JPH03215B2 - - Google Patents

Info

Publication number
JPH03215B2
JPH03215B2 JP17696883A JP17696883A JPH03215B2 JP H03215 B2 JPH03215 B2 JP H03215B2 JP 17696883 A JP17696883 A JP 17696883A JP 17696883 A JP17696883 A JP 17696883A JP H03215 B2 JPH03215 B2 JP H03215B2
Authority
JP
Japan
Prior art keywords
temperature
film
humidity
expansion coefficient
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17696883A
Other languages
Japanese (ja)
Other versions
JPS6069133A (en
Inventor
Hiroshi Noda
Kinji Hasegawa
Masahiro Hosoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP17696883A priority Critical patent/JPS6069133A/en
Priority to US06/597,692 priority patent/US4557982A/en
Publication of JPS6069133A publication Critical patent/JPS6069133A/en
Publication of JPH03215B2 publication Critical patent/JPH03215B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は2軸配向したポリ1,4−シクロヘキ
シレンジメチレンテレフタレートフイルムに関す
る。更に詳細には、縦横強度比が均等な汎用性の
ある2軸配向ポリ−1,4−シクロヘキシレンジ
メチレンテレフタレートからなる、湿度膨脹率が
低く、温湿度膨脹率の平面内方向差の小さいフイ
ルムに関する。 従来技術 従来、2軸配向した汎用の低湿度膨脹率フイル
ムにポリエチレンテレフタレートの2軸配向フイ
ルムが知られている。このフイルムは各特性がよ
く調和しており、すぐれた工業材料として広く用
いられている。しかし、特に湿度による寸法変化
をきらう用途、例えばフレキシブル磁気デイスク
等の用途にはなお不十分である。 発明の目的 本発明はポリエチレンテレフタレート2軸配向
フイルムの長所と同等の特性を有しながら長期熱
劣化性、湿度膨脹率等の改良されたフイルムを提
供すること、さらには温湿度膨脹率の平面内方向
差が小さいフレキシブル磁気デイスク用ベースと
して好適なフイルムを提供するこを目的とする。 発明の構成 本発明者は各種のポリマー物性を鋭意研究した
結果、本発明に到達した。 すなわち、本発明はフイルムの縦方向及び横方
向を含む面内屈折率1.585〜1.650、密度1.220〜
1.250、温度膨脹率20〜40(×10-6/℃)、湿度膨
脹率3〜8(×10-6/%RH)温度膨脹率の平面
内方向差が6×10-6/℃以内、湿度膨脹率の平面
内方向差が4×10-6/%RH以内となるように2
軸配向した、グリコール成分の90モル%以上が
1,4−シクロヘキサンジメタノール、酸成分の
80モル%以上がテレフタル酸であるポリ−1,4
−シクロヘキシレンジメチレンテレフタレートフ
イルムである。 本発明における1,4−シクロヘキサンジメタ
ノールは、例えばジメチルテレフタレートまたは
テレフタル酸の接触還元によつて製造され得る
が、いずれの方法で製造されたものでも支障な
い。1,4−シクロヘキシサンジメタノールのシ
ス体とトランス体との比は特に制限するものでは
ないが、シス体/トランス体=4/6〜0/10の
範囲が好ましい。 本発明におけるポリ−1,4−シクロヘキシレ
ンジメチレンテレフタレートは従来から蓄積され
たポリエステルの製造方法によつて製造すること
ができる。例えばテレフタル酸と1,4−シクロ
ヘキサンジメタノールの直接エステル化法によつ
て或はジメチルテレフタレートと1,4−シクロ
ヘキサンジメタノールのエステル交換法によつて
製造することができる。このようにして製造され
るポリ−1,4−シクロヘキシレンジメチルテレ
フタレートは小割合で第三成分を共重合させても
良い。また、かかるポリ−1,4−シクロヘキシ
レンジメチレンテレフタレート中には、例えばリ
ン酸、亜リリン酸、及びそれらのエステル等の安
定剤、二酸化チタン、微粒子状シリカ、カオリ
ン、炭酸カルシウム、リン酸カルシウム等の艶消
剤、滑剤等が含まれていてもよい。 本発明においてポリ−1,4−シクロヘキシレ
ンジメチレンテレフタレート2軸配向フイルム
は、フイルム面の各方向の屈折率が1.585〜1.650
好ましくは1.590〜1.630、密度1.220〜1.250g/cm
好ましくは1.224〜1.240g/cm、温度膨脹率20〜
40(×10-6/℃)好ましくは20〜25(×10-6/℃)、
湿度膨脹率3〜8(×10-6/%RH)好ましくは
30〜7(×10-6/%RH)、温度膨脹率の平面内方
向差が6×10-6/℃好ましくは4×10-6/℃以
内、湿度膨脹率の平面内方向差が4×10-6/%
RH好ましは3×10-6/%RH以内であることが
必要である。 上記フイルム面内屈折率が1.585未満では分子
鎖の配向が不十分であり、フイルムの強度、特に
ヤング率がエンジニアリング用途として不足す
る。一方、面内屈折率が1.65より大きくなると、
これと90゜の方向の屈折率が1.58以下となり、分
子鎖の配向の偏りが大きくなる。本発明はフレキ
シブルデイスク用液晶表示板用フイルムとして有
用な配向バランスの良好なフイルムの提供が目的
であり、上記のような分子鎖の配向の偏りは好ま
しくない。さらに好ましくは1.590〜1.630の範囲
であり、これによつて配向バランスが更に良好と
なる。また、密度は1.220〜1.250g/cmであり、
1.220より低い場合結晶化が不足となり、所望の
湿度膨脹率を得ることができない。好適には密度
は高い程よいが、1.250を越えることは困難であ
る。温度膨脹率は20〜40(×10-6/℃)、更に好適
には20〜25(×10-6/℃)である。温度膨脹率は、
一般には、小さい程よいが、フレキシブル磁気デ
イスクのベース用としては、デイスク駆動装置の
温度膨脹率と近い方が、磁気デイスクとヘツドの
オフトラツクが小さくなり好ましい。デイスク駆
動装置の温度膨脹率は20×10-6/℃前後に設定し
やすいので、好適には20×10-6/℃に近い値を選
ぶが、20×10-6/℃以下にするのは困難である。
湿度膨脹率は一般にどのような用途でも小さい方
がよいが、素材の本質的な吸湿膨脹は避けること
ができず、3×10-6/%RH以下にすることは困
難である。しかし、8×10-6/℃RH以下にすれ
ば、従来用いられているポリエチレンテレフタレ
ート11×10-6/%RHより明らかに改良効果が発
現し有用となる。温度膨脹率の平面内方向差は、
前記オフトラツクを小さくする為、6×10-6/℃
以下、好ましくは4×10-6/℃以下とする。湿度
膨脹率の平面内方向差もまたオフトラツクを小さ
くするため、小さい方が好ましく、8×10-6/%
RH以下、好適には7×10-6/%RH以下とする。 次に、上記に規制した数値を得る方法について
説明する。 本発明に用いるポリ−1,4−シクロヘキシレ
ンジメチレンテレフタレートの酸成分は、テレフ
タール酸分率を80モル%以上である。テレフター
ル酸成分がこれにより少ないと、ポリマーの結晶
性が不足し、上記屈折率、密度、温湿度の範囲を
満足することができなくなる。第三成分としては
20モル%以下の範囲ならばイソフタル酸、シユウ
酸、コハク酸、アジピン酸、2,6−ナフタリン
ジカルボン酸等を用いる事ができる。また、グリ
コール成分は、90モル%以上を1,4−シクロヘ
キサンジメタノールとする。これにより少ない割
合とすると、ポリマーの結晶性が低下し、前記数
値、特に密度が好適範囲以下となり、屈折率も小
さくなり好適でなくなる。第三成分としては10モ
ル%以下の割合で例えば、エチレングリコール、
プロピレングリコール、1,4−ブタンジオール
等を用いることができる。上記1,4−シクロヘ
キサンジメタノールには、シス体とトランス体が
あり、その混合割合によつて若干の物性変化が見
られるものの、大きな影響はなく、前に述べたよ
うに、シス/トランス=4/6〜0/10の範囲で
あれば、上記物性の好適範囲を得ることができ
る。 次に、製膜条件について説明する。ポリマーチ
ツプの乾燥は170℃、3時間前後が適当であるが、
これに限定されるものではない。押し出し機は通
常ものでよいが、特に押し出し精度を向上させる
対策、例えば計量ポンプとの併用、圧力制御等の
技術を用いることがましい。ポリー1,4−シク
ロヘキシレンジメチレンテレフタレートの熔融物
の温度は上記ポリマー組成によつて変化するの
で、それに対応して適宜選択することが好まし
い。上記ポリマー組成においては、295〜315℃の
温度範囲が通常選ばれる。キヤステイングドラム
の温度は、10〜60℃が適当であるが、ポリ−1,
4−シクロヘキシレンジメチレンテレフタレート
ホモポリマーに近い程急冷することが好ましく、
その場合20〜40℃の表面温度が適当である。延伸
温度としては、通常80〜140℃であり、これによ
り低温のときは延伸ムラを生じ、これにより高い
温度では延伸効果が小さくなる傾向を示す。より
好適には100〜120℃の温度範囲が選ばれ、これに
より前記物性値を容易に得ることができる。延伸
倍率は縦方向に3.0〜5.0倍、好ましくは3.3〜4.3
倍、横方向に3.0〜5.0倍、好ましくは3.5〜4.5倍
を選択する。延伸倍率がこの範囲未満では、屈折
率が前記の値より小さくなり、また延伸倍率がこ
の範囲を越えるとフイルム製造中の切断が多発し
て好ましくないばかりか、フイルムが得られたと
しても湿度膨脹率が意外に高く、よい結果が得ら
れない。 延伸方法は公知の方法でよく、例えば縦延伸は
周速差のある2個のロール間で加熱しながら延伸
することができ、横延伸はクリツプでフイルム両
端を把持して加熱しながらクリツプ列の列間隔を
拡大させて延伸することができる。得られた2軸
配向フイルムを150〜260℃、好ましくは180〜250
℃で1〜100秒熱固定することによつて本発明の
屈折率、密度、温湿度膨脹率が得られる。温湿度
膨脹率の平面内方向差は通常の縦横延伸法で製膜
する場合、フイルムの巾方向の中央付近は本発明
の範囲にふくまれる。但し、定量的に何%が包含
されるかは製膜条件、ポリマー組成によつて変化
する。通常は全巾の10〜70%が本発明の範囲に含
まれる。一方、フイルム巾方向の両端部に近い部
分は温湿度膨脹率の平面内方向差が大きく、本発
明の範囲を逸脱するのが普通である。この理由は
テンター内で熱固定するときに生ずるボーイング
現象にある。温湿度膨脹率の平面内方向差をフイ
ルム巾方向のいずれの部分でも小さくするために
は、熱固定温度は120〜180℃で実施し、一旦巻取
つてのち、これを巻出しながら再度熱固定を150
〜250℃の温度で、クリツプでフイルム両端を把
持しながら実施することが好適であるが、これに
限定されるものではない。このように熱処理方向
を異にして2回以上熱処理すると、温度条件を選
ぶことによつて上記ボーイングの影響を除くこと
ができ、フイルムの全域に亘つて面内屈折率差、
温湿度膨脹率差を小さくすることができ、本発明
に適合する製品の比率を高くすることができる。 上記ポリマー組成によつて最適範囲は変化する
ので、適宜選択した条件をとる必要がある。例え
ば、テレフタル産87モル%とイソフタル酸13モル
%を酸成分とし、グリコール成分は100%1,4
−シクロヘキサンジメタノールなる組成のポリマ
ーの場合、熱固定条件は230〜240℃、20〜40秒が
好適である。 本発明の2軸配向フイルムは、その用途によつ
て適宜の厚さとなし得るが、2〜500μ−m、通
常12〜125μ−m、フレキシブルデイスクベース
用途としては50〜100μ−mが選ばれる。 本発明における特性値の測定方法は次の通りで
ある。 (1) 屈折率:アツベの屈折計による。 (2) 密度:ノルマルヘプタン−四塩素炭素密度勾
配管による。 (3) 温度膨脹率:日本自動制御社製の定荷重伸び
試験機(TTL2型)を恒温恒湿槽内に置き測定
を行う。測定サンプルは予め所定の条件(例え
ば70℃,30分)で熱処理を施し、このサンプル
を試験機に取り付け、温度20℃、相対湿度60%
と、40℃、60%RHとの間での寸法変化を読み
取ることによつて温度膨脹率を測定する。この
ときの原サンプル長は、505mm、サンプル巾は
1/4インチである。測定時に加える加重は
5g/1/4インチ巾当たりで一定とした。長
いサンプルが得られない場合は、真空理工社製
熱機械分析装置TM−3000を用い測定すること
もできる。温度膨脹率の最大値及び最小値の差
をもとめる場合は、TM−3000をもちいる。サ
ンプルの寸法は長さ15mm、巾5mmであつて、温
度10℃、湿度0%RHと温度40℃、湿度0%
RHにおける寸法変化を読み取ることによつて
もとめる。 (4) 湿度膨脹率:温度膨脹率を求める場合と同様
に日本自動制御社製の定荷重伸び試験機を用
い、温度40℃、湿度90%RHの条件で予め処理
を施したサンプルを取り付け、温度20℃、湿度
30%RHと20℃、70%RHの間における寸法変
化を読み取るとによつて湿度膨脹率を求める。
サンプルが長くとれない場合は温度膨脹率測定
時と同様に真空理工社製の熱機械分析装置を恒
温恒湿内に置き、前記条件のもとで測定した。 (5) 温湿度膨脹率の平面内方向差:前記(3),(4)で
説明した方法で、15゜または30゜毎に各方向の値
を測定し、<最大値−最小値>を求める。 実施例 次に実施例より本発明を具体的に説明する。 実施例 1 二塩基酸成分としてテレフタル酸を85モル%、
イソフタル酸を15モル%、グリコール成分として
1,4−シクロヘキサンジメタノールを100%用
い、触媒として酸化チタン0.05モル%(酸成分に
対し)、滑剤として平均粒径0.6ミクロンのカオリ
ンクレーを0.5重量%加えてオートクレーブに入
れ、撹拌下で加熱してエステル交換し、次いで重
縮合して、ポリ−1,4−シクロヘキシレンジメ
チレンテレフタレートを得た。 このポリエステルを300℃で溶融押出し、40℃
に保持した急冷ドラム上で冷却して1000ミクロン
の未延伸フイルムを得た。この未延伸フイルムを
90℃に調節した金属ロールに接触させ予熱したの
ち赤外線ヒータ(表面温度1000℃)を照射しつつ
周速差のあるロール間で3.6倍縦方向に延伸した。
つづいて縦延伸フイルムをテンターで115Kgで3.7
倍に横延伸した。得られた2軸延伸フイルムの両
端をクリツプで把持したまま140℃で熱固定し巻
き取つた。次にこのフイルムを巻き出しながらフ
イルム両端を把持し、235℃で再度熱固定し、厚
さ75ミクロンの製品とした。この物性値を表1に
示す。 実施例 2 実施例1において二塩基酸成分をテレフタル酸
100モル%、溶融温度を310℃、急冷ドラム温度を
20℃、予熱温度80℃、最初の熱固定温度を180℃、
更に再熱固定温度を250℃とする以外は、実施例
1と同様にして75ミクロンの2軸配向フイルムを
得た。この物性値を表1に示す。 実施例 3 実施例1において最初の熱固定を235℃で実施
し、再度の熱固定はせず75ミクロンの2軸配向フ
イルムとした。その他の条件は実施例1と同様で
ある。このフイルムの物性値を表1に示す。 比較例 1 ポリエチレンテレフタレートを常法より重合し
た。実施例1の製膜条件において溶融温度290℃、
急冷ドラム温度20℃、縦延伸予熱温度80℃、横延
伸温度105℃、再熱固定温度225℃とする以外は実
施例1と同様にして75ミクロンの2軸配向フイル
ムを得た。このフイルムの物性値を表1に示す。 比較例 2 実施例2において延伸倍率を縦4.3倍、横3.5倍
とする以外は実施例2と全く同様にして75ミクロ
ンの2軸配向フイルムを得た。このフイルムの物
性値を表1に示す。 実施例1,2及び実施例3のフイルム中央部は
本発明の目標値を満足している。
TECHNICAL FIELD The present invention relates to biaxially oriented poly 1,4-cyclohexylene dimethylene terephthalate films. More specifically, the film is made of versatile biaxially oriented poly-1,4-cyclohexylene dimethylene terephthalate with a uniform longitudinal and lateral strength ratio, and has a low humidity expansion coefficient and a small in-plane difference in temperature and humidity expansion coefficient. Regarding. Prior Art Conventionally, a biaxially oriented polyethylene terephthalate film is known as a general-purpose biaxially oriented low humidity expansion film. This film has well-balanced properties and is widely used as an excellent industrial material. However, it is still insufficient for applications where dimensional changes due to humidity are particularly important, such as flexible magnetic disks. OBJECTIVES OF THE INVENTION The present invention provides a film that has properties equivalent to the advantages of biaxially oriented polyethylene terephthalate films but has improved long-term thermal deterioration resistance, humidity expansion coefficient, etc. It is an object of the present invention to provide a film suitable as a base for a flexible magnetic disk that has a small difference in direction. Structure of the Invention The present inventor has arrived at the present invention as a result of intensive research into the physical properties of various polymers. That is, in the present invention, the film has an in-plane refractive index of 1.585 to 1.650 including the longitudinal and lateral directions, and a density of 1.220 to 1.650.
1.250, temperature expansion rate 20 to 40 (×10 -6 /℃), humidity expansion rate 3 to 8 (×10 -6 /%RH), in-plane direction difference in temperature expansion rate within 6×10 -6 /℃, 2 so that the in-plane direction difference in humidity expansion rate is within 4 × 10 -6 /%RH.
Axially oriented, more than 90 mol% of the glycol component is 1,4-cyclohexanedimethanol, and the acid component is
Poly-1,4 in which 80 mol% or more is terephthalic acid
- cyclohexylene dimethylene terephthalate film. The 1,4-cyclohexanedimethanol in the present invention can be produced, for example, by catalytic reduction of dimethyl terephthalate or terephthalic acid, but it may be produced by any method. Although the ratio of the cis isomer to the trans isomer of 1,4-cyclohexanedimethanol is not particularly limited, it is preferably in the range of cis isomer/trans isomer = 4/6 to 0/10. Poly-1,4-cyclohexylene dimethylene terephthalate in the present invention can be produced by conventional polyester production methods. For example, it can be produced by direct esterification of terephthalic acid and 1,4-cyclohexanedimethanol or by transesterification of dimethyl terephthalate and 1,4-cyclohexanedimethanol. The poly-1,4-cyclohexylene dimethyl terephthalate thus produced may be copolymerized with a third component in a small proportion. In addition, in the poly-1,4-cyclohexylene dimethylene terephthalate, stabilizers such as phosphoric acid, phosphorous acid, and their esters, titanium dioxide, particulate silica, kaolin, calcium carbonate, calcium phosphate, etc. A matting agent, a lubricant, etc. may be included. In the present invention, the poly-1,4-cyclohexylene dimethylene terephthalate biaxially oriented film has a refractive index of 1.585 to 1.650 in each direction of the film surface.
Preferably 1.590-1.630, density 1.220-1.250g/cm
Preferably 1.224~1.240g/cm, temperature expansion rate 20~
40 (×10 -6 /℃) preferably 20 to 25 (×10 -6 /℃),
Humidity expansion rate 3-8 (×10 -6 /%RH) preferably
30 to 7 (×10 -6 /%RH), the in-plane difference in temperature expansion coefficient is 6 × 10 -6 /℃, preferably within 4 × 10 -6 /℃, and the in-plane difference in humidity expansion rate is 4 ×10 -6 /%
RH preferably needs to be within 3×10 −6 /%RH. If the in-plane refractive index of the film is less than 1.585, the orientation of the molecular chains is insufficient, and the strength of the film, particularly the Young's modulus, is insufficient for engineering purposes. On the other hand, when the in-plane refractive index becomes larger than 1.65,
The refractive index in the 90° direction is less than 1.58, and the orientation of the molecular chains becomes more biased. The purpose of the present invention is to provide a film with good alignment balance that is useful as a film for liquid crystal display panels for flexible disks, and the above-mentioned unbalanced orientation of molecular chains is undesirable. More preferably, it is in the range of 1.590 to 1.630, which further improves the orientation balance. In addition, the density is 1.220-1.250g/cm,
If it is lower than 1.220, crystallization will be insufficient, making it impossible to obtain the desired humidity expansion coefficient. The higher the density, the better, but it is difficult to exceed 1.250. The temperature expansion coefficient is 20 to 40 (x10 -6 /°C), more preferably 20 to 25 (x10 -6 /°C). The temperature expansion rate is
In general, the smaller the better, but for the base of a flexible magnetic disk, it is preferable that the temperature expansion coefficient be close to that of the disk drive device, as this will reduce the off-track between the magnetic disk and the head. It is easy to set the temperature expansion coefficient of the disk drive device to around 20×10 -6 /℃, so it is preferable to choose a value close to 20×10 -6 /℃, but it is better to set it to less than 20×10 -6 /℃. It is difficult.
In general, the lower the humidity expansion coefficient is, the better for any purpose, but the inherent hygroscopic expansion of the material cannot be avoided, and it is difficult to reduce it to 3×10 -6 /%RH or less. However, if the RH is set to 8×10 -6 /°C RH or less, the effect is clearly improved over the conventionally used polyethylene terephthalate, 11×10 -6 /%RH, and it becomes useful. The in-plane direction difference in temperature expansion coefficient is
In order to reduce the off-track, 6×10 -6 /℃
Hereinafter, the temperature is preferably 4×10 −6 /°C or less. Since the in-plane direction difference in humidity expansion coefficient also reduces off-track, it is preferable to have a smaller value, and is 8×10 -6 /%.
RH or less, preferably 7×10 -6 /%RH or less. Next, a method for obtaining the numerical values regulated above will be explained. The acid component of poly-1,4-cyclohexylene dimethylene terephthalate used in the present invention has a terephthalic acid content of 80 mol% or more. If the terephthalic acid component is less than this, the crystallinity of the polymer will be insufficient, making it impossible to satisfy the above ranges of refractive index, density, and temperature/humidity. As the third component
Isophthalic acid, oxalic acid, succinic acid, adipic acid, 2,6-naphthalene dicarboxylic acid, etc. can be used within the range of 20 mol% or less. In addition, the glycol component contains 1,4-cyclohexanedimethanol in an amount of 90 mol% or more. If the proportion is too small, the crystallinity of the polymer will decrease, the above-mentioned values, especially the density will fall below the preferred range, and the refractive index will also decrease, making it unsuitable. As the third component, for example, ethylene glycol,
Propylene glycol, 1,4-butanediol, etc. can be used. The above-mentioned 1,4-cyclohexanedimethanol has a cis form and a trans form, and although there are slight changes in physical properties depending on the mixing ratio, there is no major effect, and as mentioned earlier, cis/trans = If it is in the range of 4/6 to 0/10, the preferred range of the above-mentioned physical properties can be obtained. Next, film forming conditions will be explained. It is appropriate to dry polymer chips at 170℃ for around 3 hours.
It is not limited to this. Although an ordinary extruder may be used, it is particularly preferable to use measures to improve the extrusion precision, such as use in combination with a metering pump, pressure control, and the like. Since the temperature of the melt of poly 1,4-cyclohexylene dimethylene terephthalate changes depending on the polymer composition, it is preferable to select the temperature accordingly. For the above polymer compositions, a temperature range of 295-315°C is usually chosen. The appropriate temperature for the casting drum is 10 to 60℃, but poly-1,
It is preferable to rapidly cool the 4-cyclohexylene dimethylene terephthalate homopolymer,
In that case a surface temperature of 20-40°C is suitable. The stretching temperature is usually 80 to 140°C, and this tends to cause stretching unevenness at low temperatures, while the stretching effect tends to decrease at higher temperatures. More preferably, a temperature range of 100 to 120°C is selected, whereby the above-mentioned physical property values can be easily obtained. The stretching ratio is 3.0 to 5.0 times in the longitudinal direction, preferably 3.3 to 4.3
Select 3.0-5.0 times, preferably 3.5-4.5 times in the lateral direction. If the stretching ratio is less than this range, the refractive index will be smaller than the above value, and if the stretching ratio exceeds this range, not only will the film be undesirably cut frequently during production, but even if the film is obtained, it will suffer from humidity expansion. The rate is surprisingly high and good results cannot be obtained. The stretching method may be a known method. For example, longitudinal stretching can be carried out by heating between two rolls with different circumferential speeds, and transverse stretching can be carried out by gripping both ends of the film with clips and heating the film in a row of clips. It is possible to stretch by increasing the row spacing. The obtained biaxially oriented film is heated at 150 to 260°C, preferably 180 to 250°C.
The refractive index, density, and temperature/humidity expansion coefficient of the present invention can be obtained by heat fixing at ℃ for 1 to 100 seconds. When a film is formed by a normal longitudinal and lateral stretching method, the in-plane difference in temperature/humidity expansion coefficient is included in the scope of the present invention near the center in the width direction of the film. However, the quantitative percentage included varies depending on film forming conditions and polymer composition. Typically, 10 to 70% of the total width is within the scope of the present invention. On the other hand, in the portions near both ends of the film in the width direction, there is a large in-plane difference in temperature/humidity expansion coefficient, and this generally falls outside the scope of the present invention. The reason for this is the bowing phenomenon that occurs during heat-setting in a tenter. In order to reduce the in-plane difference in temperature/humidity expansion coefficient in any part of the film width, heat setting should be carried out at a temperature of 120 to 180°C, and after it has been wound, it should be heat set again while unwinding. 150
It is preferable to carry out the process at a temperature of ~250°C while holding both ends of the film with clips, but the present invention is not limited thereto. By performing heat treatment two or more times in different heat treatment directions in this way, the effect of bowing can be removed by selecting the temperature conditions, and the in-plane refractive index difference,
The temperature/humidity expansion rate difference can be reduced, and the proportion of products compatible with the present invention can be increased. Since the optimum range changes depending on the polymer composition, it is necessary to select conditions appropriately. For example, the acid component is 87 mol% of terephthalic acid and 13 mol% of isophthalic acid, and the glycol component is 100% 1,4
- In the case of a polymer having the composition of cyclohexanedimethanol, the heat setting conditions are preferably 230 to 240°C and 20 to 40 seconds. The biaxially oriented film of the present invention can have an appropriate thickness depending on its use, but a thickness of 2 to 500 μm, usually 12 to 125 μm, and 50 to 100 μm for use as a flexible disk base is selected. The method for measuring characteristic values in the present invention is as follows. (1) Refractive index: Based on Atsube's refractometer. (2) Density: by normal heptane-tetrachlorine carbon density gradient tube. (3) Temperature expansion rate: Measure by placing a constant load elongation tester (TTL2 type) manufactured by Japan Automatic Control Co., Ltd. in a constant temperature and humidity chamber. The measurement sample is heat-treated in advance under predetermined conditions (for example, 70℃, 30 minutes), and this sample is attached to the test machine at a temperature of 20℃ and a relative humidity of 60%.
The temperature expansion coefficient is measured by reading the dimensional change between The original sample length at this time was 505 mm, and the sample width was 1/4 inch. The weight applied during measurement is
It was fixed at 5g/1/4 inch width. If a long sample cannot be obtained, measurement can be performed using a thermomechanical analyzer TM-3000 manufactured by Shinku Riko Co., Ltd. When determining the difference between the maximum and minimum temperature expansion coefficients, use TM-3000. The dimensions of the sample are 15 mm in length and 5 mm in width, with a temperature of 10°C and humidity of 0%RH and a temperature of 40°C and humidity of 0%.
Determine by reading the dimensional change at RH. (4) Humidity expansion rate: As in the case of determining the temperature expansion rate, use a constant load elongation tester manufactured by Japan Automatic Control Co., Ltd., and attach a sample that has been pretreated at a temperature of 40°C and humidity of 90% RH. Temperature 20℃, humidity
Determine the humidity expansion rate by reading the dimensional changes between 30%RH, 20℃, and 70%RH.
If the sample cannot be taken for a long time, a thermomechanical analyzer manufactured by Shinku Riko Co., Ltd. was placed in a constant temperature and humidity environment, and the measurement was performed under the above conditions, as in the case of measuring the coefficient of thermal expansion. (5) In-plane directional difference in temperature/humidity expansion coefficient: Measure the value in each direction every 15° or 30° using the method explained in (3) and (4) above, and calculate <maximum value - minimum value>. demand. EXAMPLES Next, the present invention will be specifically explained using examples. Example 1 85 mol% of terephthalic acid as dibasic acid component,
15 mol% of isophthalic acid, 100% of 1,4-cyclohexanedimethanol as the glycol component, 0.05 mol% of titanium oxide (based on the acid component) as a catalyst, and 0.5% by weight of kaolin clay with an average particle size of 0.6 microns as a lubricant. In addition, the mixture was placed in an autoclave and heated under stirring for transesterification, followed by polycondensation to obtain poly-1,4-cyclohexylene dimethylene terephthalate. This polyester was melt-extruded at 300℃, then 40℃
The film was cooled on a quenching drum held at 1000 mL to obtain an unstretched film of 1000 microns. This unstretched film
After being brought into contact with a metal roll adjusted to 90°C and preheated, it was stretched 3.6 times in the longitudinal direction between rolls with a difference in circumferential speed while being irradiated with an infrared heater (surface temperature 1000°C).
Next, the longitudinally stretched film was stretched at 115 kg using a tenter at 3.7 kg.
It was horizontally stretched twice. While holding both ends of the obtained biaxially stretched film with clips, it was heat-set at 140°C and wound up. Next, while unwinding this film, both ends of the film were gripped and heat set again at 235°C, resulting in a product with a thickness of 75 microns. The physical property values are shown in Table 1. Example 2 In Example 1, the dibasic acid component was terephthalic acid.
100mol%, melting temperature 310℃, quenching drum temperature
20℃, preheating temperature 80℃, first heat fixing temperature 180℃,
Furthermore, a 75 micron biaxially oriented film was obtained in the same manner as in Example 1 except that the reheat setting temperature was 250°C. The physical property values are shown in Table 1. Example 3 In Example 1, the first heat setting was carried out at 235°C, and a 75 micron biaxially oriented film was obtained without further heat setting. Other conditions are the same as in Example 1. Table 1 shows the physical properties of this film. Comparative Example 1 Polyethylene terephthalate was polymerized by a conventional method. Under the film forming conditions of Example 1, the melting temperature was 290°C,
A biaxially oriented film of 75 microns was obtained in the same manner as in Example 1, except that the quenching drum temperature was 20°C, the longitudinal stretching preheating temperature was 80°C, the transverse stretching temperature was 105°C, and the reheat setting temperature was 225°C. Table 1 shows the physical properties of this film. Comparative Example 2 A biaxially oriented film of 75 microns was obtained in the same manner as in Example 2 except that the stretching ratio was 4.3 times in the vertical direction and 3.5 times in the horizontal direction. Table 1 shows the physical properties of this film. The center portions of the films of Examples 1, 2, and 3 satisfied the target values of the present invention.

【表】 発明の効果 本発明の2軸配向フイルムは、フレキシブル磁
気デイスク用ベースとして好適である。その理由
は湿度膨脹率がポリエチレンテレフタレートフイ
ルムより小さいことにあり、これによつて磁気ト
ラツクとヘツドのオフトラツクが小さく、高記録
密度が得られる。温度膨脹率は比較的大きいが、
これは駆動装置の方でその温度膨脹率をデイスク
のそれと合わすことができる範囲内にあるので大
きな欠点とはならない。また、温湿度膨脹率の平
面内方向差が小さいのでトラツキングサーボ機構
によつてオフトラツクを小さくする場合にも簡単
に対応でき有利である。一方、屈折率の平面内方
向差が小さく液晶表示装置用の透明導電膜用や、
保護カバー用にも適している。
[Table] Effects of the Invention The biaxially oriented film of the present invention is suitable as a base for a flexible magnetic disk. The reason for this is that the humidity expansion rate is lower than that of polyethylene terephthalate film, and as a result, the off-track between the magnetic track and the head is small, and high recording density can be obtained. Although the temperature expansion rate is relatively large,
This is not a major drawback since the temperature expansion rate of the drive unit can be matched with that of the disk. Furthermore, since the in-plane difference in temperature and humidity expansion coefficients is small, it is advantageous because it can easily be used to reduce off-track by a tracking servo mechanism. On the other hand, it has a small in-plane direction difference in refractive index, and is used for transparent conductive films for liquid crystal display devices.
Also suitable for protective covers.

Claims (1)

【特許請求の範囲】[Claims] 1 縦方向及び横方向を含む面内屈折率1.585〜
1.650、密度1.220〜1.250、温度膨脹率20〜40(×
10-6/℃)、湿度膨脹率3〜8(×10-6/%RH)
温度膨脹率の平面内方向差が6×10-6/℃以内、
湿度膨脹率の平面内方向差が4×10-6/%RH以
内となるように2軸配向した、グリコール成分の
90モル%以上が1,4−シクロヘキサンジメタノ
ール、酸成分の80モル%以上がテレフタル酸であ
るポリ−1,4−シクロヘキシレンジメチレンテ
レフタレートフイルム。
1 In-plane refractive index including vertical and horizontal directions 1.585 ~
1.650, density 1.220~1.250, temperature expansion coefficient 20~40 (×
10 -6 /℃), humidity expansion rate 3 to 8 (×10 -6 /%RH)
The in-plane direction difference in temperature expansion coefficient is within 6×10 -6 /℃,
The glycol component is biaxially oriented so that the in-plane difference in humidity expansion rate is within 4×10 -6 /%RH.
A poly-1,4-cyclohexylene dimethylene terephthalate film containing 90 mol% or more of 1,4-cyclohexanedimethanol and 80 mol% or more of the acid component being terephthalic acid.
JP17696883A 1983-04-07 1983-09-27 Biaxially orientated polyester film Granted JPS6069133A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17696883A JPS6069133A (en) 1983-09-27 1983-09-27 Biaxially orientated polyester film
US06/597,692 US4557982A (en) 1983-04-07 1984-04-06 Magnetic recording flexible disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17696883A JPS6069133A (en) 1983-09-27 1983-09-27 Biaxially orientated polyester film

Publications (2)

Publication Number Publication Date
JPS6069133A JPS6069133A (en) 1985-04-19
JPH03215B2 true JPH03215B2 (en) 1991-01-07

Family

ID=16022855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17696883A Granted JPS6069133A (en) 1983-04-07 1983-09-27 Biaxially orientated polyester film

Country Status (1)

Country Link
JP (1) JPS6069133A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288735A (en) * 1987-05-21 1988-11-25 Teijin Ltd Polyester film
US7147927B2 (en) 2002-06-26 2006-12-12 Eastman Chemical Company Biaxially oriented polyester film and laminates thereof with copper
US7524920B2 (en) 2004-12-16 2009-04-28 Eastman Chemical Company Biaxially oriented copolyester film and laminates thereof
JP5505018B2 (en) * 2010-03-26 2014-05-28 東レ株式会社 Polyester film, solar cell backsheet using the same, and reflector for LED light source.

Also Published As

Publication number Publication date
JPS6069133A (en) 1985-04-19

Similar Documents

Publication Publication Date Title
JP5796493B2 (en) Biaxially oriented polyester film and linear magnetic recording medium
KR100248877B1 (en) Oriented semi-crystalline polyester films, method for their manufacture and their use as support for magnetic coatings
JPH03216B2 (en)
US5718860A (en) Process for the preparation of polyester base film for magnetic recording media
JPH0379178B2 (en)
JPH03137814A (en) Biaxially oriented polyester film for floppy disk
JPH03215B2 (en)
JPH0449170B2 (en)
JPS62164733A (en) Biaxially oriented polyester film for magnetic recording
JPS5988719A (en) Polyester film for base material of liquid crystal panel
JPS6216173B2 (en)
KR0157090B1 (en) Biaxial oriented polyester film
JPH0425855B2 (en)
JP6982802B2 (en) Laminated polyester film and magnetic recording medium
JPH0773877B2 (en) Method for producing biaxially oriented polyester film
JPH0367630A (en) Biaxially oriented polyester film
JP2516100B2 (en) Biaxially oriented polyester film
JP2000336183A (en) Biaxially oriented polyester film and its production
KR970008257B1 (en) Preparation process for polyethylene telephthalate film
JPH04180939A (en) Preparation of copolyester film
KR960014547B1 (en) Forming method for polyethylene naphthalate film
JPS58153231A (en) Magnetic recording tape
JP2550745B2 (en) Polyester resin film
JPH01193327A (en) Polyester film
JPH08504467A (en) Improved biaxially oriented copolyester film for magnetic recording media