dose of the collector layer can be easily controlled, so that there is an advantage that an IGBT with a small switching loss can be manufactured.

一方、マトリクスコンバータ等の用途に適したIGBTとして、逆耐圧を有するIGBT(以下、逆阻止型IGBTとする)が市場で求められている。例えばnチャネル型の逆阻止型IGBTは、通常のnチャネル型IGBTの側部に高濃度のp型分離領域を形成し、このp型分離領域をコレクタ層に接続した構成となっている。FZウェハを用いて逆阻止型IGBTを製造する際には、まず、不純物を選択的に拡散させて分離領域を形成する。その後、FS型IGBTの場合と同様に、表面素子構造の形成、ウェハ裏面のグラインド、およびウェハ裏面へのイオン注入と活性化熱処理を順に行い、蒸着またはスパッタによりコレクタ電極を形成する。   On the other hand, an IGBT having a reverse breakdown voltage (hereinafter referred to as a reverse blocking IGBT) is required in the market as an IGBT suitable for applications such as a matrix converter. For example, an n-channel reverse blocking IGBT has a configuration in which a high-concentration p-type isolation region is formed on the side of a normal n-channel IGBT and this p-type isolation region is connected to a collector layer. When manufacturing a reverse blocking IGBT using an FZ wafer, first, an isolation region is formed by selectively diffusing impurities. Thereafter, as in the case of the FS type IGBT, formation of the surface element structure, grinding of the back surface of the wafer, ion implantation to the back surface of the wafer and activation heat treatment are sequentially performed, and a collector electrode is formed by vapor deposition or sputtering.

FS型IGBTでは、順方向バイアスの印加時にバッファ層に強電界がかかる。また、逆阻止型IGBTでは、逆バイアスの印加時に裏面側のPN接合部に強電界がかかる。しかし、これらの半導体装置では、裏面側のPN接合深さが0.3μmと薄いため、裏面側の表面にわずかな傷が入ると、容易にパンチスルーを生じ、半導体装置本来の機能が損なわれてしまう。一方、コレクタ電極としてAl等の金属を蒸着またはスパッタすると、図6に示すように、コレクタ層3となるシリコン(Si)とコレクタ電極4となる金属電極との界面に、シリコン中に突出する金属のスパイク5が生じやすい。   In the FS type IGBT, a strong electric field is applied to the buffer layer when a forward bias is applied. Further, in the reverse blocking IGBT, a strong electric field is applied to the PN junction on the back side when a reverse bias is applied. However, in these semiconductor devices, since the PN junction depth on the back side is as thin as 0.3 μm, if a slight scratch is made on the surface on the back side, punch-through easily occurs and the original function of the semiconductor device is impaired. End up. On the other hand, when a metal such as Al is deposited or sputtered as the collector electrode, the metal protruding into the silicon at the interface between the silicon (Si) serving as the collector layer 3 and the metal electrode serving as the collector electrode 4 as shown in FIG. The spike 5 is likely to occur.

FS型IGBTにおいて、このスパイク5がバッファ層2に達すると、漏れ電流不良を引き起こす。また、逆阻止型IGBTにおいて、スパイク5が裏面側のPN接合部6に達すると、逆耐圧不良や逆漏れ電流不良を引き起こす。従って、これらの半導体装置を製造する際には、裏面電極を貫通する傷が生じないようにすることが、不良低減を図る上で重要である。なお、図6において、符号1は、ドリフト層である。   In the FS type IGBT, when the spike 5 reaches the buffer layer 2, a leakage current failure is caused. In the reverse blocking IGBT, when the spike 5 reaches the PN junction 6 on the back surface side, reverse breakdown voltage failure or reverse leakage current failure is caused. Therefore, when manufacturing these semiconductor devices, it is important to prevent defects from penetrating the back electrode so as to reduce defects. In FIG. 6, reference numeral 1 denotes a drift layer.

一般に、半導体装置の製造プロセスにおいては、素子構造の完成後、ダイシングを行う前に、ウェハチェックステージ上に裏面電極を下にしてウェハを載せ、表面電極に探針を接触させて、電気的特性を測定するウェハチェックが行われる。ウェハチェック時には、数十μmサイズのウェハ裏面の突起部や、ウェハチェックステージの突起部や、ウェハチェックステージ上の異物などが存在することがある。   In general, in the manufacturing process of a semiconductor device, after completion of an element structure, before dicing, a wafer is placed on a wafer check stage with a back electrode facing down, and a probe is brought into contact with the front electrode to make electrical characteristics. A wafer check is performed to measure. During the wafer check, there may be a protrusion on the back surface of the wafer of several tens of micrometers, a protrusion on the wafer check stage, or a foreign matter on the wafer check stage.

通常のIGBTなどの大電流チップのウェハチェックを行う際には、オン電圧などの特性を測る必要があるため、チップに多ピンの探針をあてて大電流を流す。そのため、探針の押し付け力の合計が数百gf〜数kgfになる。しかし、上述したFS型IGBTや逆阻止型IGBTでは、裏面電極に傷があると容易に不良が発生してしまうため、ウェハチェック時や組み立て時に不良が発生しやすい。   When performing a wafer check of a large current chip such as a normal IGBT, it is necessary to measure characteristics such as an on-voltage, and therefore a large current is applied by applying a multi-pin probe to the chip. Therefore, the total pressing force of the probe is several hundred gf to several kgf. However, in the above-described FS type IGBT and reverse blocking type IGBT, if the back electrode is scratched, a defect is easily generated. Therefore, a defect is likely to occur at the time of wafer check or assembly.

発明者らがFS型IGBTや逆阻止型IGBTで実験を行ったところ、チップへの過大な押し付け力によって裏面電極に傷ができ、それが原因で不良が発生することが確認された。また、不良に至らないチップでも、ダメージを受け、その後の試験において不良に至る場合があることがわかった。直径300μmの探針1本当たりの押し付け力は、プローブカードの構造にもよるが、おおむね25gf程度である。また、一般的には、探針1本当たり2.5A相当の電流が流れる。   When the inventors conducted an experiment with an FS type IGBT or reverse blocking type IGBT, it was confirmed that the back electrode could be damaged by an excessive pressing force on the chip, and that a defect occurred due to that. Further, it was found that even a chip that does not cause a defect may be damaged and may be defective in a subsequent test. The pressing force per probe having a diameter of 300 μm is approximately 25 gf although it depends on the structure of the probe card. In general, a current corresponding to 2.5 A flows per probe.

さらに、ゲートおよびエミッタに4本の探針を接続して探針と電極パッドのコンタクトを確認するので、これだけで100gfの力がチップにかかることになる。ただし、探針を細くすれば、50gf程度に軽減される。100A素子の場合には、全部で40本の探針が必要であるため、約1kgfの力がチップにかかることになる。そのため、ウェハチェックステージに突起部があると、その突起部に対応する位置のチップで不良が発生することが確認された。また、従来の押し付け力では不良にならないようなわずかな傷でも、その後の組み立て工程において不良を発生させることがあるということが確認された。   Further, since four probes are connected to the gate and the emitter and the contact between the probe and the electrode pad is confirmed, a force of 100 gf is applied to the chip by this alone. However, if the probe is made thinner, it is reduced to about 50 gf. In the case of a 100A element, a total of 40 probes are required, so a force of about 1 kgf is applied to the chip. Therefore, it was confirmed that when the wafer check stage has a protrusion, a defect occurs in the chip at a position corresponding to the protrusion. It was also confirmed that even a slight scratch that does not become defective with the conventional pressing force may cause a defect in the subsequent assembly process.

ところで、近時、フォトリソグラフィに代わる技術として、凹凸パターンを有する硬質なモールドをレジストや基板に押し付け、圧痕を残すことによってパターン形成をするナノインプリントリソグラフィが提案されている。このナノインプリントリソグラフィにおいて、均一な押し付けを行うため、モールドとウェハの対向していない部分(ウェハ外周部)に同一高さの面一板を設けることでモールドパターン面の全面を加圧する、もしくはモールドへの加圧重心が実際にモールドとウェハが対向している領域の内部に位置するよう加圧制御することが提案されている(例えば、特許文献1参照。)。   Recently, nanoimprint lithography has been proposed as a technique to replace photolithography, in which a hard mold having a concavo-convex pattern is pressed against a resist or a substrate to form a pattern by leaving an indentation. In this nanoimprint lithography, in order to perform uniform pressing, the entire surface of the mold pattern surface is pressurized by providing a flat plate of the same height on the part where the mold and the wafer do not face (outer peripheral part of the wafer), or to the mold It has been proposed to control the pressure so that the center of gravity of the pressure is located within the area where the mold and the wafer are actually facing each other (see, for example, Patent Document 1).

特開2005−268675号公報JP 2005-268675 A

しかしながら、上記特許文献1に開示された方法は、基板にモールドを均一に押し付けることによって圧痕を残す技術であり、半導体装置の裏面電極に傷が生じるのを防ぐこととは何ら関係がない。従って、特許文献1に開示された方法では、ウェハチェック時に裏面電極に傷がつくのを防ぐことができないという問題点がある。   However, the method disclosed in Patent Document 1 is a technique for leaving an indentation by pressing the mold uniformly against the substrate, and has nothing to do with preventing the back electrode of the semiconductor device from being damaged. Therefore, the method disclosed in Patent Document 1 has a problem that it is impossible to prevent the back electrode from being damaged during wafer check.

この発明は、上述した従来技術による問題点を解消するため、ウェハチェック時に裏面電極に傷がつくのを防ぐことができる半導体装置の試験方法を提供することを目的とする。   An object of the present invention is to provide a semiconductor device testing method capable of preventing the back electrode from being damaged at the time of wafer check in order to eliminate the above-mentioned problems caused by the prior art.

上述した課題を解決し、目的を達成するため、本発明らは鋭意研究を重ねた結果、ウェハチェック時に、チップの表面電極に探針を押し付ける力を従来よりも小さくした方が裏面電極に傷がつきにくく、また再現性も良好であるとの知見を得た。さらに研究を進めることによって、チップの表面電極に押し付けられるすべての探針の押し付ける力の合計がおおむね50gf以下であれば、良品率と再現性が顕著に向上することがわかった。また、探針の押し付け力が探針の断面積に比例するので、すべての探針の断面積の合計が150000μm2以下であれば、良好なウェハチェックが可能であることがわかった。 In order to solve the above-described problems and achieve the object, the present inventors have conducted extensive research. As a result, when the wafer is checked, if the force for pressing the probe against the front electrode of the chip is made smaller than before, the back electrode is damaged. It was found that it was difficult to stick and reproducibility was good. By further research, it was found that the yield rate and reproducibility are significantly improved if the total pressing force of all the probes pressed against the surface electrode of the chip is approximately 50 gf or less. Further, since the pressing force of the probe is proportional to the cross-sectional area of the probe, it has been found that if the total cross-sectional area of all the probes is 150,000 μm 2 or less, a good wafer check can be performed.

この発明は上記知見に基づきなされたものであり、請求項1の発明は、第1の主面および第2の主面を有する半導体ウェハの前記第1の主面に表面電極が形成され、かつ前記第2の主面に裏面電極が形成された半導体装置の前記表面電極に複数の探針を接触させて該半導体装置の電気的特性の試験を行う半導体装置の試験方法において、前記探針を前記表面電極に押し付ける力の合計を50gf以下にすることを特徴とする。   The present invention has been made on the basis of the above knowledge, and the invention of claim 1 is characterized in that a surface electrode is formed on the first main surface of the semiconductor wafer having the first main surface and the second main surface, and In a test method for a semiconductor device, in which a plurality of probes are brought into contact with the front surface electrode of a semiconductor device having a back electrode formed on the second main surface, the electrical characteristics of the semiconductor device are tested. The total force to be pressed against the surface electrode is 50 gf or less.

また、請求項2の発明は、第1の主面および第2の主面を有する半導体ウェハの前記第1の主面に表面電極が形成され、かつ前記第2の主面に裏面電極が形成された半導体装置の前記表面電極に複数の探針を接触させて該半導体装置の電気的特性の試験を行う半導体装置の試験方法において、前記探針の総断面積を150000μm2以下にすることを特徴とする。 According to a second aspect of the present invention, a surface electrode is formed on the first main surface of a semiconductor wafer having a first main surface and a second main surface, and a back electrode is formed on the second main surface. In a test method of a semiconductor device in which a plurality of probes are brought into contact with the surface electrode of the manufactured semiconductor device to test the electrical characteristics of the semiconductor device, the total cross-sectional area of the probe is set to 150,000 μm 2 or less. Features.

また、請求項3の発明は、第1の主面および第2の主面を有する半導体ウェハの前記第1の主面に表面電極が形成され、かつ前記第2の主面に裏面電極が形成された半導体装置の前記表面電極に複数の探針を接触させて該半導体装置の電気的特性の試験を行う半導体装置の試験方法において、前記探針を前記表面電極に押し付ける力の合計を50gf以下とし、かつ前記探針の総断面積を150000μm2以下にすることを特徴とする。 According to a third aspect of the present invention, a surface electrode is formed on the first main surface of a semiconductor wafer having a first main surface and a second main surface, and a back electrode is formed on the second main surface. In a test method of a semiconductor device in which a plurality of probes are brought into contact with the surface electrode of the semiconductor device, the electrical characteristics of the semiconductor device are tested, and the total force for pressing the probe against the surface electrode is 50 gf or less The total cross-sectional area of the probe is 150,000 μm 2 or less.

また、請求項4の発明は、請求項1〜3のいずれか一つに記載の発明において、前記半導体装置は、前記第1の主面側から順に、前記表面電極に電気的に接続する第1導電型のエミッタ領域および第2導電型のベース領域、第1導電型のドリフト層、並びに前記裏面電極に電気的に接続し、かつ前記ドリフト層の下部および側部を囲む第2導電型のコレクタ領域を備えた逆阻止型の絶縁ゲート型バイポーラトランジスタであることを特徴とする。   According to a fourth aspect of the invention, there is provided the semiconductor device according to any one of the first to third aspects, wherein the semiconductor device is electrically connected to the surface electrode in order from the first main surface side. A first conductivity type emitter region and a second conductivity type base region, a first conductivity type drift layer, and a second conductivity type electrically connected to the back electrode and surrounding the lower and side portions of the drift layer It is a reverse blocking insulated gate bipolar transistor having a collector region.

また、請求項5の発明は、請求項1〜3のいずれか一つに記載の発明において、前記半導体装置は、前記第1の主面側から順に、前記表面電極に電気的に接続する第1導電型のエミッタ領域および第2導電型のベース領域、第1導電型のドリフト層、前記ドリフト層よりも不純物濃度の高い第1導電型のバッファ層、並びに前記裏面電極に電気的に接続する第2導電型のコレクタ領域を備えたフィールドストップ型の絶縁ゲート型バイポーラトランジスタであることを特徴とする。   The invention according to claim 5 is the invention according to any one of claims 1 to 3, wherein the semiconductor device is electrically connected to the surface electrode in order from the first main surface side. The first conductivity type emitter region and the second conductivity type base region, the first conductivity type drift layer, the first conductivity type buffer layer having a higher impurity concentration than the drift layer, and the back electrode are electrically connected. It is a field stop type insulated gate bipolar transistor having a second conductivity type collector region.

この発明によれば、ウェハチェック時に探針がチップの表面電極に、裏面電極に傷がつかない程度の力で押し付けられる。   According to the present invention, the probe is pressed against the front surface electrode of the chip with a force that does not damage the back surface electrode during the wafer check.

本発明にかかる半導体装置の試験方法によれば、ウェハチェック時に探針の押し付け力によって裏面電極に傷がつくのを防ぐことができるという効果を奏する。   According to the semiconductor device test method of the present invention, it is possible to prevent the back electrode from being damaged by the pressing force of the probe during wafer check.

以下に添付図面を参照して、この発明にかかる半導体装置の試験方法の好適な実施の形態を詳細に説明する。ここでは、FZウェハを用いてnチャネル型の逆阻止型IGBTを製造する場合に本発明方法を適用した例について説明する。   Exemplary embodiments of a semiconductor device testing method according to the present invention will be explained below in detail with reference to the accompanying drawings. Here, an example in which the method of the present invention is applied when an n-channel reverse blocking IGBT is manufactured using an FZ wafer will be described.

図1〜図4は、逆阻止型IGBTを製造する方法を説明するための断面図である。まず、図1に示すように、ドリフト層11となる低濃度n-FZウェハの上から選択的にp型イオンを熱拡散させてp型の分離領域12を形成する。例えば定格1200Vの素子を製造する場合には、p型イオンを200μm程度、拡散させる。 1 to 4 are cross-sectional views for explaining a method of manufacturing a reverse blocking IGBT. First, as shown in FIG. 1, a p-type isolation region 12 is formed by selectively thermally diffusing p-type ions from a low-concentration n FZ wafer to be the drift layer 11. For example, when manufacturing an element having a rated voltage of 1200 V, p-type ions are diffused by about 200 μm.

次いで、図2に示すように、FZウェハの、分離領域12で囲まれる領域の表面側に、選択的なイオン注入、熱処理(アニール)および絶縁層の堆積によって、p型のベース領域13、n型のエミッタ領域14、ゲート酸化膜15、ゲート電極16、層間絶縁膜17、エミッタ電極18および図示省略した絶縁保護膜よりなる表面側素子構造部を形成する。次いで、図2に点線で示すように、分離領域12が現れるまで、バックグラインド等によりウェハの裏面を研削する。   Next, as shown in FIG. 2, a p-type base region 13, n is formed on the surface side of the region surrounded by the isolation region 12 by selective ion implantation, heat treatment (annealing) and deposition of an insulating layer. A surface-side element structure portion is formed which includes a type emitter region 14, a gate oxide film 15, a gate electrode 16, an interlayer insulating film 17, an emitter electrode 18 and an insulating protective film (not shown). Next, as shown by a dotted line in FIG. 2, the back surface of the wafer is ground by back grinding or the like until the separation region 12 appears.

次いで、図3に示すように、ウェハの裏面から、p型イオンを注入し、熱処理(アニール)を行って、ウェハ裏面側にp型のコレクタ層19を形成する。このコレクタ層19と前記分離領域12がつながることによって、ドリフト層11の下部および側部を囲むコレクタ領域が形成される。その後、コレクタ層19の表面に、多層膜よりなるコレクタ電極(裏面電極)の第1層目の導電膜として、蒸着またはスパッタによりアルミニウム膜20を例えば0.6μmの厚さに形成する。続いて、図4に示すように、チタン、ニッケルおよび金などの複数の金属膜21を蒸着またはスパッタにより形成し、コレクタ電極22を形成する。   Next, as shown in FIG. 3, p-type ions are implanted from the back surface of the wafer and heat treatment (annealing) is performed to form a p-type collector layer 19 on the back surface side of the wafer. By connecting the collector layer 19 and the isolation region 12, a collector region surrounding the lower and side portions of the drift layer 11 is formed. Thereafter, an aluminum film 20 having a thickness of, for example, 0.6 μm is formed on the surface of the collector layer 19 by vapor deposition or sputtering as a first conductive film of a collector electrode (back electrode) made of a multilayer film. Subsequently, as shown in FIG. 4, a plurality of metal films 21 such as titanium, nickel and gold are formed by vapor deposition or sputtering to form a collector electrode 22.

以上のようにしてデバイスの製作が完了した後、ウェハをフローバーにセットし、ウェハチェックを行う。その際、すべての探針の押し付け力の合計を50gf以下とする。あるいは、すべての探針の断面積の合計を150000μm2以下とする。探針の押し付け力は、探針の径の2乗と押し付け量(歪み量)に比例し、ばね長に反比例する。また、押し付ける力の合計は、探針の本数に比例して大きくなる。そこで、実施の形態では、直径130μmの探針を4本(押し付け量150μm)用い、押し付け力の合計を20gfにしてウェハチェックを行い、耐圧、漏れ電流、閾値電圧Vthおよびゲートショックなどの試験を行う。 After the device fabrication is completed as described above, the wafer is set on the flow bar and a wafer check is performed. At that time, the total pressing force of all the probes is set to 50 gf or less. Alternatively, the total cross-sectional area of all the probes is set to 150,000 μm 2 or less. The pressing force of the probe is proportional to the square of the probe diameter and the pressing amount (distortion amount), and inversely proportional to the spring length. Further, the total pressing force increases in proportion to the number of probes. Therefore, in the embodiment, four probes having a diameter of 130 μm (pressing amount 150 μm) are used, a wafer check is performed with the total pressing force being 20 gf, and tests such as withstand voltage, leakage current, threshold voltage Vth and gate shock are performed. Do.

このようにすることによって、従来の条件でウェハチェックを行う場合に比べて、機械的不良が削減された。なお、従来のウェハチェックでは、直径300μmの探針を40本(押し付け量200μm)用いており、押し付け力の合計は、約1kgであった。最後に、ダイシングを行って複数のチップに分割する。   By doing in this way, the mechanical defect was reduced compared with the case where a wafer check is performed on the conventional conditions. In the conventional wafer check, 40 probes having a diameter of 300 μm (pressing amount: 200 μm) were used, and the total pressing force was about 1 kg. Finally, dicing is performed to divide into a plurality of chips.

図5は、この発明にかかる試験方法を適用したウェハチェックの概略を示す断面図である。図5において、符号31は、デバイス作製完了後のウェハであり、このウェハ31には、例えば、上から順にドリフト層32、バッファ層33、コレクタ層34およびコレクタ電極35を有するFS型IGBTが作製されている。符号41は、ウェハチェックステージであり、符号42は、探針である。図示省略した表面電極に対する探針42の押し付け力の合計は、50gf以下である。この場合、ウェハチェックステージ41の上に異物43などがあり、それが原因でコレクタ電極35に傷36ができても、その傷36がコレクタ電極35を貫通することはない。   FIG. 5 is a sectional view showing an outline of a wafer check to which the test method according to the present invention is applied. In FIG. 5, reference numeral 31 denotes a wafer after device fabrication is completed. For example, an FS IGBT having a drift layer 32, a buffer layer 33, a collector layer 34, and a collector electrode 35 is fabricated on the wafer 31 from the top. Has been. Reference numeral 41 denotes a wafer check stage, and reference numeral 42 denotes a probe. The total pressing force of the probe 42 against the surface electrode (not shown) is 50 gf or less. In this case, even if there is a foreign matter 43 or the like on the wafer check stage 41 and the collector electrode 35 is damaged due to this, the scratch 36 does not penetrate the collector electrode 35.

以上説明したように、実施の形態によれば、チップの表面電極に押し付ける探針の数とその径を細くして、押し付け力の合計を小さくしたので、ウェハチェック時に裏面電極に傷がつくのを防ぐことができる、従って、ウェハチェック時に不良が発生するのを防ぐことができる。また、従来、ウェハチェック時に裏面電極に小さな傷ができ、それが原因で後の組み立て工程において不良が発生することがあったが、このような不良の発生を減らすことができる。さらに、実施の形態によれば、裏面金属電極のスパイキングが原因で発生する、FS型IGBTの漏れ電流不良および逆阻止型IGBTの逆耐圧不良や逆漏れ電流不良を抑制することができる。   As described above, according to the embodiment, the number and the diameter of the probes to be pressed against the front surface electrode of the chip are reduced and the total pressing force is reduced. Therefore, it is possible to prevent a defect from occurring during the wafer check. Conventionally, a back surface electrode has a small flaw during wafer check, which causes a defect in a later assembly process. The occurrence of such a defect can be reduced. Furthermore, according to the embodiment, it is possible to suppress the leakage current failure of the FS-type IGBT and the reverse breakdown voltage failure or reverse leakage current failure of the reverse blocking IGBT, which are caused by the spiking of the back surface metal electrode.

以上において本発明は、上述した実施の形態に限らず、種々変更可能である。例えば、実施の形態中に記載した数値は一例であり、本発明はそれらの値に限定されるものではない。また、実施の形態では第1導電型をn型とし、第2導電型をp型としたが、その逆でも同様である。   As described above, the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the numerical values described in the embodiments are examples, and the present invention is not limited to these values. In the embodiment, the first conductivity type is n-type and the second conductivity type is p-type, and vice versa.

以上のように、本発明にかかる半導体装置の試験方法は、電力変換装置などに用いられるパワー半導体装置の試験に有用であり、特に、逆阻止型やフィールドストップ型のIGBTの試験に適している。   As described above, the method for testing a semiconductor device according to the present invention is useful for testing a power semiconductor device used in a power conversion device or the like, and is particularly suitable for testing a reverse blocking type or field stop type IGBT. .

逆阻止型IGBTの製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of reverse blocking IGBT. 逆阻止型IGBTの製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of reverse blocking IGBT. 逆阻止型IGBTの製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of reverse blocking IGBT. 逆阻止型IGBTの製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of reverse blocking IGBT. この発明にかかる試験方法を適用したウェハチェックの概略を示す断面図である。It is sectional drawing which shows the outline of the wafer check to which the test method concerning this invention is applied. 金属電極からシリコン中へ伸びるスパイクを説明する断面図である。It is sectional drawing explaining the spike extended in a silicon | silicone from a metal electrode.

符号の説明Explanation of symbols

11,32 ドリフト層
12 分離領域
13 ベース領域
14 エミッタ領域
18 エミッタ電極
19,34 コレクタ層
22 コレクタ電極
31 ウェハ
33 バッファ層
42 探針
11, 32 Drift layer 12 Separation region 13 Base region 14 Emitter region 18 Emitter electrode 19, 34 Collector layer 22 Collector electrode 31 Wafer 33 Buffer layer 42 Probe

Claims (5)

第1の主面および第2の主面を有する半導体ウェハの前記第1の主面に表面電極が形成され、かつ前記第2の主面に裏面電極が形成された半導体装置の前記表面電極に複数の探針を接触させて該半導体装置の電気的特性の試験を行う半導体装置の試験方法において、
前記探針を前記表面電極に押し付ける力の合計を50gf以下にすることを特徴とする半導体装置の試験方法。
A surface electrode of the semiconductor wafer having a first main surface and a second main surface is formed on the first main surface, and a back electrode is formed on the second main surface. In a test method of a semiconductor device for testing electrical characteristics of the semiconductor device by contacting a plurality of probes,
A test method for a semiconductor device, characterized in that a total force for pressing the probe against the surface electrode is 50 gf or less.
第1の主面および第2の主面を有する半導体ウェハの前記第1の主面に表面電極が形成され、かつ前記第2の主面に裏面電極が形成された半導体装置の前記表面電極に複数の探針を接触させて該半導体装置の電気的特性の試験を行う半導体装置の試験方法において、
前記探針の総断面積を150000μm2以下にすることを特徴とする半導体装置の試験方法。
A surface electrode of the semiconductor wafer having a first main surface and a second main surface is formed on the first main surface, and a back electrode is formed on the second main surface. In a test method of a semiconductor device for testing electrical characteristics of the semiconductor device by contacting a plurality of probes,
A test method for a semiconductor device, wherein a total cross-sectional area of the probe is 150,000 μm 2 or less.
第1の主面および第2の主面を有する半導体ウェハの前記第1の主面に表面電極が形成され、かつ前記第2の主面に裏面電極が形成された半導体装置の前記表面電極に複数の探針を接触させて該半導体装置の電気的特性の試験を行う半導体装置の試験方法において、
前記探針を前記表面電極に押し付ける力の合計を50gf以下とし、かつ前記探針の総断面積を150000μm2以下にすることを特徴とする半導体装置の試験方法。
A surface electrode of the semiconductor wafer having a first main surface and a second main surface is formed on the first main surface, and a back electrode is formed on the second main surface. In a test method of a semiconductor device for testing electrical characteristics of the semiconductor device by contacting a plurality of probes,
A test method for a semiconductor device, characterized in that a total force for pressing the probe against the surface electrode is 50 gf or less, and a total cross-sectional area of the probe is 150,000 μm 2 or less.
前記半導体装置は、前記第1の主面側から順に、前記表面電極に電気的に接続する第1導電型のエミッタ領域および第2導電型のベース領域、第1導電型のドリフト層、並びに前記裏面電極に電気的に接続し、かつ前記ドリフト層の下部および側部を囲む第2導電型のコレクタ領域を備えた逆阻止型の絶縁ゲート型バイポーラトランジスタであることを特徴とする請求項1〜3のいずれか一つに記載の半導体装置の試験方法。   The semiconductor device includes, in order from the first main surface side, a first conductivity type emitter region and a second conductivity type base region electrically connected to the surface electrode, a first conductivity type drift layer, and the 2. A reverse-blocking insulated gate bipolar transistor having a second conductivity type collector region electrically connected to a back electrode and surrounding a lower portion and a side portion of the drift layer. 4. The method for testing a semiconductor device according to any one of 3 above. 前記半導体装置は、前記第1の主面側から順に、前記表面電極に電気的に接続する第1導電型のエミッタ領域および第2導電型のベース領域、第1導電型のドリフト層、前記ドリフト層よりも不純物濃度の高い第1導電型のバッファ層、並びに前記裏面電極に電気的に接続する第2導電型のコレクタ領域を備えたフィールドストップ型の絶縁ゲート型バイポーラトランジスタであることを特徴とする請求項1〜3のいずれか一つに記載の半導体装置の試験方法。   The semiconductor device includes, in order from the first main surface side, a first conductivity type emitter region and a second conductivity type base region electrically connected to the surface electrode, a first conductivity type drift layer, and the drift A field stop type insulated gate bipolar transistor having a first conductivity type buffer layer having a higher impurity concentration than the layer and a second conductivity type collector region electrically connected to the back electrode. The method for testing a semiconductor device according to claim 1.
JP2006248893A 2006-09-14 2006-09-14 Testing method of semiconductor device Pending JP2008071916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248893A JP2008071916A (en) 2006-09-14 2006-09-14 Testing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248893A JP2008071916A (en) 2006-09-14 2006-09-14 Testing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2008071916A true JP2008071916A (en) 2008-03-27

Family

ID=39293259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248893A Pending JP2008071916A (en) 2006-09-14 2006-09-14 Testing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2008071916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8471585B2 (en) 2009-08-27 2013-06-25 Tokyo Electron Limited Method for evaluating semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110692A (en) * 2000-10-03 2002-04-12 Denso Corp Manufacturing method, inspecting method, and inspection probe for insulating gate type power ic
JP2003121459A (en) * 2001-10-15 2003-04-23 Shimadzu Corp Electric characteristic measuring device and measuring method
JP2005340465A (en) * 2004-05-26 2005-12-08 Fuji Electric Holdings Co Ltd Semiconductor device and manufacturing method thereof
JP2006005368A (en) * 2005-07-01 2006-01-05 Renesas Technology Corp Method of manufacturing semiconductor device
JP2006190730A (en) * 2005-01-04 2006-07-20 Fuji Electric Holdings Co Ltd Manufacturing method of reverse blocking insulating gate bipolar transistor
JP2006237553A (en) * 2004-09-02 2006-09-07 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110692A (en) * 2000-10-03 2002-04-12 Denso Corp Manufacturing method, inspecting method, and inspection probe for insulating gate type power ic
JP2003121459A (en) * 2001-10-15 2003-04-23 Shimadzu Corp Electric characteristic measuring device and measuring method
JP2005340465A (en) * 2004-05-26 2005-12-08 Fuji Electric Holdings Co Ltd Semiconductor device and manufacturing method thereof
JP2006237553A (en) * 2004-09-02 2006-09-07 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2006190730A (en) * 2005-01-04 2006-07-20 Fuji Electric Holdings Co Ltd Manufacturing method of reverse blocking insulating gate bipolar transistor
JP2006005368A (en) * 2005-07-01 2006-01-05 Renesas Technology Corp Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8471585B2 (en) 2009-08-27 2013-06-25 Tokyo Electron Limited Method for evaluating semiconductor device

Similar Documents

Publication Publication Date Title
US11239356B2 (en) Semiconductor device and method of manufacturing semiconductor device
CN103219364B (en) Semiconductor device and manufacture method thereof
JP5560538B2 (en) Manufacturing method of semiconductor device
JP5443908B2 (en) Manufacturing method of semiconductor device
JP5655931B2 (en) Manufacturing method of semiconductor device
JP5539355B2 (en) Power semiconductor device and manufacturing method thereof
US10403554B2 (en) Method for manufacturing semiconductor device
WO2009088081A1 (en) Semiconductor device and method for manufacturing the same
US7521757B2 (en) Semiconductor device with back surface electrode including a stress relaxation film
JP5256788B2 (en) Dislocation detection method in silicon carbide semiconductor wafer and method for manufacturing silicon carbide semiconductor device
JP2006196710A (en) Manufacturing method of semiconductor element
JP2004165619A (en) Semiconductor substrate and manufacturing method thereof, and semiconductor device and manufacturing method thereof
EP1220322A2 (en) High breakdown-voltage semiconductor device
JP2020072162A (en) Manufacturing method of semiconductor device
JP2011049337A (en) Method of manufacturing semiconductor device
JP2015207733A (en) Method for manufacturing reverse conducting igbt
JP2008071916A (en) Testing method of semiconductor device
JP2022175891A (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP2022176696A (en) Method of manufacturing silicon carbide semiconductor device
JP2022176695A (en) Method of manufacturing silicon carbide semiconductor device
JP2022163818A (en) Method for manufacturing silicon carbide semiconductor device
JP2012023229A (en) Semiconductor device characteristic measurement method and semiconductor device manufacturing method
US10522478B2 (en) Semiconductor device with circumferential structure and method of manufacturing
JP2000164665A (en) Semiconductor integrated circuit device and manufacture thereof
JP2012129537A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004