JPH0148136B2 - - Google Patents

Info

Publication number
JPH0148136B2
JPH0148136B2 JP57184451A JP18445182A JPH0148136B2 JP H0148136 B2 JPH0148136 B2 JP H0148136B2 JP 57184451 A JP57184451 A JP 57184451A JP 18445182 A JP18445182 A JP 18445182A JP H0148136 B2 JPH0148136 B2 JP H0148136B2
Authority
JP
Japan
Prior art keywords
film
value
stretched
stretching
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57184451A
Other languages
Japanese (ja)
Other versions
JPS5973921A (en
Inventor
Satoyuki Nakamura
Hideaki Watanabe
Atsushi Niki
Sadahiro Kadoya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP18445182A priority Critical patent/JPS5973921A/en
Publication of JPS5973921A publication Critical patent/JPS5973921A/en
Publication of JPH0148136B2 publication Critical patent/JPH0148136B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリエステルフイルムの製造法に関す
る。更に詳しくは、フイルムの縦方向のF−1値
(1%伸長時の応力を指す)と横方向のF−1値
とが極めて高い水準にあるポリエステルフイルム
を製造する方法に関するものである。 従来技術ではポリエステルフイルムを二軸延伸
する方法として、未延伸フイルムを縦方向に80℃
〜120℃の温度範囲で3倍以上延伸した後、横方
向に80℃〜120℃の温度で3倍以上延伸するいわ
ゆる縦横逐次延伸法が知られているが、この方法
では高強度二軸延伸フイルムは得られない。即
ち、縦方向の強度を高めるために縦延伸倍率を高
くすると、結晶性のポリエステルでは分子配向お
よび結晶化が促進されるので、次の横延伸工程に
おける円滑な延伸操作が困難となり、高倍率延伸
の条件では製造時のフイルム破断が多発してしま
うから、縦・横両方向のF−1値の高いフイルム
を得ることは至難である。また第1段目に横延伸
し、次いで縦延伸する横縦延伸法では第1段目の
横方向はテンターで把持して延伸するため延伸の
操業安定性が悪く、かつ横方向のみに配向したフ
イルムが得られるので、次いで行う縦延伸時にフ
イルムの横方向が収縮して横方向の分子配向が緩
められる結果横方向の強度が著しく低下し、二軸
方向に高強度を備えたフイルムは得られない。 従来の比較的高いヤング率を呈するポリエステ
ル二軸延伸フイルムの縦および横方向のF−1値
は4.5〜5.0Kg/mm2である。また縦方向のF−1値
が6.0〜8.0Kg/mm2である縦方向強化二軸延伸フイ
ルム(所謂テンシライズドフイルム)が開発され
て以来、フイルムの用途は録音用カセツトテープ
分野に拡がつてきた。更に近年録画用ビデオテー
プの伸展に伴い長時間録画用、薄物化にともなつ
てフイルムの縦方向だけでなく、横方向のF−1
値も高いことが要求されているがまだ十分要求に
応じたフイルムが製造されていないのが実情であ
る。本発明の目的はこれらの用途として特に好適
である縦・横二軸高強度ポリエステルフイルムの
操業安定性の良い製造法を提供することにある。 従来技術から予測できる両方向高強度ポリエス
テルフイルムの製造法として、縦方向に強度を高
めた二軸延伸フイルムを更に横方向に再横延伸す
る方法、均衡のとれた通常のポリエステルフイル
ムを再縦、再横延伸する4段延伸法がある。しか
し、いずれの方法においても再横延伸を実施する
場合に、延伸時におけるフイルムの破断発生傾向
が高く安定に製造する事は困難であつた。 ところが、横方向強化ポリエステルフイルムを
再縦延伸する条件を種々研究している段階で、フ
イルム延伸時に破断の発生がなく、均一厚さのポ
リエステルフイルムが得られる製造条件を知見
し、本発明に到つた。 即ち、本発明は、ポリエステルフイルムを少な
くとも3段階の延伸工程によつて縦方向及び横方
向に二軸延伸する製造法において、まずポリエス
テル未延伸フイルムを縦方向次いで横方向に延伸
して延伸フイルムの縦方向のF−1値(1%伸長
時の応力)が3.13Kg/mm2〜4Kg/mm2であり、横方
向のF−1値が縦方向のF−1値の1.7倍以上で
ありかつ横方向の該F−1値が6.3Kg/mm2〜9.5
Kg/mm2である横方向強化二軸延伸フイルムとな
し、 次いで該二軸延伸フイルムを90℃〜200℃の温
度域で縦方向に1.4〜1.7倍再延伸することを特徴
とする高強度ポリエステルフイルムの製造方法で
ある。 本発明を説明する。 本発明の適用できるポリエステルとは、酸成分
としてテレフタル酸を主たる対象とするが、テレ
フタル酸90(好ましくは95)モル%以上と、例え
ばイソフタル酸、フタル酸、アジピン酸、セバチ
ン酸、コハク酸、シユウ酸、マロン酸、p−ヒド
ロキシ安息香酸、ω−ヒドロキシカプロン酸等の
ような二官能性の酸の一種、または二種以上の10
(好ましくは5)モル%以下からなるものであつ
てもよい。またグリコール成分として、エチレン
グリコールを主たる対象とするが、エチレングリ
コール90(好ましくは95)モル%以上と、例えば
トリメチレングリコール、ヘキサメチレングリコ
ール、シクロヘキサンジメタノール(1,4)
2,2,4,4,−テトラメチルシクロブタンジ
オール(2,4)やハイドロキノン等のようなジ
オール化合物の一種または二種以上の10モル%
(好ましくは5モル%)以下を用いたものであつ
てもよく、またこれら重合体の混合等でもよい。
更にこのようなポリエステルに10重量%(好まし
くは5重量%)以下の他の重合体が混合されてい
てもよい。 前記ポリエステル中には、例えばリン酸、亜リ
ン酸およびそれらのエステル等の安定剤、二酸化
チタン、微粒子状シリカ、カオリン等の艶消剤、
滑剤などが含まれていてもよい。 以上のように、実質的にポリエチレンテレフタ
レートフイルムの性質を失なわない二軸延伸フイ
ルムを形成し得るものであれば、いかなるポリエ
ステル重合体組成物も用いることができる。 本発明のポリエステルは通常の方法によつて未
延伸フイルムに製膜される。製膜条件は、よく乾
燥したポリエステルペレツトを融点以上の温度
(例えば280℃〜310℃)で溶融し、細いスリツト
から押出し、急冷用のキヤステイングドラムの上
で速やかに冷却固化する。このキヤステイングに
際し、エア−ナイフ、静電気などの手段を用いて
ピンニングを施す公知方法を採ることができる。
このようにして、未延伸ポリエステルフイルムを
得ることができる。 本発明では、先ず未延伸フイルムを縦方向及び
横方向に延伸して、横方向のF−1値が6.3Kg/
mm2以上でありかつ横方向のF−1値が縦方向のF
−1値の1.7倍以上である二軸延伸フイルム(横
方向強化タイプ)を得る必要がある。さらに、該
二軸延伸フイルムは縦方向のF−1値が3.13Kg/
mm2〜4Kg/mm2、好ましくは3.6Kg/mm2〜4Kg/mm2
となるようにする。 本発明において横方向F−1値/縦方向F−1
値が1.7(倍)以上で、かつ横方向のF−1値が
6.3Kg/mm2以上となるフイルムを中間工程で得る
必要性は、もし、横方向F−1値/縦方向F−1
値が1.7倍より低い場合又は横方向のF−1値が
6.3Kg/mm2よりも低い場合には、次の再縦延伸工
程で横方向の強度を保持することが不可能となり
或は困難となり、均衡のとれた二軸延伸フイルム
はできい。 横方向F−1値が6.3Kg/mm2〜9.5Kg/mm2好まし
くは6.3Kg/mm2〜7.6Kg/mm2の横方向強化フイルム
を製造する場合は縦方向の延伸倍率を小さくし、
横方向の延伸倍率を大きくすることが望ましい。
縦方向延伸倍率を小さくしすぎると厚み斑が悪く
なり磁気テープとしての価値を失う。逆に縦方向
の延伸倍率を大きくすると横方向の延伸倍率も大
きくする必要があり製膜安定性が悪化する。 横F−1値/縦F−1値を1.7倍以上とする理
由は再縦延伸を実施する場合縦方向のF−1値の
増大が大きく、横方向F−1値の減少が少ないか
らである。 横方向F−1値/縦方向F−1値が1.7倍以上
で横方向F−1値が6.3Kg/mm29.5Kg/mm2好ましく
は6.3Kg/mm2〜7.6Kg/mm2である横方向強化二軸延
伸フイルムの製造方法は、初めに縦方向に延伸
し、次いで横方向に延伸する方法あげられる。 本発明方法においては前記横方向強化二軸延伸
フイルムを90℃〜200℃で1.4倍〜1.7倍再縦延伸
する。また再縦延伸をした後で寸法安定性向上の
ために熱処理を実施することができる。再縦延伸
温度が90℃未満の場合は冷延伸となり破断が生じ
やすく、200℃を超える場合は幅方向収縮力が増
大し、横方向強度の減少が大きい。また再縦延伸
倍率が1.4倍未満であるとフイルムの厚み斑が大
きく、一方1.7倍を超えるとフイルム破断が多く
なり、好ましくない。 以下、実施例及び比較例をあげて本発明を更に
具体的に説明する。尚、例中のF−1値は次の測
定方法によつて求た。 F−1値 フイルムを試料幅10mm、長さ150mmに切りチヤ
ツク間100mmにして引張速度10mm/分、チヤート
速度50mm/分にてインストロンタイプの万能引張
試験装置にて引張つた。得られた荷重−伸び曲線
の1%伸長時応力より算出した。 フイルムの厚み斑 ポリエステルフイルムを縦方向、横方向にそれ
ぞれ幅5cm、長さ1mの大きさに切り、この厚み
を連続厚み測定器(安立電気(株)製:K−312A型)
にかけて測定し、測定長1mでの厚い部分、薄い
部分の最大差R(μm)を求める。縦方向、横方向
のRのうち大きい方を代表値として示す。 Rが5μmより大きいもの:× Rが5μm以下のもの:〇 として示す。 実施例1 個有粘度0.65ポリエチレンテレフタレートを
290℃で溶融し口金より押出し急冷し、170μの実
質的無配向非晶性の未延伸フイルムを得た。これ
を縦方向に80℃で2倍延伸し次いで100℃横方向
に4倍延伸し更に170℃で熱固定した。この結果
縦方向F−1値が3.76Kg/mm2、横方向F−1値が
6.47Kg/mm2のフイルムを得た。次に再延伸を140
℃で縦方向に1.2〜1.6倍再縦延伸し220℃で熱固
定した。結果を表1に示す。
The present invention relates to a method for producing polyester film. More specifically, the present invention relates to a method for producing a polyester film in which the F-1 value in the longitudinal direction (referring to the stress at 1% elongation) and the F-1 value in the transverse direction are at extremely high levels. In conventional technology, as a method for biaxially stretching polyester film, an unstretched film is stretched at 80°C in the longitudinal direction.
A so-called vertical and horizontal sequential stretching method is known, which involves stretching 3 times or more at a temperature range of ~120°C and then stretching 3 times or more in the transverse direction at a temperature of 80°C to 120°C. Film is not available. In other words, when the longitudinal stretching ratio is increased to increase the strength in the longitudinal direction, molecular orientation and crystallization are promoted in crystalline polyester, which makes it difficult to perform smooth stretching in the next transverse stretching process. Under these conditions, the film frequently breaks during production, making it extremely difficult to obtain a film with high F-1 values in both the longitudinal and transverse directions. In addition, in the horizontal/longitudinal stretching method in which horizontal stretching is performed in the first stage and then longitudinal stretching, the operational stability of stretching is poor because the horizontal direction in the first stage is held and stretched with a tenter, and the paper is oriented only in the horizontal direction. Since a film is obtained, during the subsequent longitudinal stretching, the film contracts in the transverse direction and the molecular orientation in the transverse direction is loosened, resulting in a significant decrease in the strength in the transverse direction, making it impossible to obtain a film with high strength in the biaxial directions. do not have. A conventional biaxially stretched polyester film exhibiting a relatively high Young's modulus has an F-1 value of 4.5 to 5.0 Kg/mm 2 in the longitudinal and transverse directions. Furthermore, since the development of a longitudinally reinforced biaxially stretched film (so-called tensilized film) with a longitudinal F-1 value of 6.0 to 8.0 kg/ mm2 , the use of film has expanded to the field of recording cassette tapes. It came. Furthermore, in recent years, with the expansion of recording video tapes and the need for long-duration recording and thinner materials, F-1
A high value is required, but the reality is that no film has yet been produced that satisfactorily meets these requirements. An object of the present invention is to provide a method for producing a vertically and horizontally biaxially high-strength polyester film that is particularly suitable for these uses and has good operational stability. As a method for producing a bidirectional high-strength polyester film that can be predicted from the conventional technology, there is a method in which a biaxially stretched film with increased strength in the machine direction is further re-stretched in the transverse direction, and a method in which a well-balanced normal polyester film is re-stretched in the transverse direction. There is a four-stage stretching method that involves horizontal stretching. However, in either method, when re-transverse stretching is performed, the film has a high tendency to break during stretching, making it difficult to produce stably. However, while researching various conditions for longitudinally re-stretching a transversely reinforced polyester film, they found manufacturing conditions that would allow a polyester film of uniform thickness to be obtained without causing any breakage during film stretching, and thus arrived at the present invention. Ivy. That is, the present invention provides a manufacturing method in which a polyester film is biaxially stretched in the longitudinal and transverse directions through at least three stretching steps. The F-1 value in the longitudinal direction (stress at 1% elongation) is 3.13 Kg/mm 2 to 4 Kg/mm 2 , and the F-1 value in the lateral direction is 1.7 times or more than the F-1 value in the longitudinal direction. And the F-1 value in the lateral direction is 6.3Kg/mm 2 ~ 9.5
A high-strength polyester characterized by forming a transversely reinforced biaxially stretched film with a strength of Kg/ mm2 , and then re-stretching the biaxially stretched film by 1.4 to 1.7 times in the longitudinal direction at a temperature range of 90°C to 200°C. This is a film manufacturing method. The present invention will be explained. The polyester to which the present invention can be applied mainly includes terephthalic acid as an acid component, and contains 90 (preferably 95) mol% or more of terephthalic acid, for example, isophthalic acid, phthalic acid, adipic acid, sebacic acid, succinic acid, One or more difunctional acids such as oxalic acid, malonic acid, p-hydroxybenzoic acid, ω-hydroxycaproic acid, etc.
(preferably 5) mole% or less. In addition, as a glycol component, ethylene glycol is the main target, but ethylene glycol 90 (preferably 95) mol% or more and trimethylene glycol, hexamethylene glycol, cyclohexanedimethanol (1,4), etc.
10 mol% of one or more diol compounds such as 2,2,4,4,-tetramethylcyclobutanediol (2,4), hydroquinone, etc.
(preferably 5 mol %) or less, or a mixture of these polymers may be used.
Furthermore, other polymers of up to 10% by weight (preferably 5% by weight) may be mixed with such polyester. In the polyester, stabilizers such as phosphoric acid, phosphorous acid and their esters, matting agents such as titanium dioxide, particulate silica, and kaolin,
It may also contain a lubricant or the like. As described above, any polyester polymer composition can be used as long as it can form a biaxially stretched film that does not substantially lose the properties of polyethylene terephthalate film. The polyester of the present invention is formed into an unstretched film by a conventional method. The film forming conditions are as follows: well-dried polyester pellets are melted at a temperature above their melting point (for example, 280°C to 310°C), extruded through a narrow slit, and rapidly cooled and solidified on a casting drum for rapid cooling. For this casting, a known method of pinning using means such as an air knife or static electricity can be used.
In this way, an unstretched polyester film can be obtained. In the present invention, an unstretched film is first stretched in the longitudinal and transverse directions, and the F-1 value in the transverse direction is 6.3 kg/
mm 2 or more and the F-1 value in the horizontal direction is F-1 in the vertical direction
It is necessary to obtain a biaxially stretched film (transversely reinforced type) with a value of -1 that is 1.7 times or more. Furthermore, the biaxially stretched film has a longitudinal F-1 value of 3.13 kg/
mm2 to 4Kg/ mm2 , preferably 3.6Kg/ mm2 to 4Kg/ mm2
Make it so that In the present invention, the horizontal direction F-1 value/vertical direction F-1
The value is 1.7 (times) or more, and the horizontal F-1 value is
It is necessary to obtain a film with a weight of 6.3 Kg/mm 2 or more in an intermediate process if the horizontal F-1 value/longitudinal F-1 value is
If the value is lower than 1.7 times or the horizontal F-1 value is
If it is lower than 6.3 Kg/mm 2 , it becomes impossible or difficult to maintain the strength in the transverse direction in the next longitudinal re-stretching process, and a balanced biaxially stretched film cannot be obtained. When producing a lateral reinforced film with a lateral F-1 value of 6.3 Kg/mm 2 to 9.5 Kg/mm 2 , preferably 6.3 Kg/mm 2 to 7.6 Kg/mm 2 , the stretching ratio in the longitudinal direction is reduced;
It is desirable to increase the stretching ratio in the lateral direction.
If the stretching ratio in the longitudinal direction is too small, the thickness becomes uneven and the magnetic tape loses its value. Conversely, if the stretching ratio in the longitudinal direction is increased, the stretching ratio in the lateral direction must also be increased, which deteriorates the stability of film formation. The reason why the transverse F-1 value/longitudinal F-1 value is set to 1.7 times or more is that when performing longitudinal re-stretching, the increase in the F-1 value in the longitudinal direction is large and the decrease in the F-1 value in the transverse direction is small. be. The horizontal direction F-1 value/vertical direction F-1 value is 1.7 times or more, and the horizontal direction F-1 value is 6.3Kg/mm 2 9.5Kg/mm 2 Preferably 6.3Kg/mm 2 to 7.6Kg/mm 2 A method for producing a transversely reinforced biaxially stretched film includes a method in which the film is first stretched in the longitudinal direction and then stretched in the transverse direction. In the method of the present invention, the transversely reinforced biaxially stretched film is longitudinally re-stretched 1.4 times to 1.7 times at 90°C to 200°C. Further, after longitudinal stretching again, heat treatment can be performed to improve dimensional stability. If the longitudinal re-stretching temperature is less than 90°C, it will be cold drawn and breakage will easily occur, and if it exceeds 200°C, the shrinkage force in the width direction will increase and the strength in the transverse direction will decrease significantly. Further, if the longitudinal re-stretching ratio is less than 1.4 times, the thickness of the film will be large, while if it exceeds 1.7 times, the film will break frequently, which is not preferable. Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Incidentally, the F-1 value in the example was determined by the following measuring method. F-1 value The film was cut into samples with a width of 10 mm and a length of 150 mm, and was stretched using an Instron type universal tensile tester at a tension speed of 10 mm/min and a chart speed of 50 mm/min with a chuck spacing of 100 mm. It was calculated from the stress at 1% elongation of the obtained load-elongation curve. Film thickness unevenness Cut the polyester film into pieces 5 cm wide and 1 m long in both the vertical and horizontal directions, and measure the thickness with a continuous thickness measuring device (manufactured by Anritsu Electric Co., Ltd.: Model K-312A).
The maximum difference R (μm) between the thick part and the thin part at a measurement length of 1 m is determined. The larger of R in the vertical direction and R in the horizontal direction is shown as a representative value. Those with R larger than 5 μm: × Those with R less than 5 μm: Shown as ○. Example 1 Polyethylene terephthalate with a viscosity of 0.65
The mixture was melted at 290°C, extruded through a die, and rapidly cooled to obtain a substantially non-oriented, amorphous, unstretched film of 170μ. This was stretched twice in the machine direction at 80°C, then stretched four times in the transverse direction at 100°C, and further heat-set at 170°C. As a result, the F-1 value in the vertical direction is 3.76Kg/ mm2 , and the F-1 value in the horizontal direction is 3.76Kg/mm2.
A film of 6.47 Kg/mm 2 was obtained. Then re-stretch to 140
It was longitudinally re-stretched 1.2 to 1.6 times in the longitudinal direction at ℃ and heat-set at 220 ℃. The results are shown in Table 1.

【表】 実施例2 実施例1で得たと同一の未延伸フイルムを90℃
で縦方向に1.5倍延伸し、引続いて横方向に92℃
において4.5倍延伸し、更に200℃で熱固定した。
この二軸延伸フイルムの縦方向F−1値は3.13
Kg/mm2、縦方向F−1値は7.61Kg/mm2であつた。
次に180℃において縦方向に1.4倍〜1.8倍再延伸
した後225℃で熱固定した。結果を表2に示す。
[Table] Example 2 The same unstretched film obtained in Example 1 was heated at 90°C.
Stretched 1.5 times in the machine direction, then stretched at 92°C in the transverse direction
The film was stretched 4.5 times and further heat-set at 200°C.
The longitudinal direction F-1 value of this biaxially stretched film is 3.13
Kg/mm 2 , and the F-1 value in the longitudinal direction was 7.61 Kg/mm 2 .
Next, it was re-stretched 1.4 to 1.8 times in the longitudinal direction at 180°C, and then heat-set at 225°C. The results are shown in Table 2.

【表】 比較例1 実施例1で得られた未延伸フイルムを80℃で縦
方向に2.5倍延伸し次いで横方向に4.5倍延伸し更
に181℃で熱固定した。次に160℃で1.2倍〜1.6倍
再縦延伸した後220℃で熱固定した。結果を表3
に示す。
[Table] Comparative Example 1 The unstretched film obtained in Example 1 was stretched 2.5 times in the machine direction at 80°C, then stretched 4.5 times in the cross direction, and further heat-set at 181°C. Next, the film was longitudinally stretched again by 1.2 times to 1.6 times at 160°C, and then heat-set at 220°C. Table 3 shows the results.
Shown below.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエステルフイルムを少なくとも3段階の
延伸工程によつて縦方向及び横方向に二軸延伸す
る製造法において、まずポリエステル未延伸フイ
ルムを縦方向、次いで横方向に延伸して延伸フイ
ルムの縦方向のF−1値(1%伸長時の応力)が
3.13Kg/mm2〜4Kg/mm2であり、横方向のF−1値
が縦方向のF−1値の1.7倍以上でありかつ横方
向の該F−1値が6.3Kg/mm2〜9.5Kg/mm2である横
方向強化二軸延伸フイルムとなし、次いで該二軸
延伸フイルムを90℃〜200℃の温度域で縦方向に
1.4〜1.7倍再延伸することを特徴とする高強度ポ
リエステルフイルムの製造方法。
1 In a manufacturing method in which a polyester film is biaxially stretched in the longitudinal and transverse directions through at least three stretching steps, an unstretched polyester film is first stretched in the longitudinal direction and then in the transverse direction to increase the F in the longitudinal direction of the stretched film. -1 value (stress at 1% elongation)
3.13Kg/ mm2 to 4Kg/ mm2 , the F-1 value in the horizontal direction is 1.7 times or more the F-1 value in the vertical direction, and the F-1 value in the horizontal direction is 6.3Kg/ mm2 to 9.5Kg/mm 2 in the transversely reinforced biaxially stretched film, and then the biaxially stretched film was stretched in the longitudinal direction at a temperature range of 90°C to 200°C.
A method for producing a high-strength polyester film, characterized by re-stretching it by 1.4 to 1.7 times.
JP18445182A 1982-10-22 1982-10-22 Manufacture of polyester film Granted JPS5973921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18445182A JPS5973921A (en) 1982-10-22 1982-10-22 Manufacture of polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18445182A JPS5973921A (en) 1982-10-22 1982-10-22 Manufacture of polyester film

Publications (2)

Publication Number Publication Date
JPS5973921A JPS5973921A (en) 1984-04-26
JPH0148136B2 true JPH0148136B2 (en) 1989-10-18

Family

ID=16153375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18445182A Granted JPS5973921A (en) 1982-10-22 1982-10-22 Manufacture of polyester film

Country Status (1)

Country Link
JP (1) JPS5973921A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682915B1 (en) * 1991-10-24 1997-09-19 Rhone Poulenc Films ORIENTED SEMI-CRYSTALLINE POLYESTER FILMS, THEIR METHOD OF OBTAINING AND THEIR USE AS A MAGNETIC COATING SUPPORT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115571A (en) * 1975-04-04 1976-10-12 Asahi Chemical Ind Method of manufacturing polyester film
JPS51149380A (en) * 1975-06-17 1976-12-22 Asahi Chemical Ind Manufacturing of one direction strength films

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115571A (en) * 1975-04-04 1976-10-12 Asahi Chemical Ind Method of manufacturing polyester film
JPS51149380A (en) * 1975-06-17 1976-12-22 Asahi Chemical Ind Manufacturing of one direction strength films

Also Published As

Publication number Publication date
JPS5973921A (en) 1984-04-26

Similar Documents

Publication Publication Date Title
JPH0743445B2 (en) Polyethylene naphthalate uniaxial highly oriented film for polarizing plate
US3901851A (en) Strengthened films and method for producing same
JPH0379178B2 (en)
JPS5936851B2 (en) Manufacturing method of polyester film
JPH0148136B2 (en)
JP3316900B2 (en) Polyester film molding method
JP3640282B2 (en) Method for producing biaxially stretched polyester film
JP2513669B2 (en) Biaxially stretched polyester film with tear linearity
KR0158241B1 (en) Process for preparing polyester film
JPH02204020A (en) Biaxially stretched polyester film for forming, formed-transferring film and formed container
JPH11254524A (en) Polyester film and its production
JPH03266628A (en) Preparation of copolymerized polyester film
JPH0480815B2 (en)
JP2569471B2 (en) Method for producing toughened polyester film
JPH03215B2 (en)
JP2679234B2 (en) Method for producing polyester film
JPS6134466B2 (en)
JP2555707B2 (en) Process for producing polyethylene 2,6-naphthalate film
JPH03264334A (en) Manufacture of polyester film
JPH07106599B2 (en) Stretch molding method for polyester film
JP2611413B2 (en) Method for producing high-strength polyester film
JPH036895B2 (en)
JPS61120724A (en) Production of polyester film
JPH066337B2 (en) Biaxially oriented polyester ester film
JPH04357016A (en) Polyester film and manufacture thereof