JP4994905B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP4994905B2
JP4994905B2 JP2007074062A JP2007074062A JP4994905B2 JP 4994905 B2 JP4994905 B2 JP 4994905B2 JP 2007074062 A JP2007074062 A JP 2007074062A JP 2007074062 A JP2007074062 A JP 2007074062A JP 4994905 B2 JP4994905 B2 JP 4994905B2
Authority
JP
Japan
Prior art keywords
light receiving
light
imaging optical
pair
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007074062A
Other languages
Japanese (ja)
Other versions
JP2008233587A5 (en
JP2008233587A (en
Inventor
英則 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007074062A priority Critical patent/JP4994905B2/en
Publication of JP2008233587A publication Critical patent/JP2008233587A/en
Publication of JP2008233587A5 publication Critical patent/JP2008233587A5/ja
Application granted granted Critical
Publication of JP4994905B2 publication Critical patent/JP4994905B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Studio Devices (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

本発明は、撮像光学系からの光束を互いに分光感度特性が異なる一対の受光素子に受光させ、その受光出力から光源に関する情報を生成し、フォーカス制御のための情報の生成等に用いる撮像装置に関する。   The present invention relates to an image pickup apparatus in which a light beam from an image pickup optical system is received by a pair of light receiving elements having different spectral sensitivity characteristics, information on a light source is generated from the light reception output, and information for focus control is generated. .

一眼レフカメラ等の撮像装置には、TTL位相差検出方式と称される焦点検出方式が採用される場合が多い。TTL位相差検出方式では、撮像光学系からの光束を一対の再結像光学系によって再結像させることで一対の受光素子列上に2つの像を形成し、該2像の相対的な位置差(位相差)を検出することで、撮像光学系のデフォーカス量を得る。   An imaging apparatus such as a single-lens reflex camera often employs a focus detection method called a TTL phase difference detection method. In the TTL phase difference detection system, two images are formed on a pair of light receiving element arrays by re-imaging the light flux from the imaging optical system by the pair of re-imaging optical systems, and the relative positions of the two images By detecting the difference (phase difference), the defocus amount of the imaging optical system is obtained.

一般に、撮像光学系や再結像光学系(焦点検出光学系ともいう)では、d線(587nm)を中心とした400nmから700nmの可視波長域で色収差等の諸収差の補正が行われる。このため、可視波長域以外の波長域、例えば近赤外波長域での収差が良好に補正されていることは少ない。この場合、昼光下、タングステンランプ等の色温度の低い光源下、及び蛍光灯等の色温度の高い光源下での撮像において、それぞれ可視光に対する近赤外光の相対的な割合が異なるため、異なる焦点検出結果が得られることが多い。   In general, in an imaging optical system and a re-imaging optical system (also referred to as a focus detection optical system), various aberrations such as chromatic aberration are corrected in a visible wavelength range from 400 nm to 700 nm centering on the d line (587 nm). For this reason, it is rare that aberrations in a wavelength range other than the visible wavelength range, for example, near-infrared wavelength range, are well corrected. In this case, the relative ratio of near-infrared light to visible light differs in daylight, under a light source with a low color temperature such as a tungsten lamp, and under a light source with a high color temperature such as a fluorescent lamp. Different focus detection results are often obtained.

そこで、特許文献1にて開示されているように、焦点検出用受光素子列の近傍に互いに分光感度特性が異なる一対の光源検出用受光素子を配置し、その出力の比から光源の色温度を検出し、該色温度の検出結果に基づいて焦点検出結果を補正することが好ましい。   Therefore, as disclosed in Patent Document 1, a pair of light source detection light-receiving elements having different spectral sensitivity characteristics are arranged in the vicinity of the focus detection light-receiving element array, and the color temperature of the light source is determined from the ratio of the outputs. It is preferable to detect and correct the focus detection result based on the detection result of the color temperature.

また、特許文献2には、1つの光源検出用受光素子に、互いに異なる分光透過率特性を有する色素フィルタを塗布することで、該受光素子内に分光感度特性が異なる2つの受光領域を形成し、光源の色温度検出を行う技術が開示されている。   In Patent Document 2, two light receiving regions having different spectral sensitivity characteristics are formed in the light receiving element by applying a dye filter having different spectral transmittance characteristics to one light source detecting light receiving element. A technique for detecting the color temperature of a light source is disclosed.

ただし、被写体から撮像光学系及び再結像光学系を通過して受光素子に到達する光束による受光素子上での照度分布は、該光束が撮像光学系及び再結像光学系の影響を受けることで一様にならない(不均一になる)場合がある。この場合、受光素子内で色温度を検出する被写体の像が形成される位置によって受光素子の出力が異なってしまう。このため、色温度の検出結果に誤差を生じる。   However, the illuminance distribution on the light receiving element due to the light beam that passes from the subject through the imaging optical system and the re-imaging optical system and reaches the light receiving element is affected by the imaging optical system and the re-imaging optical system. May not be uniform (becomes uneven). In this case, the output of the light receiving element varies depending on the position where the image of the subject whose color temperature is to be detected is formed in the light receiving element. For this reason, an error occurs in the detection result of the color temperature.

特許文献3には、2つの受光素子列に対する照度分布のアンバランスを補正するための照度分布補正手段を設けた焦点検出装置が開示されている。
特許第2900390号公報 特許第2555681号公報 特開昭63−276010号公報
Patent Document 3 discloses a focus detection device provided with illuminance distribution correction means for correcting illuminance distribution imbalance with respect to two light receiving element arrays.
Japanese Patent No. 2900390 Japanese Patent No. 2556681 JP-A 63-276010

しかしながら、特許文献3にて開示された焦点検出装置では、2つの受光素子列に対する照度分布のアンバランスを補正するだけであり、1つの受光素子内での照度分布の不均一を補正するものではない。   However, the focus detection device disclosed in Patent Document 3 only corrects the illuminance distribution unbalance with respect to the two light receiving element arrays, and does not correct the uneven illuminance distribution in one light receiving element. Absent.

本発明は、光源検出用受光素子内での照度分布の不均一(受光量むら)による受光素子の出力変化を低減し、被写体像の結像位置や被写体像の大きさによらず良好な光源検出、さらには高精度のフォーカス制御を行えるようにした撮像装置を提供する。   The present invention reduces the change in output of the light receiving element due to non-uniform illuminance distribution (unevenness in the amount of received light) in the light receiving element for detecting the light source, and provides a good light source regardless of the position of the subject image and the size of the subject image. Provided is an imaging apparatus capable of performing detection and further performing highly accurate focus control.

本発明の一側面としての撮像装置は、撮像光学系からの光束を結像させる一対の結像光学系であって、複数の画素を備え互いに分光感度特性が等しい、前記撮影光学系の焦点状態を検出するための信号を出力する一対の第1の受光素子に光束を導く一対の結像光学系と、該一対の結像光学系からの光束をそれぞれ受光する互いに分光感度特性が異なる一対の受光素子であって、前記第1の各受光素子の近傍に配置される一対の第2の受光素子と、前記一対の第2の受光素子からの出力に基づいて光源に関する検出を行う検出手段とを有する。そして、第2の各受光素子は、前記撮像光学系及び前記結像光学系により生じる受光位置に応じた受光量の変化に伴う出力の変化を低減するための遮光部材であって、前記第1の各受光素子は有していない遮光部材を有し、前記遮光部材は、前記第2の各受光素子における前記受光量が、基線長方向及び該方向に対して直交する方向の各々において少ない位置ほど遮光面積が小さくなる形状を有することを特徴とする。 An imaging apparatus according to one aspect of the present invention is a pair of imaging optical systems that forms an image of a light beam from an imaging optical system, the imaging apparatus including a plurality of pixels and having the same spectral sensitivity characteristics, and the focal state of the imaging optical system A pair of imaging optical systems for guiding a light beam to a pair of first light receiving elements that output a signal for detecting the light , and a pair of spectral sensitivity characteristics that respectively receive the light beams from the pair of imaging optical systems A pair of second light receiving elements disposed in the vicinity of each of the first light receiving elements, and detection means for detecting light sources based on outputs from the pair of second light receiving elements. Have Each of the second light receiving elements is a light shielding member for reducing a change in output accompanying a change in the amount of received light according to a light receiving position generated by the imaging optical system and the imaging optical system . has a light shielding member that each light receiving element does not have the said light blocking member, the amount of light received at the second respective light receiving elements, small Te direction of each odor perpendicular to the base length direction and the direction It is characterized by having a shape in which the light shielding area becomes smaller as there is no position.

また、本発明の他の側面としての撮像装置は、撮像光学系からの光束を結像させる一対の結像光学系であって、複数の画素を備え互いに分光感度特性が等しい、前記撮影光学系の焦点状態を検出するための信号を出力する一対の第1の受光素子に光束を導く一対の結像光学系と、該一対の結像光学系からの光束をそれぞれ受光する互いに分光感度特性が異なる一対の受光素子であって、前記第1の各受光素子の近傍に配置される一対の第2の受光素子と、該一対の第2の受光素子からの出力に基づいて光源に関する検出を行う検出手段とを有する。そして、第2の各受光素子は、撮像光学系及び結像光学系により生じる受光位置に応じた第2の受光量の変化に伴う出力の変化を低減するための受光部形状であって、前記第1の各受光素子は有していない受光部形状を有し、前記受光部形状は、前記第2の各受光素子における前記受光量が、基線長方向及び該方向に対して直交する方向の各々において少ない位置ほど受光面積が大きくなる受光部形状を有することを特徴とする。 An imaging apparatus according to another aspect of the present invention is a pair of imaging optical systems that forms an image of a light beam from the imaging optical system, the imaging optical system including a plurality of pixels and having equal spectral sensitivity characteristics. A pair of imaging optical systems for guiding a light beam to a pair of first light receiving elements that output a signal for detecting a focal state of the light beam , and spectral sensitivity characteristics for receiving the light beams from the pair of imaging optical systems, respectively. A pair of different light receiving elements , a pair of second light receiving elements disposed in the vicinity of each of the first light receiving elements , and detection of the light source based on outputs from the pair of second light receiving elements Detecting means. And each 2nd light receiving element is a light-receiving part shape for reducing the change of the output accompanying the change of the 2nd received light quantity according to the light reception position which arises with an imaging optical system and an imaging optical system , Comprising: Each of the first light receiving elements has a light receiving part shape, and the light receiving part shape is such that the amount of light received by each of the second light receiving elements is in a base line length direction and a direction orthogonal to the direction. as each not less Te odor position, characterized by having a receiving section shaped receiving area is increased.

なお、撮像光学系及び一対の結像光学系を介した光束をそれぞれ受光する一対の焦点検出用の受光素子列を有し、該焦点検出用の受光素子列からの出力及び光源に関する情報に基づいて、撮像光学系のフォーカス制御を行うための情報を生成する撮像装置も本発明の他の側面を構成する。   It has a pair of light-receiving element arrays for focus detection that respectively receive light beams through the imaging optical system and the pair of imaging optical systems, and is based on the output from the light-receiving element array for focus detection and information on the light source. Thus, an imaging apparatus that generates information for performing focus control of the imaging optical system also constitutes another aspect of the present invention.

本発明によれば、光源検出用の受光素子内での受光量の変化、すなわち照度分布の不均一による受光素子の出力変化を低減することで、被写体像の結像位置や被写体像の大きさによらず、良好な光源検出を行うことができる。したがって、光源検出結果(光源に関する情報)を用いた精度の高いフォーカス制御を行うことができる。   According to the present invention, the change in the amount of light received in the light receiving element for detecting the light source, that is, the change in the output of the light receiving element due to the nonuniform illuminance distribution is reduced. Regardless of this, good light source detection can be performed. Therefore, highly accurate focus control using the light source detection result (information on the light source) can be performed.

以下、本発明の好ましい実施例について図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

まず図8には、本発明の実施例1である一眼レフデジタルカメラ(撮像装置:以下、単にカメラという)を含む撮像システムを示す。該撮像システムは、カメラと該カメラに装着される交換レンズとによって構成される。   First, FIG. 8 shows an imaging system including a single-lens reflex digital camera (imaging apparatus: hereinafter simply referred to as a camera) that is Embodiment 1 of the present invention. The imaging system includes a camera and an interchangeable lens attached to the camera.

同図において、1はカメラであり、その前面には交換レンズ11が装着される。カメラ1内には、光学部品、機械部品、電気回路、及びCCDセンサやCMOSセンサにより構成される撮像素子9が収納されている。   In the figure, reference numeral 1 denotes a camera, and an interchangeable lens 11 is mounted on the front surface thereof. In the camera 1, an image pickup device 9 including an optical component, a mechanical component, an electric circuit, and a CCD sensor or a CMOS sensor is housed.

2は主ミラーであり、ファインダ観察状態では撮像光路内に斜めに配置され、撮像状態では撮像光路外に退避する。また、主ミラー2はハーフミラーとなっており、撮像光路内に配置されているときは、交換レンズ11から入射した光束のうち約半分を透過する。20はサブミラーであり、ファインダ観察状態では主ミラー2の背後において撮像光路内に斜めに配置され、撮像状態では撮像光路外に退避する。撮像状態において、サブミラー20は、主ミラー2を透過した光束を下方に折り曲げて、後述の焦点検出ユニットに導く。   Reference numeral 2 denotes a main mirror, which is disposed obliquely in the imaging optical path in the viewfinder observation state and retracts out of the imaging optical path in the imaging state. Further, the main mirror 2 is a half mirror, and when it is disposed in the imaging optical path, it transmits about half of the light beam incident from the interchangeable lens 11. Reference numeral 20 denotes a sub mirror, which is disposed obliquely in the imaging optical path behind the main mirror 2 in the finder observation state, and retracts out of the imaging optical path in the imaging state. In the imaging state, the sub mirror 20 bends the light beam transmitted through the main mirror 2 downward and guides it to a focus detection unit described later.

3は交換レンズ11の予定結像面に配置されたピント板であり、4はファインダ光路を折り曲げるためのペンタプリズムである。5は接眼レンズである。ピント板3、ペンタプリズム4及び接眼レンズ5によりファインダ光学系が構成され、撮像者は接眼レンズ5を通してピント板3を観察することで、被写体像を観察することができる。   Reference numeral 3 denotes a focusing plate disposed on the planned imaging plane of the interchangeable lens 11, and reference numeral 4 denotes a pentaprism for bending the finder optical path. Reference numeral 5 denotes an eyepiece. A finder optical system is configured by the focus plate 3, the pentaprism 4, and the eyepiece lens 5, and the photographer can observe the subject image by observing the focus plate 3 through the eyepiece lens 5.

7は被写体の輝度を測定するための測光センサであり、6はペンタプリズム4からの光束を測光センサ7上に被写体像を形成させる結像レンズである。   Reference numeral 7 denotes a photometric sensor for measuring the luminance of the subject, and reference numeral 6 denotes an imaging lens that forms a subject image on the photometric sensor 7 with the light flux from the pentaprism 4.

8は撮像素子9に対する光束の入射量及び入射タイミングを制御するフォーカルプレンシャッタである。   Reference numeral 8 denotes a focal plane shutter that controls the amount and timing of incidence of a light beam on the image sensor 9.

25は焦点検出ユニット(焦点検出装置)であり、結像光学系としての2次結像レンズユニット26と、反射ミラー27と、センサユニット29により構成されている。   Reference numeral 25 denotes a focus detection unit (focus detection apparatus), which includes a secondary imaging lens unit 26 as an imaging optical system, a reflection mirror 27, and a sensor unit 29.

2次結像レンズユニット26は、交換レンズ11内の撮像光学系からの光束(サブミラー20により反射された光束)に、一対又は複数対の2次被写体像(A像,B像)をセンサユニット29上に形成させる。焦点検出ユニット25は、A像,B像の相対位置差(位相差)に基づいて交換レンズ11内の撮像光学系の焦点状態に対応する位相差情報を生成する。位相差情報は、コントローラとしてのカメラマイクロコンピュータ30に送られる。   The secondary imaging lens unit 26 converts a pair or a plurality of pairs of secondary subject images (A image, B image) to a light beam from the imaging optical system in the interchangeable lens 11 (light beam reflected by the sub mirror 20) as a sensor unit. 29 is formed. The focus detection unit 25 generates phase difference information corresponding to the focus state of the imaging optical system in the interchangeable lens 11 based on the relative position difference (phase difference) between the A image and the B image. The phase difference information is sent to the camera microcomputer 30 as a controller.

カメラマイクロコンピュータ30は、該位相差情報から撮像光学系のデフォーカス量を求め、さらに該デフォーカス量から合焦を得るためのフォーカスレンズ12の駆動量と駆動方向を算出する。これにより、いわゆるTTL位相差検出方式によるフォーカス制御が行われる。   The camera microcomputer 30 calculates the defocus amount of the imaging optical system from the phase difference information, and further calculates the drive amount and drive direction of the focus lens 12 for obtaining the focus from the defocus amount. Thereby, focus control is performed by a so-called TTL phase difference detection method.

また、光源に関する検出を行う検出手段としても機能するカメラマイクロコンピュータ30は、算出したデフォーカス量を、後述する色温度(光源に関する情報)の検出結果に基づいて補正し、該補正されたデフォーカス量に基づいてフォーカス制御を行う。すなわち、カメラマイクロコンピュータ30は、後述する光源検出用の一対の受光素子からの出力に基づいて光源に関する情報(ここでは色温度を示す情報)を生成する。そして、後述する焦点検出用の受光素子列からの出力と該光源に関する情報に基づいて、撮像光学系のフォーカス制御を行う。   The camera microcomputer 30 that also functions as a detection unit that performs detection relating to the light source corrects the calculated defocus amount based on a detection result of color temperature (information relating to the light source) described later, and the corrected defocus. Focus control is performed based on the amount. That is, the camera microcomputer 30 generates information about the light source (in this case, information indicating the color temperature) based on outputs from a pair of light receiving elements for detecting the light source described later. Then, focus control of the imaging optical system is performed based on an output from a light receiving element array for focus detection described later and information on the light source.

デフォーカス量の補正は、例えば、色温度によって光源の種類(太陽、蛍光灯、タングステンランプ等)を判別し、その光源の色温度に応じた補正値をデフォーカス量に加算(又は減算)することにより行うことができる。   In the correction of the defocus amount, for example, the type of light source (sun, fluorescent lamp, tungsten lamp, etc.) is determined based on the color temperature, and a correction value corresponding to the color temperature of the light source is added (or subtracted) to the defocus amount. Can be done.

なお、本実施例では、色温度を光源に関する情報として用いるが、光源に関する情報は色温度に限られない。   In this embodiment, the color temperature is used as information about the light source, but the information about the light source is not limited to the color temperature.

10はカメラ1と交換レンズ11との通信インターフェイスとなるマウント接点群である。   A mount contact group 10 serves as a communication interface between the camera 1 and the interchangeable lens 11.

交換レンズ11内には、撮像光学系を構成するレンズユニット12〜14及び絞り15が配置されている。最も被写体側の第1レンズユニット(以下、フォーカスレンズという)12は、光軸方向に移動することでピント位置を調整する。第2レンズユニット13は、光軸方向に移動して撮像光学系の変倍を行う。14は固定された第3レンズユニットである。絞り15は、開口径を変化させて光量を調節する。   In the interchangeable lens 11, lens units 12 to 14 and a diaphragm 15 constituting an imaging optical system are arranged. A first lens unit (hereinafter referred to as a focus lens) 12 closest to the subject adjusts the focus position by moving in the optical axis direction. The second lens unit 13 moves in the optical axis direction and performs zooming of the imaging optical system. Reference numeral 14 denotes a fixed third lens unit. The diaphragm 15 adjusts the amount of light by changing the aperture diameter.

16はフォーカス駆動モータであり、フォーカスレンズ12を光軸方向に移動させる。17は絞り15の開口径を変化させるための絞り駆動モータである。18は距離エンコーダであり、フォーカスレンズ12に取り付けられたブラシ19がこの距離エンコーダ18上を摺動することで、フォーカスレンズ12の位置に応じた信号を出力する。フォーカスレンズ12が合焦位置に制御された状態での距離エンコーダ18からの位置情報に基づいて、被写体距離を検出できる。また、交換レンズ11には、第2レンズユニット13の位置を検出する不図示のズーム位置検出器も設けられており、該ズーム位置検出器からの信号に基づいて撮像光学系の焦点距離を求めることもできる。   A focus drive motor 16 moves the focus lens 12 in the optical axis direction. Reference numeral 17 denotes an aperture drive motor for changing the aperture diameter of the aperture 15. Reference numeral 18 denotes a distance encoder, and a brush 19 attached to the focus lens 12 slides on the distance encoder 18 to output a signal corresponding to the position of the focus lens 12. The subject distance can be detected based on position information from the distance encoder 18 in a state where the focus lens 12 is controlled to the in-focus position. The interchangeable lens 11 is also provided with a zoom position detector (not shown) that detects the position of the second lens unit 13, and obtains the focal length of the imaging optical system based on a signal from the zoom position detector. You can also

図1には、焦点検出ユニット25内に設けられたセンサユニット29を示している。センサユニット29は、半導体基板をベースとして構成されている。   FIG. 1 shows a sensor unit 29 provided in the focus detection unit 25. The sensor unit 29 is configured based on a semiconductor substrate.

101a、101bは、撮像画面の中央部の焦点状態を検出するための一対の受光素子アレイ(焦点検出用の受光素子列)であり、水平一次元方向(基線長方向)に複数のフォトダイオード(受光素子)が配列されて構成されている。   Reference numerals 101a and 101b denote a pair of light receiving element arrays (light receiving element arrays for focus detection) for detecting the focus state at the center of the imaging screen, and a plurality of photodiodes (in the one-dimensional horizontal direction (baseline length direction)). Light receiving elements) are arranged.

受光素子アレイ101aは、前述したA像を光電変換し、該A像の位置に応じた電気信号を出力する。また、受光素子アレイ101bは、前述したB像を光電変換し、該B像の位置に応じた電気信号を出力する。これら電気信号からA像及びB像の相対位置差、つまりは間隔(位相差)を検出することにより、カメラマイクロコンピュータ30は、撮像光学系のデフォーカス量を算出することができる。   The light receiving element array 101a photoelectrically converts the above-described A image and outputs an electric signal corresponding to the position of the A image. The light receiving element array 101b photoelectrically converts the above-described B image and outputs an electrical signal corresponding to the position of the B image. The camera microcomputer 30 can calculate the defocus amount of the imaging optical system by detecting the relative position difference between the A and B images, that is, the interval (phase difference) from these electrical signals.

また、102a、102bは、撮像画面の右側部分の焦点状態を検出するための一対の受光素子アレイであり、垂直一次元方向(基線長方向)に複数のフォトダイオードが配列されて構成されている。なお、図1に示す焦点面では、像の上下左右が反転するため、受光素子アレイ102a、102bは図の左側に示されている。   Reference numerals 102a and 102b denote a pair of light receiving element arrays for detecting the focus state of the right portion of the imaging screen, and are configured by arranging a plurality of photodiodes in a vertical one-dimensional direction (baseline length direction). . Note that, in the focal plane shown in FIG. 1, the upper, lower, left, and right sides of the image are reversed, so that the light receiving element arrays 102a and 102b are shown on the left side of the drawing.

受光素子アレイ102aは、前述したA像を光電変換し、該A像の位置に応じた電気信号を出力する。また、受光素子アレイ102bは、前述したB像を光電変換し、該B像の位置に応じた電気信号を出力する。これら電気信号からA像及びB像の位相差を検出することにより、カメラマイクロコンピュータ30は、撮像光学系のデフォーカス量を算出することができる。   The light receiving element array 102a photoelectrically converts the above-described A image and outputs an electrical signal corresponding to the position of the A image. The light receiving element array 102b photoelectrically converts the above-described B image and outputs an electric signal corresponding to the position of the B image. By detecting the phase difference between the A and B images from these electrical signals, the camera microcomputer 30 can calculate the defocus amount of the imaging optical system.

また、103a、103bは、撮像画面の左側部分の焦点状態を検出するための一対の受光素子アレイであり、垂直一次元方向(基線長方向)に複数のフォトダイオードが配列されて構成されている。   Reference numerals 103a and 103b denote a pair of light receiving element arrays for detecting the focus state of the left portion of the imaging screen, and are configured by arranging a plurality of photodiodes in the vertical one-dimensional direction (baseline length direction). .

受光素子アレイ103aは、前述したA像を光電変換し、該A像の位置に応じた電気信号を出力する。また、受光素子アレイ103bは、前述したB像を光電変換し、該B像の位置に応じた電気信号を出力する。これら電気信号からA像及びB像の位相差を検出することにより、カメラマイクロコンピュータ30は、撮像光学系のデフォーカス量を算出することができる。   The light receiving element array 103a photoelectrically converts the above-described A image and outputs an electrical signal corresponding to the position of the A image. The light receiving element array 103b photoelectrically converts the above-described B image and outputs an electric signal corresponding to the position of the B image. By detecting the phase difference between the A and B images from these electrical signals, the camera microcomputer 30 can calculate the defocus amount of the imaging optical system.

104a、104bは、受光素子アレイ101a、101bの近傍にそれぞれ配置された互いに分光感度特性が異なる光源検出用の一対の受光素子である。   104a and 104b are a pair of light receiving elements for light source detection, which are arranged in the vicinity of the light receiving element arrays 101a and 101b and have different spectral sensitivity characteristics.

受光素子104aは、カラーフィルタ等を塗布しないシリコンの分光感度特性、主として可視波長域に対する感度を持つ。これに対して、受光素子104bは、例えば赤色の色素フィルタを塗布して、赤から赤外の波長域に感度を持つ。カメラマイクロコンピュータ30は、両受光素子104a、104bの出力の比から、撮影画面の中央部下側に位置する被写体(つまりは被写体を照らす光源)の色温度を検出することができる。   The light receiving element 104a has a spectral sensitivity characteristic of silicon not coated with a color filter or the like, mainly sensitivity to the visible wavelength region. On the other hand, the light receiving element 104b has a sensitivity in a wavelength region from red to infrared by applying a red dye filter, for example. The camera microcomputer 30 can detect the color temperature of the subject (that is, the light source that illuminates the subject) located below the center of the shooting screen from the ratio of the outputs of the light receiving elements 104a and 104b.

105a、105bも、受光素子アレイ101a、101bの近傍に配置された互いに分光感度特性が異なる光源検出用の一対の受光素子であり、それぞれ受光素子104a、104bと同様の、かつ互いに異なる分光感度特性を有する。このため、両受光素子105a、105bの出力の比から撮影画面の中央部上側に位置する被写体の色温度を検出することができる。   Reference numerals 105a and 105b denote a pair of light-receiving elements for detecting light sources having different spectral sensitivity characteristics, which are arranged in the vicinity of the light-receiving element arrays 101a and 101b. The spectral sensitivity characteristics are the same as and different from the light-receiving elements 104a and 104b, respectively. Have For this reason, it is possible to detect the color temperature of the subject located above the center of the shooting screen from the ratio of the outputs of the two light receiving elements 105a and 105b.

106a、106bは、受光素子アレイ102a、102bの近傍に配置された互いに分光感度特性が異なる光源検出用の一対の受光素子であり、それぞれ受光素子104a、104bと同様の、かつ互いに異なる分光感度特性を有する。このため、両受光素子106a、106bの出力の比から、撮影画面の右側に位置する被写体の色温度を検出することができる。   106a and 106b are a pair of light-receiving elements for detecting light sources having different spectral sensitivity characteristics arranged in the vicinity of the light-receiving element arrays 102a and 102b. The same spectral sensitivity characteristics as the light receiving elements 104a and 104b are different from each other. Have For this reason, it is possible to detect the color temperature of the subject located on the right side of the shooting screen from the ratio of the outputs of the two light receiving elements 106a and 106b.

107a、107bは、受光素子アレイ103a、103bの近傍に配置された互いに分光感度特性が異なる光源検出用の一対の受光素子であり、それぞれ受光素子104a、104bと同様の、かつ互いに異なる分光感度特性を有する。このため、両受光素子107a、107bの出力の比から、撮影画面の左側に位置する被写体の色温度を検出することができる。   107a and 107b are a pair of light-receiving elements for detecting light sources having different spectral sensitivity characteristics arranged in the vicinity of the light-receiving element arrays 103a and 103b. The spectral sensitivity characteristics are the same as and different from the light-receiving elements 104a and 104b, respectively. Have Therefore, it is possible to detect the color temperature of the subject located on the left side of the shooting screen from the ratio of the outputs of both the light receiving elements 107a and 107b.

また、色温度を検出する被写体が撮影画面のほぼ全体を占める大きさを有する場合には、受光素子104a、105a、106aの出力と受光素子104b、105b、106bの出力との比を比較して色温度を検出すると、検出精度を高めることができる。   Further, when the subject for detecting the color temperature has a size that occupies almost the entire photographing screen, the ratio of the output of the light receiving elements 104a, 105a, 106a and the output of the light receiving elements 104b, 105b, 106b is compared. If the color temperature is detected, the detection accuracy can be increased.

図2を用いて、焦点検出ユニット25の再結像光学系を構成する2次結像レンズユニット26について説明する。   The secondary imaging lens unit 26 constituting the re-imaging optical system of the focus detection unit 25 will be described with reference to FIG.

同図において、201a、201bは、撮像画面中央部の被写体から撮像光学系を通過して焦点検出ユニット25に入射した光束を分割して、センサユニット29上に再結像させるための一対の2次結像レンズである。撮像光学系からの光束は、2次結像レンズ201aにより、受光素子アレイ101aと受光素子104a、105a上に再結像され、2次結像レンズ201bにより、受光素子アレイ101bと受光素子104b、10ba上に再結像される。   In the figure, reference numerals 201a and 201b denote a pair of 2 for dividing a light beam that has passed through the imaging optical system from the subject in the center of the imaging screen and entered the focus detection unit 25 and re-imaged on the sensor unit 29. This is the next imaging lens. The light beam from the imaging optical system is re-imaged on the light receiving element array 101a and the light receiving elements 104a and 105a by the secondary imaging lens 201a, and the light receiving element array 101b and the light receiving element 104b by the secondary imaging lens 201b. Reimaged on 10ba.

202a、202bは、撮像画面右側の被写体から撮像光学系を通過して焦点検出ユニット25に入射した光束を分割して、センサユニット29上に再結像させるための一対の2次結像レンズである。撮像光学系からの光束は、2次結像レンズ202aにより、受光素子アレイ102aと受光素子106a上に再結像され、2次結像レンズ202bにより、受光素子アレイ102bと受光素子106b上に再結像される。   Reference numerals 202 a and 202 b denote a pair of secondary imaging lenses for dividing a light beam that has passed through the imaging optical system from the subject on the right side of the imaging screen and entered the focus detection unit 25 and re-imaged on the sensor unit 29. is there. The light beam from the imaging optical system is re-imaged on the light-receiving element array 102a and the light-receiving element 106a by the secondary imaging lens 202a, and re-imaged on the light-receiving element array 102b and the light-receiving element 106b by the secondary imaging lens 202b. Imaged.

203a、203bは、撮像画面左側の被写体から撮像光学系を通過して焦点検出ユニット25に入射した光束を分割して、センサユニット29上に再結像させるための一対の2次結像レンズである。撮像光学系からの光束は、2次結像レンズ203aにより、受光素子アレイ103aと受光素子107a上に再結像され、2次結像レンズ203bにより、受光素子アレイ103bと受光素子107b上に再結像される。   Reference numerals 203 a and 203 b denote a pair of secondary imaging lenses for dividing a light beam that has passed through the imaging optical system and entered the focus detection unit 25 from the subject on the left side of the imaging screen and re-imaged on the sensor unit 29. is there. The light beam from the imaging optical system is re-imaged on the light receiving element array 103a and the light receiving element 107a by the secondary imaging lens 203a, and re-imaged on the light receiving element array 103b and the light receiving element 107b by the secondary imaging lens 203b. Imaged.

また、図2において、215は撮像光学系の射出瞳を示している。また、図中の実線直線は、撮像光学系の光軸を示す。211a、211bはそれぞれ、2次結像レンズ201a、201bに入射する光束が、撮像光学系の射出瞳215を通過する位置を示している。212a、212bはそれぞれ、2次結像レンズ202a、202bに入射する光束が、撮像光学系の射出瞳215を通過する位置を示している。213a、213bはそれぞれ、2次結像レンズ203a、203bに入射する光束が、撮像光学系の射出瞳215を通過する位置を示している。   In FIG. 2, reference numeral 215 denotes an exit pupil of the imaging optical system. Moreover, the solid line straight line in the figure indicates the optical axis of the imaging optical system. Reference numerals 211a and 211b denote positions where the light beams incident on the secondary imaging lenses 201a and 201b pass through the exit pupil 215 of the imaging optical system. Reference numerals 212a and 212b denote positions where the light beams incident on the secondary imaging lenses 202a and 202b pass through the exit pupil 215 of the imaging optical system. Reference numerals 213a and 213b denote positions where the light beams incident on the secondary imaging lenses 203a and 203b pass through the exit pupil 215 of the imaging optical system.

図3Aには、受光素子104a、104b上での基線長方向の照度分布(受光量の変化)の例を示す。横軸は受光素子104a、104b上での位置を示し、縦軸は各位置に対する照度(受光量)を示している。また、図中の曲線aは、受光素子104a上での照度分布を示し、曲線bは受光素子104bでの照度分布を示している。   FIG. 3A shows an example of the illuminance distribution (change in the amount of received light) in the baseline length direction on the light receiving elements 104a and 104b. The horizontal axis indicates the position on the light receiving elements 104a and 104b, and the vertical axis indicates the illuminance (the amount of received light) for each position. In addition, a curve a in the figure indicates the illuminance distribution on the light receiving element 104a, and a curve b indicates the illuminance distribution on the light receiving element 104b.

さらに、図3Bには、受光素子104a、104bと受光素子アレイ101a、101bとの位置関係を示す。受光素子104a、104bにおいて、それぞれの左端位置をx0とし、そこから一定間隔の位置をX1,X2,X3とする。位置X2は、2次結像レンズ201a、201bの光軸が通る位置である。   Further, FIG. 3B shows a positional relationship between the light receiving elements 104a and 104b and the light receiving element arrays 101a and 101b. In the light receiving elements 104a and 104b, the left end positions of the light receiving elements 104a and 104b are assumed to be x0, and the positions at regular intervals therefrom are assumed to be X1, X2, and X3. The position X2 is a position through which the optical axes of the secondary imaging lenses 201a and 201b pass.

受光素子104a上に結像される光束は、撮像光学系の射出瞳215における光軸からずれた位置211aを通過して2次結像レンズ201aに入射する。また、受光素子104b上に結像される光束は、撮像光学系の射出瞳215における光軸からずれた位置211bを通過して2次結像レンズ201bに入射する。   The light beam imaged on the light receiving element 104a passes through a position 211a shifted from the optical axis in the exit pupil 215 of the imaging optical system and enters the secondary imaging lens 201a. The light beam formed on the light receiving element 104b passes through a position 211b shifted from the optical axis in the exit pupil 215 of the imaging optical system and enters the secondary imaging lens 201b.

受光素子104a、104b上の位置X0からX3に入射する光束は、撮像光学系及び2次結像レンズ201a、201bに入射する角度が異なるため、撮像光学系及び2次結像レンズ201a、201bの影響を受ける。   Since the light beams that enter the positions X0 to X3 on the light receiving elements 104a and 104b have different angles to enter the imaging optical system and the secondary imaging lenses 201a and 201b, the imaging optical system and the secondary imaging lenses 201a and 201b have different angles. to be influenced.

一般に、レンズを通過する光束の光量は、該レンズへの入射角度に応じて変化する。具体的には、入射角度θのCOSθの4乗に比例して少なくなる。このため、撮像光学系及び2次結像レンズ201a、201bを通過して受光素子104a、104bに到達する光束による各受光素子上での照度分布は、図3Aの曲線a,bで示すように一様にはならず不均一になる。言い換えれば、各受光素子上において、受光位置により受光量が変化する。   In general, the amount of light flux passing through a lens varies according to the incident angle to the lens. Specifically, the incident angle θ decreases in proportion to the fourth power of COSθ. For this reason, the illuminance distribution on each light receiving element by the light flux that passes through the imaging optical system and the secondary imaging lenses 201a and 201b and reaches the light receiving elements 104a and 104b is shown by the curves a and b in FIG. 3A. It becomes non-uniform and non-uniform. In other words, the amount of received light varies depending on the light receiving position on each light receiving element.

また、受光素子104a、104bは、撮像光学系の光軸に対して対称に配置されるため、受光素子104a、104b上での照度分布は、それぞれの位置X2に対して対称な分布になる。   In addition, since the light receiving elements 104a and 104b are arranged symmetrically with respect to the optical axis of the imaging optical system, the illuminance distribution on the light receiving elements 104a and 104b is symmetrical with respect to the respective positions X2.

なお、基線長方向に直交する方向に関しても、同様の理由で照度分布の不均一(照度むら又は受光量むら)が発生するが、ここでの説明は省略する。また、ここでは四対の光源検出用受光素子のうち一対の受光素子104a、104を代表として示すが、他の対の受光素子についても同様に照度むらが発生する。特に、受光素子106a、106b、107a、107bのように、撮像光学系の光軸から大きく離れた位置を通る光束を受光する受光素子上で、より顕著に照度むらが発生する。   Even in the direction orthogonal to the baseline length direction, illuminance distribution is non-uniform (irradiance unevenness or unevenness in received light amount) for the same reason, but the description here is omitted. In addition, here, the pair of light receiving elements 104a and 104 of the four pairs of light source detecting light receiving elements are shown as representatives, but the illuminance unevenness similarly occurs in other pairs of light receiving elements. In particular, illuminance unevenness occurs more remarkably on light receiving elements that receive a light beam passing through a position far away from the optical axis of the imaging optical system, such as the light receiving elements 106a, 106b, 107a, and 107b.

光源検出対象である被写体の像が各受光素子よりも十分に大きい場合にはこのような照度むらはほとんど問題にはならないが、通常は、被写体像が受光素子に比べて小さい場合が多い。この場合、被写体像の結像位置がX2であると、受光素子104a上での照度も受光素子104b上での照度もB2となり、互いに等しい。しかし、被写体像の結像位置がX1であると、受光素子104a上での照度はB3となり、受光素子104b上での照度はB1(>B3)となる。また、被写体像の結像位置がX3であると、受光素子104a上での照度はB1となり、受光素子104b上での照度はB3(<B1)となる。   When the image of the subject that is the light source detection target is sufficiently larger than each light receiving element, such uneven illuminance is not a problem, but usually the subject image is often smaller than the light receiving element. In this case, when the imaging position of the subject image is X2, the illuminance on the light receiving element 104a and the illuminance on the light receiving element 104b are B2, which are equal to each other. However, when the imaging position of the subject image is X1, the illuminance on the light receiving element 104a is B3, and the illuminance on the light receiving element 104b is B1 (> B3). Further, when the imaging position of the subject image is X3, the illuminance on the light receiving element 104a is B1, and the illuminance on the light receiving element 104b is B3 (<B1).

このように、同じ被写体からの光束であっても受光素子104a、104上での結像位置に応じて照度が異なるため、受光素子104a、104bからの出力の比が異なり、光源検出結果が変化してしまう。   As described above, the illuminance varies depending on the imaging position on the light receiving elements 104a and 104 even with the light flux from the same subject, so the ratio of the outputs from the light receiving elements 104a and 104b differs, and the light source detection result changes. Resulting in.

そこで、本実施例では、このような照度むらによる光源検出誤差を解消するため、図4に示すように、各受光素子に遮光マスク(遮光部材)を設けている。図4には、受光素子104a、104bと受光素子105a、105b上に形成した遮光マスク110を示す。なお、図4には、焦点検出用の受光素子アレイ101a、101bも併せて示す。   Therefore, in this embodiment, in order to eliminate such a light source detection error due to uneven illuminance, a light shielding mask (light shielding member) is provided for each light receiving element as shown in FIG. FIG. 4 shows a light shielding mask 110 formed on the light receiving elements 104a and 104b and the light receiving elements 105a and 105b. FIG. 4 also shows light receiving element arrays 101a and 101b for focus detection.

各受光素子上に形成された遮光マスク110は、図3Aに示す各受光素子における照度が高い(受光量が多い)位置ほど遮光面積が大きくなる、逆に言えば、照度が低い(受光量が少ない)位置ほど遮光面積が小さくなる形状を有する。   In the light shielding mask 110 formed on each light receiving element, the light shielding area increases as the illuminance of each light receiving element shown in FIG. 3A increases (the amount of received light) increases. The smaller the position, the smaller the light shielding area.

受光素子104aでは、位置X3で照度が最も高いので、該受光素子104a上の遮光マスク110は、位置X3での遮光面積(基線長方向に直交する方向でのマスク長さ)が最も大きく、基線長方向両端に向かって遮光面積が減少する形状を有する。   Since the light receiving element 104a has the highest illuminance at the position X3, the light shielding mask 110 on the light receiving element 104a has the largest light shielding area at the position X3 (mask length in a direction orthogonal to the base line length direction), and the base line. It has a shape in which the light shielding area decreases toward both ends in the long direction.

また、受光素子104bでは、位置X1で照度が最も高いので、該受光素子104b上の遮光マスク110は、位置X1での遮光面積が最も大きく、基線長方向両端に向かって遮光面積が減少する形状を有する。   Further, since the light receiving element 104b has the highest illuminance at the position X1, the light shielding mask 110 on the light receiving element 104b has the largest light shielding area at the position X1, and the light shielding area decreases toward both ends in the baseline length direction. Have

受光素子105a,105b上の遮光マスク110も、基線長方向については、受光素子104a、104b上の遮光マスク110と同様の形状を有する。   The light shielding mask 110 on the light receiving elements 105a and 105b also has the same shape as the light shielding mask 110 on the light receiving elements 104a and 104b in the baseline length direction.

このような遮光マスク110を設けることで、各受光素子では、照度が高い位置ほど受光面積(開口部の面積)が小さく、逆に言えば、照度が低い位置ほど受光面積が大きくなる。   By providing such a light shielding mask 110, in each light receiving element, the light receiving area (area of the opening) is smaller as the illuminance is higher, and conversely, the light receiving area is larger as the illuminance is lower.

受光素子104a、104b上に形成された遮光マスク110は、その左右が反転した形状を有する。また、受光素子105a、105b上に形成された遮光マスク110も、その左右が反転した形状を有する。   The light shielding mask 110 formed on the light receiving elements 104a and 104b has a shape in which the left and right are reversed. Further, the light shielding mask 110 formed on the light receiving elements 105a and 105b also has a shape in which the right and left sides are inverted.

さらに、受光素子104a、105a上に形成された遮光マスク110は上下が反転した形状を有し、受光素子104b、105b上に形成された遮光マスク110は上下が反転した形状を有する。   Further, the light shielding mask 110 formed on the light receiving elements 104a and 105a has a vertically inverted shape, and the light shielding mask 110 formed on the light receiving elements 104b and 105b has a vertically inverted shape.

なお、基線長方向に対して直交する方向についても照度むらが発生するので、各遮光マスク110は、照度が高い位置ほど遮光面積が大きくなる、逆に言えば、照度が低い位置ほど遮光面積が小さくなる形状を有する。   Note that uneven illuminance also occurs in the direction orthogonal to the base line length direction, so that each light shielding mask 110 has a larger light shielding area as the illuminance is higher, and conversely, the light shielding area is smaller as the illuminance is lower. Has a smaller shape.

このような遮光マスク110を各受光素子に設けることで、撮像光学系及び2次結像レンズにより生じる受光位置に応じた受光量の変化(照度むら)に伴う各受光素子からの出力の変化、つまりは感度分布の不均一が低減される。すなわち、照度むらに起因した各受光素子からの出力の変化が補正される。具体的には、図3Aに一点鎖線cで示すように、受光位置にかかわらず、ほぼ同じレベルの出力が得られる。   By providing such a light shielding mask 110 on each light receiving element, a change in output from each light receiving element due to a change in received light amount (irradiance unevenness) according to a light receiving position generated by the imaging optical system and the secondary imaging lens, That is, nonuniformity of sensitivity distribution is reduced. That is, a change in output from each light receiving element due to uneven illuminance is corrected. Specifically, as shown by a one-dot chain line c in FIG. 3A, almost the same level of output can be obtained regardless of the light receiving position.

なお、以下の説明において、このような補正を、照度むら補正という。   In the following description, such correction is referred to as uneven illuminance correction.

また、遮光マスク110の材料には特に制限はないが、半導体を製作するときに用いられるアルミの配線層を利用して形成するようにすれば、製造コストの大幅な上昇を招くことなく遮光マスク110を形成することができる。   The material of the light shielding mask 110 is not particularly limited. However, if the light shielding mask 110 is formed by using an aluminum wiring layer used for manufacturing a semiconductor, the light shielding mask is not caused without a significant increase in manufacturing cost. 110 can be formed.

図5には、本発明の実施例2である一眼レフカメラの焦点検出ユニットにおいて、照度むら補正に有効な形状を有する光源検出用受光素子を示している。   FIG. 5 shows a light receiving element for detecting a light source having a shape effective for correcting illuminance unevenness in a focus detection unit of a single-lens reflex camera that is Embodiment 2 of the present invention.

本実施例の光源検出用受光素子は、実施例1で説明した一眼レフカメラに搭載される。また、本実施例で説明する光源検出用受光素子は、実施例1と同一の機能を有するので、実施例1と同符号を付す。   The light receiving element for detecting a light source according to the present embodiment is mounted on the single-lens reflex camera described in the first embodiment. Further, since the light receiving element for detecting a light source described in the present embodiment has the same function as that of the first embodiment, the same reference numerals as those of the first embodiment are given.

本実施例では、受光素子104a、104b、105a、105bの受光部の形状自体を、実施例1で遮光マスク110により覆われない部分(開口部)と同様の形状としている。   In this embodiment, the shape of the light receiving portions of the light receiving elements 104a, 104b, 105a, and 105b is the same as that of the portion (opening) that is not covered by the light shielding mask 110 in the first embodiment.

すなわち、各受光素子は、撮像光学系及び2次結像レンズにより生じる受光位置に応じた受光量の変化(照度むら)に伴う各受光素子からの出力の変化、つまりは感度分布の不均一が低減される受光部形状を有する。   That is, each light receiving element has a change in output from each light receiving element due to a change in the amount of received light (irradiance unevenness) corresponding to a light receiving position generated by the imaging optical system and the secondary imaging lens, that is, nonuniform sensitivity distribution. It has a light receiving portion shape that is reduced.

図6には、本発明の実施例3である一眼レフカメラの焦点検出ユニットにおいて、照度むら補正に有効な半導体構造を有する光源検出用受光素子を示している。   FIG. 6 shows a light source detection light-receiving element having a semiconductor structure effective for correcting illuminance unevenness in a focus detection unit of a single-lens reflex camera that is Embodiment 3 of the present invention.

本実施例の光源検出用受光素子は、実施例1で説明した一眼レフカメラに搭載される。また、本実施例で説明する光源検出用受光素子は、実施例1と同一の機能を有するので、実施例1と同符号を付す。   The light receiving element for detecting a light source according to the present embodiment is mounted on the single-lens reflex camera described in the first embodiment. Further, since the light receiving element for detecting a light source described in the present embodiment has the same function as that of the first embodiment, the same reference numerals as those of the first embodiment are given.

前述したように、受光素子104a、104b上での照度分布は基線長方向だけでなくそれに直交する方向にも変化するので、本実施例の受光素子でも、照度むらを2次元的に補正することが可能な半導体構造を有する。   As described above, since the illuminance distribution on the light receiving elements 104a and 104b changes not only in the base line length direction but also in the direction perpendicular thereto, the illuminance unevenness can also be corrected two-dimensionally in the light receiving element of this embodiment. It has a semiconductor structure capable of.

図6及び図7において、701は受光素子104a,104bの形状に合わせてセンサユニット29のベースとなる矩形のP型半導体基板上に形成されたN型ウェル(第1の半導体)である。601は該N型ウェル701内(つまりは各受光素子内)に島状に配置された複数のP型ウェル(第2の半導体)である。島状とは、離散的に、又は離間して、と言い換えることできる。   6 and 7, reference numeral 701 denotes an N-type well (first semiconductor) formed on a rectangular P-type semiconductor substrate serving as the base of the sensor unit 29 in accordance with the shape of the light receiving elements 104a and 104b. Reference numeral 601 denotes a plurality of P-type wells (second semiconductors) arranged in an island shape in the N-type well 701 (that is, in each light receiving element). The island shape can be paraphrased as discrete or separated.

複数のP型ウェル601は、実施例1に示した受光素子の開口部及び実施例2に示した受光素子の受光部と同様な形状を有するN型ウェル701の領域内に島状に配置される。また、その配置密度は、照度が高い領域では粗に、照度の低い領域では密になる。言い換えれば、P型ウェル601は、受光量が多い位置ほど密度が低くなるように、逆に言えば、受光量が少ない位置ほど密度が高くなるように配置されている。   The plurality of P-type wells 601 are arranged in an island shape within the region of the N-type well 701 having the same shape as the opening of the light receiving element shown in the first embodiment and the light receiving section of the light receiving element shown in the second embodiment. The Further, the arrangement density is rough in a region where the illuminance is high and dense in a region where the illuminance is low. In other words, the P-type well 601 is arranged so that the density decreases as the position where the amount of received light is large, and conversely, the density increases as the position where the amount of received light is small.

受光素子の感度分布は、P型ウェル601及びN型ウェル701の間に形成される空乏層の広がりにより決定される。したがって、P型ウェル601を密に配置した領域では、空乏層が重なり合うため感度が高くなり、粗に配置した領域では、空乏層の重なりが少ないので感度が低くなる。   The sensitivity distribution of the light receiving element is determined by the spread of a depletion layer formed between the P-type well 601 and the N-type well 701. Therefore, in the region where the P-type wells 601 are densely arranged, the depletion layer overlaps, so that the sensitivity is high, and in the region where the P-type well 601 is roughly arranged, the depletion layer overlap is small and the sensitivity is low.

図7には、図6に示した受光素子の構造を模式的に示している。N型ウェル701は、矩形形状を有し、基本的には受光素子の受光領域を決定している。N型ウェル701内には、島状にP型ウェル601が配置されている。703はアルミ配線であり、P型ウェル601を電気的に接続している。したがって、島状に配置されたP型ウェル601は、電気的には1つのP型領域として扱われる。なお、図7では、N型ウェル701に接続されたアルミ配線は図示を省略している。   FIG. 7 schematically shows the structure of the light receiving element shown in FIG. The N-type well 701 has a rectangular shape and basically determines the light receiving region of the light receiving element. In the N-type well 701, the P-type well 601 is arranged in an island shape. Reference numeral 703 denotes an aluminum wiring, which electrically connects the P-type well 601. Accordingly, the P-type well 601 arranged in an island shape is electrically handled as one P-type region. In FIG. 7, the aluminum wiring connected to the N-type well 701 is not shown.

以上のように、島状に配置されたP型ウェル601の配置密度を照度分布に応じて異ならせることで、受光素子内の感度分布の不均一を低減する照度むら補正を行うことができる。   As described above, by varying the arrangement density of the P-type wells 601 arranged in an island shape according to the illuminance distribution, it is possible to perform illuminance unevenness correction that reduces nonuniform sensitivity distribution in the light receiving element.

また、図6及び図7に示した複数のP型ウェル601は、互いに同一の大きさを有するが、互いの大きさを異ならせてもよい。すなわち、照度が高い領域のP型ウェルの大きさを小さくし、照度が低い領域の各P型ウェル(各第2の半導体)の大きさを大きくしてもよい。言い換えれば、受光量が少ない位置ほど各P型ウェル601のサイズが大きくなるように、逆に言えば、受光量が多い位置ほど各P型ウェル601のサイズが小さくなるようにしてもよい。この場合でも、照度が高い領域のP型ウェルの配置密度を粗とし、照度が低い領域のP型ウェルの配置密度を密としてもよい。このようなP型ウェル601の大きさや配置密度の設定により、よりきめ細かく感度分布を制御することも可能である。   Moreover, although the several P-type well 601 shown in FIG.6 and FIG.7 has the mutually same magnitude | size, you may make a mutually different magnitude | size. That is, the size of the P-type well in the region with high illuminance may be reduced, and the size of each P-type well (each second semiconductor) in the region with low illuminance may be increased. In other words, the size of each P-type well 601 increases as the position where the amount of received light is small. Conversely, the size of each P-type well 601 may decrease as the position where the amount of received light is large. Even in this case, the arrangement density of P-type wells in a region with high illuminance may be rough, and the arrangement density of P-type wells in a region with low illuminance may be dense. It is possible to control the sensitivity distribution more finely by setting the size and arrangement density of the P-type well 601.

なお、図7に示した受光素子は、P型半導体基板をベースとして構成されたが、N型半導体基板をベースとして構成してもよい。この場合には、N型ウェル701に相当するウェルはP型で形成され、P型ウェル601に相当するウェルはN型で形成される。   The light receiving element shown in FIG. 7 is configured based on a P-type semiconductor substrate, but may be configured based on an N-type semiconductor substrate. In this case, a well corresponding to the N-type well 701 is formed of P-type, and a well corresponding to the P-type well 601 is formed of N-type.

以上説明したように、本実施例によれば、撮像光学系及び2次結像レンズにより生じる受光位置に応じた受光量の変化(照度むら)に伴う各受光素子からの出力の変化、つまりは感度分布の不均一が低減される構造を有する受光素子を実現することができる。   As described above, according to the present embodiment, the change in the output from each light receiving element due to the change in the amount of received light (irradiance unevenness) according to the light receiving position generated by the imaging optical system and the secondary imaging lens, that is, A light receiving element having a structure in which nonuniformity of sensitivity distribution is reduced can be realized.

なお、上記実施例では、焦点検出ユニット内に光源検出用の受光素子を設けた場合について説明したが、焦点検出ユニットの外部(例えば、ペンタプリズム4の周辺)に、光源検出用の結像光学系と受光素子を設けてもよい。   In the above embodiment, the case where the light receiving element for light source detection is provided in the focus detection unit has been described. However, the imaging optical for light source detection is provided outside the focus detection unit (for example, around the pentaprism 4). A system and a light receiving element may be provided.

本発明の実施例1におけるセンサユニットの受光素子の配置を説明する図。The figure explaining arrangement | positioning of the light receiving element of the sensor unit in Example 1 of this invention. 実施例1における焦点検出光学系(再結像光学系)の構成を説明する図。2 is a diagram illustrating a configuration of a focus detection optical system (re-imaging optical system) in Embodiment 1. FIG. 実施例における光源検出用受光素子上での照度分の例を示す図。The figure which shows the example for the illuminance part on the light receiving element for light source detection in an Example. 実施例における光源検出用受光素子上での位置を説明する図。The figure explaining the position on the light receiving element for light source detection in an Example. 実施例1における光源検出用受光素子を説明する図。FIG. 3 is a diagram illustrating a light source detection light-receiving element according to the first embodiment. 本発明の実施例2における光源検出用受光素子を説明する図。The figure explaining the light receiving element for light source detection in Example 2 of this invention. 本発明の実施例3における光源検出用受光素子の構造を説明する図。The figure explaining the structure of the light receiving element for light source detection in Example 3 of this invention. 実施例3における光源検出用受光素子の構造を示す模式図。FIG. 6 is a schematic diagram illustrating a structure of a light receiving element for detecting a light source according to Example 3. 実施例の撮像装置及び交換レンズにより構成される撮像システムを示す図。1 is a diagram illustrating an imaging system including an imaging device and an interchangeable lens according to an embodiment.

符号の説明Explanation of symbols

1 一眼レフカメラ
7 測光センサ
11 交換レンズ
12 フォーカスレンズ
25 焦点検出ユニット
26 2次結像レンズユニット
29 センサユニット
30 カメラマイクロコンピュータ
101a〜103a,101b〜103b 焦点検出用の受光素子アレイ
104a〜107a,104b〜107b 光源検出用の受光素子
110 遮光マスク
201a〜203b 2次結像レンズ
215 撮像光学系の射出瞳
601 P型ウェル
701 N型ウェル
DESCRIPTION OF SYMBOLS 1 Single-lens reflex camera 7 Photometric sensor 11 Interchangeable lens 12 Focus lens 25 Focus detection unit 26 Secondary imaging lens unit 29 Sensor unit 30 Camera microcomputer 101a-103a, 101b-103b Light receiving element array 104a-107a, 104b for focus detection ˜107b Light receiving element for detecting light source 110 Shielding mask 201a to 203b Secondary imaging lens 215 Exit pupil of imaging optical system 601 P type well 701 N type well

Claims (3)

撮像光学系からの光束を結像させる一対の結像光学系であって、複数の画素を備え互いに分光感度特性が等しい、前記撮影光学系の焦点状態を検出するための信号を出力する一対の第1の受光素子に光束を導く一対の結像光学系と、
該一対の結像光学系からの光束をそれぞれ受光する互いに分光感度特性が異なる一対の受光素子であって、前記第1の各受光素子の近傍に配置される一対の第2の受光素子と、
前記一対の第2の受光素子からの出力に基づいて光源に関する検出を行う検出手段とを有し、
前記第2の各受光素子は、前記撮像光学系及び前記結像光学系により生じる受光位置に応じた受光量の変化に伴う出力の変化を低減するための遮光部材であって、前記第1の各受光素子は有していない遮光部材を有し、
前記遮光部材は、前記第2の各受光素子における前記受光量が、基線長方向及び該方向に対して直交する方向の各々において少ない位置ほど遮光面積が小さくなる形状を有することを特徴とする撮像装置。
A pair of imaging optical systems for imaging a light beam from the imaging optical system , each of which includes a plurality of pixels and outputs a signal for detecting a focus state of the imaging optical system, the spectral sensitivity characteristics being equal to each other A pair of imaging optical systems for guiding a light beam to the first light receiving element ;
A pair of light receiving elements that receive light beams from the pair of imaging optical systems and have different spectral sensitivity characteristics , and a pair of second light receiving elements disposed in the vicinity of each of the first light receiving elements ;
Anda detection means for detecting relates to a light source based on an output from the pair of second light receiving elements,
Each of the second light receiving elements is a light shielding member for reducing a change in output accompanying a change in the amount of received light according to a light receiving position generated by the imaging optical system and the imaging optical system . Each light receiving element has a light shielding member that does not have,
The light blocking member, the amount of light received at the second respective light receiving elements, as no low position Te direction of each odor perpendicular to the base length direction and said direction, characterized in that it has a shape shielding area becomes smaller An imaging device.
撮像光学系からの光束を結像させる一対の結像光学系であって、複数の画素を備え互いに分光感度特性が等しい、前記撮影光学系の焦点状態を検出するための信号を出力する一対の第1の受光素子に光束を導く一対の結像光学系と、
該一対の結像光学系からの光束をそれぞれ受光する互いに分光感度特性が異なる一対の受光素子であって、前記第1の各受光素子の近傍に配置される一対の第2の受光素子と、
前記一対の第2の受光素子からの出力に基づいて光源に関する検出を行う検出手段とを有し、
前記第2の各受光素子は、前記撮像光学系及び前記結像光学系により生じる受光位置に応じた受光量の変化に伴う出力の変化を低減するための受光部形状であって、前記第1の各受光素子は有していない受光部形状を有し、
前記受光部形状は、前記第2の各受光素子における前記受光量が、基線長方向及び該方向に対して直交する方向の各々において少ない位置ほど受光面積が大きくなる受光部形状であることを特徴とする撮像装置。
A pair of imaging optical systems for imaging a light beam from the imaging optical system , each of which includes a plurality of pixels and outputs a signal for detecting a focus state of the imaging optical system, the spectral sensitivity characteristics being equal to each other A pair of imaging optical systems for guiding a light beam to the first light receiving element ;
A pair of light receiving elements that receive light beams from the pair of imaging optical systems and have different spectral sensitivity characteristics , and a pair of second light receiving elements disposed in the vicinity of each of the first light receiving elements ;
Anda detection means for detecting relates to a light source based on an output from the pair of second light receiving elements,
Each of the second light receiving elements has a light receiving portion shape for reducing a change in output accompanying a change in the amount of received light according to a light receiving position generated by the imaging optical system and the imaging optical system , Each light receiving element has a light receiving portion shape that does not have,
The light receiving unit shape, wherein the amount of light received at the second respective light receiving elements, as no low position Te direction of each odor perpendicular to the base length direction and the direction, the light receiving portion shape der light receiving area is increased An imaging device characterized by that.
一対の前記第1の受光素子からの出力と前記光源に関する検出結果とに基づいて、前記撮像光学系のフォーカス制御を行うことを特徴とする請求項1又は2に記載の撮像装置。 On the basis of the detection result for the pair of the first light source and the output of the light receiving element or these imaging apparatus according to claim 1 or 2, characterized in that the focus control of the imaging optical system.
JP2007074062A 2007-03-22 2007-03-22 Imaging device Expired - Fee Related JP4994905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007074062A JP4994905B2 (en) 2007-03-22 2007-03-22 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007074062A JP4994905B2 (en) 2007-03-22 2007-03-22 Imaging device

Publications (3)

Publication Number Publication Date
JP2008233587A JP2008233587A (en) 2008-10-02
JP2008233587A5 JP2008233587A5 (en) 2010-04-30
JP4994905B2 true JP4994905B2 (en) 2012-08-08

Family

ID=39906429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007074062A Expired - Fee Related JP4994905B2 (en) 2007-03-22 2007-03-22 Imaging device

Country Status (1)

Country Link
JP (1) JP4994905B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555681B2 (en) * 1988-04-04 1996-11-20 ミノルタ株式会社 Image sensing system
JP2900390B2 (en) * 1988-07-07 1999-06-02 株式会社ニコン Focus detection device
JP2555981B2 (en) * 1994-06-06 1996-11-20 日本電気株式会社 Solid-state image sensor and manufacturing method thereof
JPH10304136A (en) * 1997-04-25 1998-11-13 Fuji Electric Co Ltd Optical sensor

Also Published As

Publication number Publication date
JP2008233587A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
EP2811340B1 (en) Image sensing apparatus, image sensing system and focus detection method
JP5169499B2 (en) Imaging device and imaging apparatus
US8634015B2 (en) Image capturing apparatus and method and program for controlling same
JP5404693B2 (en) IMAGING ELEMENT, IMAGING DEVICE HAVING THE SAME, AND CAMERA SYSTEM
US20110085786A1 (en) Focus adjusting apparatus and focus adjusting method
JP2007317951A (en) Optical sensing element and photographing device
JP4054422B2 (en) Camera and interchangeable lens device
JP5067148B2 (en) Imaging device, focus detection device, and imaging device
JP2009141791A (en) Method of manufacturing imaging apparatus
JP2900390B2 (en) Focus detection device
JP5800573B2 (en) Imaging apparatus, camera system, and focus detection method
JP4994905B2 (en) Imaging device
JP2017219791A (en) Control device, imaging device, control method, program, and storage medium
JP4083315B2 (en) Photometric device
JP5836629B2 (en) IMAGING ELEMENT, IMAGING APPARATUS HAVING THE SAME, AND CAMERA SYSTEM
US8077251B2 (en) Photometry apparatus and camera
JP2009151155A (en) Focus detecting device, focus adjusting device and imaging apparatus
JP2016206556A (en) Method for acquiring measurement distance and imaging apparatus using the method
JP2002131630A (en) Range-finding sensor and range-finding device
JP2001021797A (en) Focus detector
JP2002090617A (en) Range-finding sensor and range-finding device
JP2004170600A (en) Focus detector
JP2018072489A (en) Imaging device and control method thereof
JPH09230419A (en) Photometry device
JP2003131117A (en) Range finder of camera

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4994905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees