JPH01712A - permanent magnet - Google Patents
permanent magnetInfo
- Publication number
- JPH01712A JPH01712A JP62-154361A JP15436187A JPH01712A JP H01712 A JPH01712 A JP H01712A JP 15436187 A JP15436187 A JP 15436187A JP H01712 A JPH01712 A JP H01712A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- superconductor
- oxide superconductor
- magnetic flux
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 claims description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 230000002950 deficient Effects 0.000 claims description 4
- 230000007547 defect Effects 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910052691 Erbium Inorganic materials 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- 229910052775 Thulium Inorganic materials 0.000 claims description 2
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 2
- 229910052692 Dysprosium Inorganic materials 0.000 claims 1
- 229910052693 Europium Inorganic materials 0.000 claims 1
- 229910052688 Gadolinium Inorganic materials 0.000 claims 1
- 229910052689 Holmium Inorganic materials 0.000 claims 1
- 229910052765 Lutetium Inorganic materials 0.000 claims 1
- 230000004907 flux Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は永久磁石に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to permanent magnets.
(従来の技術) 永久磁石は磁界発生源として古くから用いられている。(Conventional technology) Permanent magnets have long been used as sources of magnetic fields.
フェライト磁石、希土類コバルト系磁石、最近では希土
類鉄系磁石等が実用化されている。Ferrite magnets, rare earth cobalt magnets, and recently rare earth iron magnets have been put into practical use.
この永久磁石を使用する場合、所望の箇所のみに磁束を
発生せしめることは困難であり、形状等を工夫してもあ
る程度の磁束の漏れはしかたがないところである。従っ
て永久磁石の周囲の機器はこの漏れ磁束を考慮しつつ設
計しなければならないなどの不都合があった。When using such permanent magnets, it is difficult to generate magnetic flux only at desired locations, and even if the shape and the like are devised, some degree of magnetic flux leakage is unavoidable. Therefore, there is an inconvenience that devices surrounding the permanent magnet must be designed taking this leakage magnetic flux into consideration.
(発明が解決しようとする問題点)
この様な永久磁石における磁束の漏れは設計上の大きな
問題であり、本発明は、必要な空間に有効に磁束を発生
できる永久磁石を提供することを目的としてなされたも
のである。(Problem to be Solved by the Invention) Such magnetic flux leakage in permanent magnets is a major design problem, and the purpose of the present invention is to provide a permanent magnet that can effectively generate magnetic flux in a required space. This was done as a.
[発明の構成コ
(問題点を解決するための手段及び作用)本発明は、表
面の一部に超電導体膜が形成されていることを特徴とす
る永久磁石である。[Structure of the Invention (Means and Effects for Solving the Problems)] The present invention is a permanent magnet characterized in that a superconductor film is formed on a part of the surface.
すなわち本発明では磁束を取り出すのに利用する表面以
外の領域を超電導体膜で肢覆することにより、所望部分
にのみ磁束を発生せしめようとするものである。That is, the present invention attempts to generate magnetic flux only in a desired portion by covering the area other than the surface used for extracting magnetic flux with a superconductor film.
永久磁石としてはフェライト系、希土類コバルト系、希
土類鉄系等の各種の磁石が挙げられる。Examples of permanent magnets include various types of magnets such as ferrite, rare earth cobalt, and rare earth iron.
本発明で用いる超電導体としては超電導特性を有して・
いれば良いが臨界温度(Tc)ができるだけ高いものが
実用上好ましい。また酸化物超電導体は比較的扱い易く
、超電導体層形成も塗布、蒸着、スパッタリング、CV
D 、溶射など種々の方法が使えるため好ましい。The superconductor used in the present invention has superconducting properties.
Although it is fine as long as it is present, it is practically preferable to have a critical temperature (Tc) as high as possible. In addition, oxide superconductors are relatively easy to handle, and superconductor layers can be formed by coating, vapor deposition, sputtering, CV
D is preferable because various methods such as thermal spraying can be used.
特に酸化物超電導体としては最近100Kを越える高T
c材が得られているはLn元素(LnはY 、 La
、 Sc 。In particular, oxide superconductors with high T exceeding 100K have recently been developed.
C material is obtained from Ln element (Ln is Y, La
, Sc.
Nd、Sm、Cu、Gd、Dy、Ilo、Er、Tm、
Yb、Luの少なくとも一種)、AE元素(Ba、Ca
及びSrの少なくとも一種)及びCuを含有するペロブ
スカイト構造の酸化物超電導体が有効である。ここでい
うペロブスカイト型構造の酸化物超電導体はLa−(B
a 、 Sr 、 Ca)−Cu−0系の層状ペロブス
カイト型酸化物超電導体、Y−Ba−Cu−0系の酸素
欠陥を有する欠陥ペロブスカイト型酸化好超電導体など
の広義のペロブスカイト型構造の酸、化物超電導体をさ
す。Nd, Sm, Cu, Gd, Dy, Ilo, Er, Tm,
Yb, at least one of Lu), AE elements (Ba, Ca
An oxide superconductor having a perovskite structure containing Cu and at least one of Sr and Sr) is effective. The perovskite-type structure oxide superconductor mentioned here is La-(B
a, Sr, Ca)-Cu-0-based layered perovskite-type oxide superconductors, Y-Ba-Cu-0-based defective perovskite-type oxidizable superconductors having oxygen defects, and other acids with perovskite-type structures in a broad sense; Refers to compound superconductors.
本発明に用いる酸化物超電導体は、例えば以下に示す製
造方法により得ることができる。The oxide superconductor used in the present invention can be obtained, for example, by the manufacturing method shown below.
Y、Cu、Ba等の酸化物超電導体の構成元素を含aす
る原料を十分混合する。混合の際にはY2O3゜Bad
、CuO等の酸化物を原料として用いることができる。Raw materials containing constituent elements of the oxide superconductor such as Y, Cu, and Ba are thoroughly mixed. Y2O3゜Bad when mixing
, CuO, and other oxides can be used as raw materials.
また、これらの酸化物のほかに、焼成後酸化物に転化す
る炭酸塩、硝酸塩、水酸化物等の化合物を用いてもよい
。さらには共沈法等で得たしゅう酸塩等を用いても良い
。In addition to these oxides, compounds such as carbonates, nitrates, and hydroxides that are converted into oxides after firing may be used. Furthermore, oxalate obtained by a coprecipitation method or the like may also be used.
前述の原料を混合した後、仮焼・粉砕し所望の形状に成
形した後、850−980℃程度で焼成する。After mixing the above-mentioned raw materials, they are calcined and pulverized to form a desired shape, and then fired at about 850-980°C.
仮焼は必ずしも必要ではない。焼成・仮焼は十分な酸素
が供給できるような酸素含有雰囲気で行なうことが好ま
しい。所望の形状に焼成した後、酸素中で加熱処理する
こと、特に3O0℃程度まで徐冷することにより超電導
特性を向上することができる。この加熱処理は通常3O
0−700℃程度である。Calcining is not necessarily necessary. Firing and calcination are preferably carried out in an oxygen-containing atmosphere where sufficient oxygen can be supplied. After firing into a desired shape, the superconducting properties can be improved by heat treatment in oxygen, especially by slow cooling to about 300°C. This heat treatment is usually 3O
The temperature is about 0-700°C.
この様にして得られた酸化物超電導体はLn 、 AE
。The oxide superconductor obtained in this way is Ln, AE
.
Cuを原子比で実質的に1:2:3の比率で含有し酸素
欠陥δを有するLnBa Cu O(δは通2 3
7−δ
常1以下)の酸素欠陥型ペロブスカイト構造となる。C
u元索、Ba元索の置換元素はそれぞれのサイト、に置
換した形で入る。ペロブスカイト型酸化物超電導体を構
成する元素は、基本的に化学量論lヒの組成となるよう
に混合するが、多少製造条件等との関係等でずれていて
も構わない。例えばY−Ba−Cu−0系ではYlmo
lに対しBa2mol、Cu3molが標準組成である
が、実用上はYlmolに対し、Ba2±0.6 a+
ol 、 Cu 3±0.2 mol程度のずれは問題
ない。LnBa Cu O containing Cu in an atomic ratio of substantially 1:2:3 and having oxygen defects δ (δ is 2 3
7-δ (usually 1 or less) becomes an oxygen-deficient perovskite structure. C
Substituting elements in the U base and Ba base enter the respective sites in a substituted form. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but they may be slightly deviated depending on the manufacturing conditions and the like. For example, in the Y-Ba-Cu-0 system, Ylmo
The standard composition is Ba2mol and Cu3mol for Ylmol, but in practice, Ba2±0.6a+ for Ylmol
A deviation of about 3±0.2 mol of Cu is not a problem.
なお本発明に用いる酸化物超電導体ではBa元素ヲSr
、Caの少なくとも一種で置換することができる。さら
にCuの一部をTi、V、Cr、Mn、Pc、Co、旧
、Zn等で置換することもできる。置換量は超電導特性
を 。In addition, in the oxide superconductor used in the present invention, Ba element and Sr
, Ca. Furthermore, a part of Cu can also be replaced with Ti, V, Cr, Mn, Pc, Co, old, Zn, etc. The amount of substitution determines the superconducting properties.
低下させない程度の範囲で適宜設定可能であるが、あま
り多量の置換は超電導特性を低下してしまうため80I
I101%以下、さらに実用上は20mo1%以下程度
である。It can be set as appropriate within a range that does not cause deterioration, but too much substitution will deteriorate the superconducting properties, so 80I
The I content is 101% or less, more practically about 20 mo1% or less.
上述、の粉末焼結法で得た超電導体を永久磁石の表面に
設置しても良いし、蒸着法、スパッタリング法、CVD
法などの方法による膜状の酸化物超電導体をヨークの表
面に形成することもできる。The superconductor obtained by the powder sintering method described above may be placed on the surface of a permanent magnet, or by vapor deposition, sputtering, or CVD.
It is also possible to form a film-like oxide superconductor on the surface of the yoke by a method such as a method.
更に酸化物超電導体ペーストを用いたスクリーン印刷法
、ゾル・ゲル法等を用いての製造もできる。Furthermore, it can also be manufactured using a screen printing method using an oxide superconductor paste, a sol-gel method, or the like.
なお永久磁石の表面に形成する超電導体膜の厚さはマイ
スナー効果により磁束を閉じこめることができる程度有
れば足り、通常は2000^以上である。The thickness of the superconductor film formed on the surface of the permanent magnet is sufficient as long as it can confine the magnetic flux by the Meissner effect, and is usually 2000^ or more.
(実施例) 以下に本発明の詳細な説明する。(Example) The present invention will be explained in detail below.
実施例−1
原子比でY :Ba:Cu= 1 : 2 : 3を含
む酸素欠陥型ペロブスカイト構造を有する酸化物超電導
体を、第1図に示すように円柱状の永久磁石1の側面表
面に形成した。なお超電導体膜2の膜厚は50μmであ
る。Example-1 An oxide superconductor having an oxygen-deficient perovskite structure containing an atomic ratio of Y:Ba:Cu=1:2:3 was placed on the side surface of a cylindrical permanent magnet 1 as shown in FIG. Formed. Note that the thickness of the superconductor film 2 is 50 μm.
超電導体のTc以下に冷却したところ、永久磁石側面か
らの磁束3の漏れはなかった。When the superconductor was cooled to below Tc, there was no leakage of magnetic flux 3 from the side surfaces of the permanent magnet.
比較例−1 超電導体膜2がない永久磁石を用意した。Comparative example-1 A permanent magnet without a superconductor film 2 was prepared.
この永久磁石では側面から磁束の漏れ4が確認された(
第2図)、。Magnetic flux leakage4 was confirmed from the side of this permanent magnet (
Figure 2).
[発明の効果]
以上説明したように本発明によれば必要な箇所からのみ
磁束を有効に発生できる永久磁石を得ることができる。[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a permanent magnet that can effectively generate magnetic flux only from necessary locations.
第1図は本願発明を説明する概略断面図、第2図は比較
例を説明するための概略断面図。
代理人 弁理士 則 近 憲 佑
第1図
第2図FIG. 1 is a schematic sectional view for explaining the present invention, and FIG. 2 is a schematic sectional view for explaining a comparative example. Agent Patent Attorney Noriyuki ChikaFigure 1Figure 2
Claims (6)
する永久磁石。(1) A permanent magnet whose surface is partially coated with a superconductor film.
とを特徴とする特許請求の範囲第1項記載の永久磁石。(2) The permanent magnet according to claim 1, wherein the superconductor layer has a thickness of 2000 Å or more.
とする特許請求の範囲第1項記載の永久磁石。(3) The permanent magnet according to claim 1, wherein the superconductor is an oxide superconductor.
,Sc,Nd,Sm,Eu,Gd,Dy,Ho,Er,
Tm,Yb,Luの少なくとも一種)、AE元素(Ba
,Ca及びSrの少なくとも一種)及びCuを含有する
ペロブスカイト構造の酸化物超電導体であることを特徴
とする特許請求の範囲第3項記載の永久磁石。(4) The oxide superconductor is made of Ln element (Ln is Y, La
, Sc, Nd, Sm, Eu, Gd, Dy, Ho, Er,
At least one of Tm, Yb, Lu), AE element (Ba
, Ca, and Sr) and Cu, the permanent magnet is an oxide superconductor having a perovskite structure.
で実質的に1:2:3の比率で含有することを特徴とす
る特許請求の範囲第4項記載の永久磁石。(5) The permanent magnet according to claim 4, wherein the oxide superconductor contains Ln, AE, and Cu in an atomic ratio of substantially 1:2:3.
7_−_δ(δは酸素欠陥を表わす)で表わされる酸素
欠陥型ペロブスカイト構造を有することを特徴とする特
許請求の範囲第4項記載の永久磁石。(6) The oxide superconductor is LnBa_2Cu_3O_
5. The permanent magnet according to claim 4, having an oxygen-deficient perovskite structure represented by 7_−_δ (δ represents an oxygen defect).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15436187A JPS64712A (en) | 1987-06-23 | 1987-06-23 | Permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15436187A JPS64712A (en) | 1987-06-23 | 1987-06-23 | Permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01712A true JPH01712A (en) | 1989-01-05 |
JPS64712A JPS64712A (en) | 1989-01-05 |
Family
ID=15582475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15436187A Pending JPS64712A (en) | 1987-06-23 | 1987-06-23 | Permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS64712A (en) |
-
1987
- 1987-06-23 JP JP15436187A patent/JPS64712A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Desfeux et al. | Thin film deposition of a new cubic perovskite, La4+ xBa1− xCu5O12+ δ used for the realization of multilayers with YBCO | |
US6281171B1 (en) | MG-doped high-temperature superconductor having the superconducting anisotropy and method for producing the superconductor | |
JPH01712A (en) | permanent magnet | |
JPS63291817A (en) | Oxide superconductor | |
JPH04170318A (en) | Lamellar copper oxide | |
JP2588200B2 (en) | Manufacturing method of oxide superconductor | |
JPS63285812A (en) | Manufacture of oxide superconductive wire material | |
JP2558695B2 (en) | Method for manufacturing oxide superconducting wire | |
JPS63318722A (en) | Magnetic circuit | |
JPS63318717A (en) | High permeability component | |
JPS63258098A (en) | Superconducting electromagnetic shield | |
JP2523632B2 (en) | Superconducting coil and manufacturing method thereof | |
JP2593475B2 (en) | Oxide superconductor | |
JPS63279521A (en) | Superconductor device | |
JP2598055B2 (en) | Oxide superconducting thin film for electronic devices | |
JPS63307110A (en) | Oxide superconductor | |
JP2644245B2 (en) | Oxide superconducting wire | |
JPS63276820A (en) | Manufacture of oxide superconductor | |
JP2585260B2 (en) | Method for producing oxide superconductor tape | |
JP3713284B2 (en) | Manufacturing method of oxide superconducting coil | |
JPS63297217A (en) | Production of oxide superconductor | |
JPS63297214A (en) | Production of oxide superconductor | |
JPS63279522A (en) | Superconductor wire rod | |
JP2585621B2 (en) | How to make superconducting material | |
JPH01164762A (en) | Compound oxide type superconducting sintered body |