JPH0145883B2 - - Google Patents

Info

Publication number
JPH0145883B2
JPH0145883B2 JP56159213A JP15921381A JPH0145883B2 JP H0145883 B2 JPH0145883 B2 JP H0145883B2 JP 56159213 A JP56159213 A JP 56159213A JP 15921381 A JP15921381 A JP 15921381A JP H0145883 B2 JPH0145883 B2 JP H0145883B2
Authority
JP
Japan
Prior art keywords
light
light receiving
infrared
lens
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56159213A
Other languages
Japanese (ja)
Other versions
JPS5859413A (en
Inventor
Kenichi Ooikami
Masatoshi Ida
Masahiro Aoki
Asao Hayashi
Junichi Nakamura
Kenji Fukuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP15921381A priority Critical patent/JPS5859413A/en
Publication of JPS5859413A publication Critical patent/JPS5859413A/en
Publication of JPH0145883B2 publication Critical patent/JPH0145883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/38Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals measured at different points on the optical axis, e.g. focussing on two or more planes and comparing image data

Description

【発明の詳細な説明】 本発明は、物体の像を形成する結像光学系から
の光束の少なくとも一部を受光装置で受光し、こ
の受光装置で前記光束の強度分布を光電信号に変
換し、この光電信号に基づいて物体像の結像状態
を判別して結像光学系の焦点合わせを行なう自動
焦点調節方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a light receiving device receives at least a portion of a light beam from an imaging optical system that forms an image of an object, and the light receiving device converts the intensity distribution of the light beam into a photoelectric signal. This invention relates to an automatic focusing method that determines the imaging state of an object image based on this photoelectric signal and focuses an imaging optical system.

普通の写真撮影用レンズでは通常可視光につい
てのみ色収差を補正してあり、赤外光に対しては
収差補正がされていない。したがつて、このよう
なレンズで赤外線写真を撮影する場合には、最初
に可視光でピントを合わせた後、レンズを操り出
して赤外マークに目印を合わせ直して撮影するの
できわめて面倒である。一方、このようなレンズ
を持つたカメラに自動焦点を適用する場合、レン
ズを透過した光束を受光して合焦状態の検出を行
なう、いわゆるTTL方式を採用するものがある。
例えば第1図に示すように物体1の像を撮影レン
ズ2により撮影する場合、レンズ2を透過した光
束をハーフミラー3により二分し、それぞれ予定
結像面Fの前後に配置した受光素子列4および5
で受光している。これら受光素子列4および5は
予定結像面から等しい光路差だけ隔たるように配
置されており、したがつてレンズ2の移動に伴う
受光素子列上の像のぼけ方は第2図に示すように
なり、合焦時には同程度にぼけた像が受光素子列
4および5上に結像されるが、いわゆる前ピンお
よび後ピンの状態ではそれぞれ受光素子列4およ
び5によりピントの合つた像が形成されることに
なる。したがつてこれらの状態では第1および第
2の受光素子列4および5の各受光素子の出力信
号は第3図においてそれぞれ実線および破線で示
すようになる。したがつてこれら受光素子の光電
出力信号を所定の評価関数にしたがつて演算する
と、第4図に示すようなものとなる。すなわち、
第4図の実線は第1の受光素子列4の出力から求
めた評価関数値を、破線は第2の受光素子列5の
出力から求めた評価関数値をそれぞれ示す。また
第4図において、δは両受光素子列の間隔を示し
ている。評価関数としては隣接する受光素子の出
力の差の絶対値の内の最大のもの|xo−xo+1na
や、絶対値の和Σ|xo+xo+1|などがあるが、
いずれにしても受光素子上の形成される像の鮮鋭
度が最も高いとき、すなわちコントラストが最大
となるとき、評価関数値は最大値をとる。したが
つて各受光素子列の出力から演算される評価値の
ピークからδ/2だけ離れた点を合焦点位置とすれ ば、この位置では両評価値の差は零となるので、
両評価値の差の正負、零を判定することにより後
ピン状態、前ピン状態、合焦状態を判定すること
ができる。
In ordinary photography lenses, chromatic aberration is usually corrected only for visible light, but not for infrared light. Therefore, when taking infrared photographs with such a lens, it is extremely troublesome to first focus using visible light, then move the lens out, re-align the mark with the infrared mark, and then take the photograph. . On the other hand, when applying autofocus to a camera with such a lens, there are some that employ the so-called TTL method, which detects the in-focus state by receiving the light flux that has passed through the lens.
For example, when photographing an image of an object 1 using a photographing lens 2 as shown in FIG. and 5
It is receiving light. These light-receiving element rows 4 and 5 are arranged so as to be separated by an equal optical path difference from the intended image-forming plane. Therefore, the blurring of the image on the light-receiving element row as the lens 2 moves is shown in FIG. When in focus, equally blurred images are formed on the photodetector arrays 4 and 5, but in the so-called front-focus and rear-focus states, images are focused by the photodetector arrays 4 and 5, respectively. will be formed. Therefore, in these conditions, the output signals of the respective light receiving elements of the first and second light receiving element rows 4 and 5 become as shown by solid lines and broken lines, respectively, in FIG. Therefore, when the photoelectric output signals of these light receiving elements are calculated according to a predetermined evaluation function, the result is as shown in FIG. That is,
The solid line in FIG. 4 indicates the evaluation function value obtained from the output of the first light receiving element array 4, and the broken line indicates the evaluation function value obtained from the output of the second light receiving element array 5. Further, in FIG. 4, δ indicates the interval between both light-receiving element rows. The evaluation function is the maximum absolute value of the difference in output between adjacent light receiving elements | x o −x o+1 | na
x , the sum of absolute values Σ|x o +x o+1 |, etc.
In any case, when the sharpness of the image formed on the light receiving element is highest, that is, when the contrast is maximum, the evaluation function value takes the maximum value. Therefore, if a point δ/2 apart from the peak of the evaluation value calculated from the output of each light-receiving element array is set as the in-focus position, the difference between the two evaluation values will be zero at this position.
By determining whether the difference between the two evaluation values is positive or negative, or whether it is zero, it is possible to determine the rear focus state, front focus state, and in-focus state.

第5図は上述した合焦検出方法に基づく自動焦
点調節装置全体の構成を示すものであり、物体1
の像を形成するレンズ2からの光束を、上述した
ように光路差を与えた第1および第2の受光素子
列を有する受光装置7で受光し、その光電変換出
力を信号処理回路10でA―D変換し、演算回路
11で2つの評価値を計算し、その差を制御回路
12へ送る。制御回路12はこの差の正、負、零
を判断し、それに応じてレンズ駆動装置8を制御
し、レンズ2を光軸方向に移動させる。このレン
ズ2の移動量を移動量検出器9で検出し、これを
制御回路12へ送る。制御回路12では所定の距
離の移動が終了したことを検出したらレンズ駆動
装置8によるレンズの駆動を停止し、再び受光装
置7による像情報をとり込み、評価値の演算を行
ない、合焦位置へのレンズの移動方向を決定し、
再びレンズ駆動装置8によりレンズ2を所定量移
動する。このような動作を、両評価値の差が零と
なるまで繰返し、最終状態ではレンズ2は予定の
結像面にピントの合つた像を形成する合焦点位置
となる。
FIG. 5 shows the overall configuration of an automatic focus adjustment device based on the focus detection method described above.
The light beam from the lens 2 that forms an image of -D conversion, the arithmetic circuit 11 calculates two evaluation values, and sends the difference to the control circuit 12. The control circuit 12 determines whether this difference is positive, negative, or zero, controls the lens driving device 8 accordingly, and moves the lens 2 in the optical axis direction. The amount of movement of this lens 2 is detected by a movement amount detector 9 and sent to a control circuit 12. When the control circuit 12 detects that the movement of the predetermined distance has been completed, it stops driving the lens by the lens driving device 8, takes in the image information from the light receiving device 7 again, calculates the evaluation value, and returns to the in-focus position. determine the direction of movement of the lens,
The lens 2 is moved by a predetermined amount again by the lens driving device 8. This operation is repeated until the difference between the two evaluation values becomes zero, and in the final state, the lens 2 is at the focal point position where a focused image is formed on the intended imaging plane.

上述した自動焦点調節装置において使用する受
光素子は、例えばシリコンホトダイオードであ
り、これは第6図に示すような分光感度特性を持
つており、760mμから1.3μの近赤外域において
ピークを有している。一方、物体を照射する光は
一般に種々の波長の光を含んでおり、例えば太陽
光線の分光強度は第7図に示すように近赤外域に
おいても大きな強度があり、デイライトカラー用
のフラツトランプの分光強度特性も第8図に示す
ように近赤外域に大きな相対エネルギーを含んで
おり、螢光灯でも第9図に示すように赤外域にお
ける相対エネルギーは小さいながら存在してい
る。このように撮影光の中には近赤外域が含まれ
ている。一方、撮影レンズ2は通常D線(589n
m)を中心に可視光に対してのみ色収差が補正さ
れており、赤外線に対しては補正されていないの
で、この補正されていない赤外線に対して大きな
感度を有する受光装置をそのまま用いて可視光の
撮影をするときには合焦点位置がレンズより遠去
かる位置になり、ピントの合つた可視光像が得ら
れないことになる。したがつて、受光装置の前方
に赤外線カツトフイルタを挿入し、可視光のみで
合焦検出を行なうようにしている。しかし、この
ような赤外線カツトフイルタを挿入すると、750
〜800nm付近に大きな感度を有する赤外写真用
フイルムを用いて赤外線撮影をする場合には合焦
検出が正しく行なえなくなる欠点がある。可視光
による合焦点位置と赤外線による合焦点位置との
ずれはレンズ設計の段階で知ることができるの
で、可視光により合焦検出した後、このずれに対
応した量だけレンズを移動させることによつて赤
外線に対して合焦させることもできるが、入射光
束中に可視光と赤外光とがどの位の割合で含まれ
ているのがわからなければレンズを正確に合焦点
位置に調節するように補正することはできない。
The light-receiving element used in the above-mentioned automatic focusing device is, for example, a silicon photodiode, which has spectral sensitivity characteristics as shown in Figure 6, with a peak in the near-infrared region from 760 mμ to 1.3μ. There is. On the other hand, the light that irradiates an object generally contains light of various wavelengths. For example, the spectral intensity of sunlight has a large intensity even in the near-infrared region, as shown in Figure 7. The spectral intensity characteristics of the light also include large relative energy in the near-infrared region, as shown in FIG. 8, and even in fluorescent lamps, as shown in FIG. 9, the relative energy in the infrared region is small, but still exists. In this way, the photographing light includes near-infrared light. On the other hand, the photographing lens 2 is normally D-line (589n
Since chromatic aberration is corrected only for visible light (centered on m), but not for infrared light, this uncorrected light receiving device, which has high sensitivity to infrared light, can be used as is to detect visible light. When photographing, the focal point position is farther away than the lens, making it impossible to obtain a focused visible light image. Therefore, an infrared cut filter is inserted in front of the light receiving device so that focus detection is performed using only visible light. However, if you insert an infrared cut filter like this, 750
When performing infrared photography using an infrared photographic film having a high sensitivity in the vicinity of ~800 nm, there is a drawback that focus detection cannot be performed correctly. The deviation between the focal point position of visible light and that of infrared rays can be known at the lens design stage, so after detecting focus using visible light, the lens can be moved by an amount corresponding to this deviation. It is also possible to focus on infrared light using a lens, but if you do not know the ratio of visible light and infrared light included in the incident light beam, it is necessary to adjust the lens to the precise focusing position. cannot be corrected.

本発明の目的は上述した従来の欠点を除去し、
撮影光束の分光エネルギー特性がどのような分布
をしていても常に所望の波長の光に対する合焦点
位置を正確に検出し、所望の波長のピントの合つ
た像を得ることができる自動焦点調節方法を提供
しようとするものである。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art,
An automatic focus adjustment method that can always accurately detect the focal point position for light of a desired wavelength and obtain a focused image of the desired wavelength, regardless of the distribution of the spectral energy characteristics of the photographing light flux. This is what we are trying to provide.

本発明の自動焦点調節方法は、赤外光に対して
収差補正されていない結像光学系からの物体の像
を形成する光束の少なくとも一部を受光装置で受
光し、この受光装置で前記光束の強度分布を光電
信号に変換し、この光電信号に基づいて物体像の
結像状態を判別して結像光学系の焦点合わせを行
なうに当たり、前記物体像を形成する光束の内の
赤外領域の光による光電信号と、それ以外の波長
領域の光による光電信号とを各別に取出し、前記
受光装置に入射する総ての波長の光により検出さ
れる合焦点位置に対する所望の波長の光による合
焦点位置までの補正値を前記各別に取出した光電
信号の比率に基づいて定め、この補正値により補
正された合焦点位置へ前記結像光学系を移動させ
ることを特徴とするものである。
In the automatic focusing method of the present invention, a light receiving device receives at least a part of a light beam forming an image of an object from an imaging optical system that is not aberration-corrected for infrared light, and the light receiving device receives the light beam. In converting the intensity distribution into a photoelectric signal, determining the imaging state of the object image based on this photoelectric signal, and focusing the imaging optical system, the infrared region of the light beam forming the object image is The photoelectric signal caused by the light in the wavelength range and the photoelectric signal caused by the light in the other wavelength range are extracted separately, and the light of the desired wavelength is combined with the focused position detected by the light of all the wavelengths incident on the light receiving device. The present invention is characterized in that a correction value up to the focal position is determined based on the ratio of the photoelectric signals extracted separately, and the imaging optical system is moved to the focused position corrected by the correction value.

以下図面を参照して本発明を詳細に説明する。 The present invention will be described in detail below with reference to the drawings.

第10図は可視光および近赤外光に対する合焦
点位置のずれを示すものである。物体21の像を
撮影レンズ22で形成する場合、可視光に対して
は位置F1が合焦点位置であるとすると近赤外光
に対しては位置F2が合焦点位置となる。一般的
に長波長側にゆくほど焦点位置がレンズ22から
遠去かるので、F1とF2とのずれΔは波長によつ
て異なる。普通の赤外写真用フイルムは750〜
800nm付近に大きな感度を有しており、写真レン
ズ22の色収差は589nmのD線を中心にして補正
されているので、Δを最大589nmと800nmの色収
差分だけとつてやれば可視光の合焦点位置F1
ら赤外光の合焦位置F2に移動するとき、色収差
の補正は実用的には十分である。このように合焦
位置F1,F2が波長によつて異なるため、第11
図AおよびBに示すように評価関数値も可視光と
赤外光とではずれてくる。本発明はこのずれを自
動的に補正するものである。
FIG. 10 shows the deviation of the focal point position for visible light and near-infrared light. When an image of the object 21 is formed by the photographing lens 22, if position F1 is the focused position for visible light, position F2 is the focused position for near-infrared light. Generally, the longer the wavelength, the farther the focal point is from the lens 22, so the deviation Δ between F 1 and F 2 differs depending on the wavelength. Ordinary infrared photographic film costs 750~
It has great sensitivity around 800 nm, and the chromatic aberration of the photographic lens 22 is corrected around the D line of 589 nm, so if you set Δ to the maximum chromatic aberration of 589 nm and 800 nm, you can focus the visible light. When moving from position F 1 to infrared light focusing position F 2 , correction of chromatic aberration is practically sufficient. In this way, since the focusing positions F 1 and F 2 differ depending on the wavelength, the 11th
As shown in Figures A and B, the evaluation function values also differ between visible light and infrared light. The present invention automatically corrects this deviation.

第12図は本発明による自動焦点調節方法を実
施する装置の一例の構成を示すものであり、第1
3図は受光装置を示す斜視図である。物体21の
像をレンズ22で受光装置23上に形成するが、
本例ではこの受光装置には半透過面24および全
反射面25を有する光路分割プリズム26と、基
板27上に設けた第1および第2の受光素子列2
8および29とを設ける。このようにして物体2
1の同一部分の像を受光素子列28,29に形成
することができる。レンズ22から第1および第
2の受光素子列28,29に到る光路長は差があ
り、これら受光素子列の中間の位置が予定の結像
面、例えばフイルム面と共役な結像面となつてお
り、第1および第2の受光素子列はこの結像面の
前後に配置されている。この構成は第1図に示し
た従来のものと同じである。本発明においては、
これら第1および第2の受光素子列には総ての波
長の光が入射するようにする。さらに第13図に
示すように基板27上に第1および第2の補助受
光素子30および31を配置し、これら補助受光
素子上にはそれぞれ可視光(400〜650nm)を透
過し、赤外光をカツトする赤外カツトフイルタ3
2および近赤外光(700〜800nm)を透過し、可
視光をカツトする赤外透過フイルタ33を配置す
る。したがつてこれら補助受光素子30および3
1からは、レンズ22からの光束中に含まれる可
視光および近赤外光の光量を表わす信号が各別に
出力されることになる。この場合、入射光束がフ
ラツトな分光強度特性を有するときには補助受光
素子30および31の出力がほぼ等しくなるよう
に構成するのが好適である。また、補助受光素子
30,31は全波長域の光を受光する受光素子列
28および29と同じ分光感度特性を有するのが
望ましく、例えば基板27をシリコンウエフアと
するときは総ての受光素子をこのウエフア内に一
体的に形成するのが望ましい。第6図に示すよう
に近赤外域においてピークを有するシリコンホト
ダイオードによつて総ての受光素子を構成する場
合、合焦検出用受光素子列28,29により得ら
れる合焦信号に基づくレンズの停止位置もシリコ
ンの波長依存性の影響が現われる。すなわち、フ
ラツトな分光強度を有する可視光束が受光される
ときは、光軸上の赤い光の焦束点が合焦点位置と
看做され、フラツトな特性の赤外光が入射すると
きは800nm付近の近赤外線の焦束点が合焦位置と
看做される。一方、可視光と赤外光が混在する光
束が入射するときには、これらの中間の位置が合
焦点位置と看做される。したがつて補助受光素子
30および31上に設けるフイルタ32および3
3は、その透過波長域においてフラツトな分光特
性を有するものがよい。一方、フラツトな分光特
性の光が入射したときに可視光検出用の補助受光
素子32の出力と赤外光検出用の補助受光素子3
3の出力力とを互に等しくするためには、赤外カ
ツトフイルタ32と赤外透過フイルタ33の透過
率比を一定にするか、またはこれらの透過率を等
しくし、補助受光素子32および33の出力信号
を処理する回路に増幅器を設け、両出力信号に対
する増幅率を変えて最終的な出力信号の利得が
1:1となるようにすればよい。
FIG. 12 shows the configuration of an example of an apparatus for carrying out the automatic focusing method according to the present invention.
FIG. 3 is a perspective view showing the light receiving device. An image of the object 21 is formed on the light receiving device 23 by the lens 22,
In this example, this light-receiving device includes an optical path splitting prism 26 having a semi-transmissive surface 24 and a total reflection surface 25, and first and second light-receiving element arrays 2 provided on a substrate 27.
8 and 29 are provided. In this way, object 2
1 can be formed on the light receiving element arrays 28 and 29. The optical path lengths from the lens 22 to the first and second light-receiving element arrays 28 and 29 are different, and the intermediate position between these light-receiving element arrays is the intended imaging plane, for example, an imaging plane conjugate with the film surface. The first and second light-receiving element rows are arranged in front of and behind this imaging plane. This configuration is the same as the conventional one shown in FIG. In the present invention,
Light of all wavelengths is made to enter these first and second light receiving element arrays. Furthermore, as shown in FIG. 13, first and second auxiliary light receiving elements 30 and 31 are arranged on the substrate 27, and each of these auxiliary light receiving elements transmits visible light (400 to 650 nm) and infrared light. Infrared cut filter 3
2 and an infrared transmitting filter 33 that transmits near infrared light (700 to 800 nm) and cuts visible light. Therefore, these auxiliary light receiving elements 30 and 3
1, signals representing the amount of visible light and near-infrared light contained in the light beam from the lens 22 are output separately. In this case, when the incident light beam has flat spectral intensity characteristics, it is preferable to configure the auxiliary light receiving elements 30 and 31 so that their outputs are approximately equal. Further, it is desirable that the auxiliary light receiving elements 30 and 31 have the same spectral sensitivity characteristics as the light receiving element arrays 28 and 29 that receive light in the entire wavelength range.For example, when the substrate 27 is a silicon wafer, all the light receiving elements is preferably formed integrally within the wafer. As shown in FIG. 6, when all light-receiving elements are composed of silicon photodiodes having a peak in the near-infrared region, the lens is stopped based on the focus signal obtained by the focus detection light-receiving element rows 28 and 29. The influence of the wavelength dependence of silicon also appears in the position. In other words, when visible light flux with flat spectral intensity is received, the focal point of red light on the optical axis is considered to be the focal point position, and when infrared light with flat characteristics is incident, the focal point is around 800 nm. The focal point of the near-infrared rays is considered to be the focal position. On the other hand, when a light flux containing a mixture of visible light and infrared light is incident, a position between these is considered to be a focused position. Therefore, the filters 32 and 3 provided on the auxiliary light receiving elements 30 and 31
3 preferably has flat spectral characteristics in its transmission wavelength range. On the other hand, when light with flat spectral characteristics is incident, the output of the auxiliary light receiving element 32 for detecting visible light and the output of the auxiliary light receiving element 3 for detecting infrared light
In order to equalize the output powers of the infrared cut filter 32 and the infrared transmission filter 33, the transmittance ratio of the infrared cut filter 32 and the infrared transmission filter 33 should be made constant, or the transmittances of these should be made equal, and the auxiliary light receiving elements 32 and 33 should be made equal in transmittance. An amplifier may be provided in a circuit that processes the output signal, and the amplification factors for both output signals may be changed so that the gain of the final output signal is 1:1.

上述したようにレンズ22の色収差は赤外線に
対しては補正されておらず、可視光に対する合焦
点に対して近似的に波長に比例して増えていくと
考えてよい。今、589nmの可視光に対する合焦点
位置と、800nmの赤外線に対する合焦点位置との
ずれをΔとする。また、補助受光素子30の出力
信号、すなわち可視光の出力信号をIVとし、補助
受光素子31の出力信号、すなわち赤外光の出力
信号をIRとすると、赤外線に対するピント補正量
dは、 d=Δ×IR/IVただしIR/IV≦1のとき d=Δ ただしIR/IV>1のとき とすることができる。このようにして求めた補正
値に基づいて、第1および第2の受光素子列2お
よび29によつて求められる合焦点位置を補正す
ることにより、所望の波長の光に対する合焦点位
置へレンズ22を駆動することができる。
As described above, the chromatic aberration of the lens 22 is not corrected for infrared rays, and can be considered to increase approximately in proportion to the wavelength of the focal point for visible light. Now, let Δ be the difference between the focal point position for 589 nm visible light and the focal point position for 800 nm infrared rays. Further, if the output signal of the auxiliary light receiving element 30, that is, the output signal of visible light, is I V , and the output signal of the auxiliary light receiving element 31, that is, the output signal of infrared light, is I R , the focus correction amount d for infrared rays is: d=Δ×I R /I V where I R /I V ≦1 d=Δ where I R /I V >1. Based on the correction value obtained in this way, the lens 22 moves to the focused point position for light of the desired wavelength by correcting the focused point position obtained by the first and second light receiving element arrays 2 and 29. can be driven.

第14図は本発明の自動焦点調節方法に用いる
受光装置の他の実施例を示すものである。上述し
た例においては、合焦付近においては、物体21
のほぼピントの合つた像が受光素子上に形成され
るようになるが、合焦検出用の受光素子列28,
29と入射光束の分光特性を検出するための受光
素子30,31とは物体の異なる部分の像を受光
する可能性があり、検出精度が劣化する恐れがあ
る。第14図に示す例では、基板27に形成した
受光素子30,31の上にフイルタ32,33を
配置し、さらにその上に拡散板34,35を配置
して上述した劣化を緩和するようにしている。
FIG. 14 shows another embodiment of the light receiving device used in the automatic focusing method of the present invention. In the example described above, near the focus, the object 21
A nearly in-focus image is formed on the light receiving element, but the light receiving element array 28 for focus detection,
29 and the light-receiving elements 30 and 31 for detecting the spectral characteristics of the incident light beam may receive images of different parts of the object, and there is a possibility that detection accuracy may deteriorate. In the example shown in FIG. 14, filters 32 and 33 are placed above the light receiving elements 30 and 31 formed on the substrate 27, and diffusers 34 and 35 are further placed above them to alleviate the above-mentioned deterioration. ing.

第15図は本発明の自動焦点調節方法に用いる
受光装置のさらに他の実施例を示すものであり、
本例では分光特性検出用の受光素子36を1個設
ける。この受光素子36は第16図に示すような
シリコンの三層構造を有しており、領域36a,
36b,36cにそれぞれ電極37a,37b,
37cを設けたものである。このような素子では
青色光はシリコンの表面近傍で吸収され、赤色光
は中間部で吸収され、赤外光は深い部分で吸収さ
れる。したがつて、第17図に示すように浅い所
に位置する第1のホトダイオード36a,36b
は短波長域で感度が高くなり、深い所に位置する
第2ホトダイオード36b,36cは長波長域で
感度が高くなる。したがつてこれら第1および第
2のホトダイオードを、前例の受光素子30およ
び31の代りに用いることによつて前例と同様の
補正ができる。ただし本例では赤外域での感度の
ピークは870nmにあるので589nmの可視光に対す
る合焦点位置と、870nmの近赤外光に対する合焦
点位置との間のずれを上述のΔとして採用すれば
よい。
FIG. 15 shows still another embodiment of the light receiving device used in the automatic focusing method of the present invention,
In this example, one light receiving element 36 for detecting spectral characteristics is provided. This light receiving element 36 has a three-layer structure of silicon as shown in FIG.
Electrodes 37a, 37b, 36b, 36c, respectively
37c. In such devices, blue light is absorbed near the surface of the silicon, red light is absorbed in the middle, and infrared light is absorbed deep. Therefore, as shown in FIG.
has high sensitivity in a short wavelength range, and the second photodiodes 36b and 36c located deep have high sensitivity in a long wavelength range. Therefore, by using these first and second photodiodes in place of the light receiving elements 30 and 31 in the previous example, the same correction as in the previous example can be performed. However, in this example, the peak of sensitivity in the infrared region is at 870 nm, so the deviation between the focal point position for visible light at 589 nm and the focal point position for near-infrared light at 870 nm can be used as the above Δ. .

本発明は上述した実施例だけに限定されるもの
ではなく、幾多の変形が可能である。例えば光量
が不足したとき、例えば暗い中で撮影するときに
合焦信号を得ようとする場合の一つの方法として
赤外線を物体に照射する方法がある。このような
方法は合焦検出用受光素子列の光路中へ赤外カツ
トフイルタを挿入した装置では採用できないが、
赤外カツトフイルタを設けなければ、赤外光だけ
でなく可視光も入射するので正確な合焦信号を得
ることはできない。しかし、本発明では上述した
ように赤外光と可視光とを各別に検出し、これに
より合焦点位置の補正を行なうものであるから上
述したような場合に特に有効である。さらに上述
した実施例では予定の結像面の前後にそれぞれ受
光素子列を配置し、これら受光素子列から得られ
評価関数値を比較するいわゆるぼけ像検出方式に
適用したが、特開昭48―60645号、特開昭51―
147317号等に記載されているように撮影レンズの
像側に受光素子列を配置し、デフオーカスによる
主光線の像面に対する横ずれを検出する方式にも
本発明は有効に適用することができる。また上述
した例では可視光写真撮影を行なう場合に赤外光
の影響を補正するようにしたが、赤外写真撮影を
行なう場合の可視光の影響を補正することもで
き、この場合には上述した補正量を逆向きにすれ
ばよい。
The present invention is not limited to the embodiments described above, but can be modified in many ways. For example, one method for obtaining a focusing signal when the amount of light is insufficient, for example when photographing in the dark, is to irradiate an object with infrared rays. Although this method cannot be used in a device that has an infrared cut filter inserted into the optical path of the focus detection photodetector array,
If an infrared cut filter is not provided, not only infrared light but also visible light will be incident, making it impossible to obtain an accurate focusing signal. However, in the present invention, as described above, infrared light and visible light are detected separately, and the in-focus position is corrected thereby, so that the present invention is particularly effective in the above-mentioned cases. Furthermore, in the above-mentioned embodiment, a so-called blurred image detection method was applied in which light-receiving element arrays were placed before and after the intended image-forming plane, and the evaluation function values obtained from these light-receiving element arrays were compared. No. 60645, Japanese Patent Publication No. 1973-
The present invention can also be effectively applied to a method of arranging a light receiving element array on the image side of a photographic lens and detecting a lateral shift of a principal ray with respect to an image plane due to a defocus, as described in No. 147317 and the like. Furthermore, in the above example, the influence of infrared light is corrected when taking visible light photographs, but it is also possible to correct the influence of visible light when taking infrared photographs. The corrected amount can be reversed.

上述した本発明の効果を要約すると次の通りで
ある。
The effects of the present invention described above are summarized as follows.

(1) 色収差分だけレンズ駆動量を自動的に補正す
ることができるので入射光束の分光特性によら
ずに所望の波長の光に対する合焦位置に調節す
ることができる。
(1) Since the lens drive amount can be automatically corrected by the amount of chromatic aberration, it is possible to adjust the focus position for light of a desired wavelength regardless of the spectral characteristics of the incident light beam.

(2) 合焦検出用の受光装置には赤外カツトフイル
タを設けないので赤外光を利用することがで
き、検出感度および精度を向上することができ
る。
(2) Since the light receiving device for focus detection is not provided with an infrared cut filter, infrared light can be used, and detection sensitivity and accuracy can be improved.

(3) 赤外線写真の撮影を行なう場合には色収差補
正を逆向きにすれば自動焦点が可能であり、従
来の人間の眼による合焦検出法よりも簡単に行
なうことができる。
(3) When taking infrared photographs, automatic focusing is possible by reversing chromatic aberration correction, which is easier than the conventional focus detection method using the human eye.

(4) 合焦検出用受光素子と分光特性検出用受光素
子とを同一基板上に形成すると、両素子の分光
感度特性が揃うので合焦精度が向上すると共に
製造も容易で安価となる。
(4) When the light-receiving element for focus detection and the light-receiving element for spectral characteristic detection are formed on the same substrate, the spectral sensitivity characteristics of both elements are matched, which improves the focusing accuracy and also makes manufacturing easier and cheaper.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のぼけ像検出方式になる合焦検出
方法を示す線図、第2図は同じくそのときのレン
ズの移動に伴う受光素子列上の像のぼけ具合を示
す線図、第3図は同じくそのときの受光素子の出
力を示すグラフ、第4図は同じくそのときのレン
ズ移動量と評価値との関係を示すグラフ、第5図
は従来の自動焦点調節装置の構成を示すブロツク
図、第6図はシリコンホトダイオードの分光感度
特性を示すグラフ、第7図、第8図および第9図
はそれぞれ太陽光、フラツドランプおよび螢光灯
の分光強度特性を示すグラフ、第10図は本発明
による自動焦点調節方式における可視合焦点位置
および近赤外合焦点位置を説明するための線図、
第11図はレンズの色収差による評価値のずれを
示す線図、第12図は本発明の自動焦点調節方法
による合焦検出装置の一例の構成を示す線図、第
13図は同じくその受光装置の一例の構成を示す
斜視図、第14図は同じくその受光装置の他の例
の構成を示す線図的断面図、第15図は同じくそ
の受光装置のさらに他の例の構成を示す斜視図、
第16図は同じくその分光特性検出用受光装置の
構成を示す断面図、第17図は同じくその分光感
度特性を示すグラフである。 21…物体、22…撮影レンズ、23…受光装
置、27…基板、28,29…合焦検出用受光素
子列、30,31…分光特性検出用受光素子、3
2…赤外カツトフイルタ、33…赤外透過フイル
タ、34,35…拡散板、36…分光特性検出用
受光素子。
Fig. 1 is a diagram showing the focus detection method which is a conventional blur image detection method, Fig. 2 is a diagram showing the degree of blurring of the image on the light receiving element row due to the movement of the lens at that time, and Fig. 3 The figure is a graph showing the output of the light receiving element at that time, Figure 4 is a graph showing the relationship between the lens movement amount and evaluation value at that time, and Figure 5 is a block diagram showing the configuration of a conventional automatic focus adjustment device. Figure 6 is a graph showing the spectral sensitivity characteristics of a silicon photodiode, Figures 7, 8, and 9 are graphs showing the spectral intensity characteristics of sunlight, flat lamp, and fluorescent lamp, respectively, and Figure 10 is a graph showing the spectral sensitivity characteristics of a silicon photodiode. A diagram for explaining the visible focus position and the near-infrared focus position in the automatic focus adjustment method according to the invention,
FIG. 11 is a diagram showing deviations in evaluation values due to lens chromatic aberration, FIG. 12 is a diagram showing the configuration of an example of a focus detection device using the automatic focus adjustment method of the present invention, and FIG. 13 is a diagram showing the light receiving device thereof. FIG. 14 is a schematic cross-sectional view showing the structure of another example of the light receiving device; FIG. 15 is a perspective view showing the structure of still another example of the light receiving device. ,
FIG. 16 is a sectional view showing the configuration of the light receiving device for detecting spectral characteristics, and FIG. 17 is a graph showing the spectral sensitivity characteristics. 21... Object, 22... Photographing lens, 23... Light receiving device, 27... Substrate, 28, 29... Light receiving element array for focus detection, 30, 31... Light receiving element for spectral characteristic detection, 3
2... Infrared cut filter, 33... Infrared transmission filter, 34, 35... Diffusion plate, 36... Light receiving element for detecting spectral characteristics.

Claims (1)

【特許請求の範囲】 1 物体の像を形成する結像光学系からの光束の
少なくとも一部を受光装置で受光し、この受光装
置で前記光束の強度分布を光電信号に変換し、こ
の光電信号に基いて物体像の結像状態を判別して
結像光学系の焦点合わせを行なうに当り、 前記物体像を形成する光束の赤外領域の光によ
る光電信号と、それ以外の波長領域の光による光
電信号とを各別に取出し、 前記受光装置に入射する総ての波長の光により
検出される合焦点位置に対する所望の波長の光に
よる合焦点位置までの補正値を前記各別に取出し
た光電信号の比率に基づいて定め、 この補正値により補正された合焦点位置へ前記
結像光学系を移動させることを特徴とする自動焦
点調節方法。 2 前記赤外領域の光およびそれ以外の波長領域
の光の光電信号を各別に取出す補助受光手段と、
総ての波長の光を受光する前記受光装置とを同一
基板上に形成したことを特徴とする特許請求の範
囲第1項記載の自動焦点調節方法。
[Scope of Claims] 1. At least a part of the light beam from the imaging optical system that forms an image of an object is received by a light receiving device, the light receiving device converts the intensity distribution of the light beam into a photoelectric signal, and the photoelectric signal is converted into a photoelectric signal. When determining the imaging state of the object image based on the image formation state and focusing the imaging optical system, a photoelectric signal from the light in the infrared region of the luminous flux forming the object image and light in the other wavelength region are used. and a photoelectric signal obtained by extracting each of the photoelectric signals separately, and a correction value for the focused point position detected by the light of all wavelengths incident on the light receiving device to the focused point position by the light of the desired wavelength. An automatic focusing method characterized in that the imaging optical system is moved to a focal point position that is determined based on a ratio of the correction value and that is corrected by the correction value. 2. auxiliary light receiving means for separately extracting the photoelectric signals of the light in the infrared region and the light in other wavelength regions;
2. The automatic focusing method according to claim 1, wherein the light receiving device that receives light of all wavelengths is formed on the same substrate.
JP15921381A 1981-10-06 1981-10-06 Autofocusing method Granted JPS5859413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15921381A JPS5859413A (en) 1981-10-06 1981-10-06 Autofocusing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15921381A JPS5859413A (en) 1981-10-06 1981-10-06 Autofocusing method

Publications (2)

Publication Number Publication Date
JPS5859413A JPS5859413A (en) 1983-04-08
JPH0145883B2 true JPH0145883B2 (en) 1989-10-05

Family

ID=15688793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15921381A Granted JPS5859413A (en) 1981-10-06 1981-10-06 Autofocusing method

Country Status (1)

Country Link
JP (1) JPS5859413A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122535A (en) * 2006-11-09 2008-05-29 Canon Inc Photometric device and camera
JP2008170517A (en) * 2007-01-09 2008-07-24 Canon Inc Focusing device, its control method, and imaging apparatus
US7414231B2 (en) 2004-09-29 2008-08-19 Canon Kabushiki Kaisha Focus-state detecting device, image sensing apparatus and image sensing system having same and lens unit mounted thereon
US8063977B2 (en) 2006-11-16 2011-11-22 Canon Kabushiki Kaisha Photosensor and focus detecting device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286318A (en) * 1985-10-11 1987-04-20 Minolta Camera Co Ltd Focus position detector
JPS62192716A (en) * 1986-02-20 1987-08-24 Minolta Camera Co Ltd Focus detecting device
JPS6341818A (en) * 1986-08-06 1988-02-23 Minolta Camera Co Ltd Automatic focus adjusting device provided with auxiliary illuminating device
JP2666274B2 (en) * 1987-03-18 1997-10-22 ミノルタ株式会社 Automatic focus detection device
JP4532849B2 (en) * 2003-05-20 2010-08-25 キヤノン株式会社 Automatic focusing device
CN111273504B (en) * 2020-03-26 2022-05-03 浙江大华技术股份有限公司 Focusing processing method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414232A (en) * 1977-07-05 1979-02-02 Olympus Optical Co Ltd Method of detecting focus position depending on chromatic aberration of lens
JPS55111928A (en) * 1979-02-21 1980-08-29 Ricoh Co Ltd Automatic focusing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414232A (en) * 1977-07-05 1979-02-02 Olympus Optical Co Ltd Method of detecting focus position depending on chromatic aberration of lens
JPS55111928A (en) * 1979-02-21 1980-08-29 Ricoh Co Ltd Automatic focusing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414231B2 (en) 2004-09-29 2008-08-19 Canon Kabushiki Kaisha Focus-state detecting device, image sensing apparatus and image sensing system having same and lens unit mounted thereon
JP2008122535A (en) * 2006-11-09 2008-05-29 Canon Inc Photometric device and camera
US8063977B2 (en) 2006-11-16 2011-11-22 Canon Kabushiki Kaisha Photosensor and focus detecting device
JP2008170517A (en) * 2007-01-09 2008-07-24 Canon Inc Focusing device, its control method, and imaging apparatus

Also Published As

Publication number Publication date
JPS5859413A (en) 1983-04-08

Similar Documents

Publication Publication Date Title
US8634015B2 (en) Image capturing apparatus and method and program for controlling same
JP4986764B2 (en) Imaging apparatus and control method thereof
JP4983271B2 (en) Imaging device
JP4858179B2 (en) Focus detection apparatus and imaging apparatus
JPH0145883B2 (en)
US4982219A (en) Focus detecting device
US4922282A (en) Optical apparatus for leading light fluxes transmitted through light dividing surface which is obliquely provided to focus detecting apparatus
JP2009145527A (en) Imaging element, focus detecting device, and imaging device
JP5084322B2 (en) Imaging apparatus and control method thereof
JPS6250809B2 (en)
JP2006071741A (en) Focus detecting device
JP2666274B2 (en) Automatic focus detection device
US4716284A (en) Photographic optical system having enhanced spectral transmittance characteristics
JP4950634B2 (en) Imaging apparatus and imaging system
JP4525023B2 (en) Focus detection apparatus and imaging apparatus
JP5043402B2 (en) Photometric device and camera
JP2006146081A (en) Ranging device and imaging apparatus
JPS58156909A (en) Detector for focusing state
JPS5933407A (en) Detection of focus information
JPS63265210A (en) Focus detector
JP2740749B2 (en) Auto focus device
JP4994905B2 (en) Imaging device
JPS62183416A (en) Focus detecting device
JPS5910911A (en) Detector of focal position
JPS6280634A (en) Photometric device for camera