JPS58156909A - Detector for focusing state - Google Patents

Detector for focusing state

Info

Publication number
JPS58156909A
JPS58156909A JP4001782A JP4001782A JPS58156909A JP S58156909 A JPS58156909 A JP S58156909A JP 4001782 A JP4001782 A JP 4001782A JP 4001782 A JP4001782 A JP 4001782A JP S58156909 A JPS58156909 A JP S58156909A
Authority
JP
Japan
Prior art keywords
image
sensor
imaging
lens
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4001782A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
隆史 鈴木
Susumu Matsumura
進 松村
Kenji Suzuki
謙二 鈴木
Keiji Otaka
圭史 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4001782A priority Critical patent/JPS58156909A/en
Publication of JPS58156909A publication Critical patent/JPS58156909A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • G02B7/346Systems for automatic generation of focusing signals using different areas in a pupil plane using horizontal and vertical areas in the pupil plane, i.e. wide area autofocusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Abstract

PURPOSE:To reduce the difference in the incident angle of luminous fluxes and to enable the accurate decision of focusing by disposing optical systems for correction in front of sensors in order to decrease the incident angle of the image- forming luminous fluxes incident to the sensors. CONSTITUTION:Field lenses 10a, 10b for correction are disposed just before sensors 5a, 5b. The front focuses of the lenses 10a, 10b exist at the rear principal points Ha, Hb of image-forming lenses 4a, 4b. A stop 11 and the pupil P of the 1st image-forming system are in a conjugate relation with respect to a field lens 3, and the stop 11 is formed an image in the pupil P. A stop 12 is a field stop which determines the field of secondary image-formation. The ray (la) past the principal point Ha of the lens 4a is made incident perpendicularly to the face of the sensor 5a after passing through the lens 10a. The same holds true of the ray (la') that emits from the image-forming point FO' on the outside of the optical axis O. The same applies to the other image-forming system 4a, 10b, 5a as well. The difference in the outputs owing to a difference in the incident angle of the luminous fluxes is thus reduced and the accurate decision of focusing is made possible.

Description

【発明の詳細な説明】 本発明は、特に−眼レフレックスカメラ、ビデオカメラ
等に於いて、撮影レンズを通過した結像光束を用いて、
合焦・非合焦の検出又は自動合焦をするための合焦状態
検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is particularly applicable to - in an eye reflex camera, a video camera, etc., using an imaging light beam that has passed through a photographic lens,
The present invention relates to a focus state detection device for detecting in-focus/out-of-focus or automatic focusing.

更に詳しくは、カメラ等の有する第1の結像系による予
定結像面上又はこれと共役な面上のディフォーカスな像
をも含む結像光束を、第2の結像系によって少なくとも
2系列のフォトセンサアレイヒに導き、それぞれのセン
サ上の像のセンサ配列方向に相対的な位置から、合焦・
非合焦状態を検出する合焦状態検出装置の改良に係るも
のである。
More specifically, an imaging light beam including a defocused image on a predetermined imaging plane or a plane conjugate thereto by a first imaging system of a camera or the like is converted into at least two series by a second imaging system. The images on each sensor are guided to the photosensor array, and the focusing and
This invention relates to an improvement of a focus state detection device that detects an out-of-focus state.

第1図は、従来の二次結像方式の合焦状態検出装置の一
例を示し、1は撮影レンズ、2はその絞りであり、Fは
像面であってフィルムと共役な面である、撮影レンズ1
の後方には光軸Oを同一にして像面F上にフィールドレ
ンズ3が配置され。
FIG. 1 shows an example of a conventional secondary imaging type focusing state detection device, in which 1 is a photographing lens, 2 is its aperture, and F is an image plane that is conjugate with the film. Photography lens 1
A field lens 3 is arranged behind the image plane F with the optical axis O being the same.

その後方には2個の二次結像レンズ4a、4bから成る
二次結像系が並列され、像面F上の一次像がCOD、M
OS等のフォトセンサ5上に再結像するようになってい
る。センサ5は2個の結像レンズ4a、4bに対応して
2系列5a、5bに設けられており、第1の結像系であ
る撮影レンズlによる一次像が、像面F上に形成さ・れ
ている場合は、センサアレイ5a、5b上に全く同じ像
が結像される。撮影レンズ1による像が、前ピント即ち
像面Fより前方の撮影レンズ1偏に形成されるときは、
2個のセンサ5m、5b上の像は、矢印で示すように内
側、即ち第1の結像系の光束0の側に移動する。フィー
ルドレンズ3は二次結像レンズ4a、4bと撮影レンズ
1の射出瞳面とを共役関係にするものであり、結像レン
ズ4a、4bは絞り2と同位置の射出瞳面P内にPa、
 Pbとしてほぼ結像される。フィールドレンズ3を用
いない場合には、一様輝度面を結像する際の二次結像が
、センサ5a、5b上に一様輝度とならない所謂シェー
ディングが起り好ましくない、然しフィールドレンズ3
を用いることにより光学的には前述のシェーディングが
除去された場合でも、以下に示す結像光束のセンサ5へ
の入射角度により感度が変化するという現像が見出され
る。第2図には、例えばCCDセンサ上に結像光束が入
射する角度に応じて、各波長ごとにセンサからの出力を
垂直入射時の出力で規格化したグラフが描かれている。
Behind that, a secondary imaging system consisting of two secondary imaging lenses 4a and 4b is arranged in parallel, and the primary images on the image plane F are COD, M
The image is re-imaged on a photosensor 5 such as an OS. The sensors 5 are provided in two lines 5a and 5b corresponding to the two imaging lenses 4a and 4b, and a primary image by the photographing lens l, which is the first imaging system, is formed on the image plane F. - If the sensor arrays 5a and 5b are aligned, exactly the same image is formed on the sensor arrays 5a and 5b. When the image by the photographing lens 1 is formed at the front focus, that is, at the front of the image plane F,
The images on the two sensors 5m and 5b move inward, ie, toward the light flux 0 side of the first imaging system, as shown by the arrows. The field lens 3 has a conjugate relationship between the secondary imaging lenses 4a and 4b and the exit pupil plane of the photographic lens 1, and the imaging lenses 4a and 4b have a Pa ,
It is almost imaged as Pb. If the field lens 3 is not used, the secondary image formed when a uniform brightness surface is imaged will not have uniform brightness on the sensors 5a and 5b, resulting in so-called shading, which is undesirable.
Even when the above-mentioned shading is optically removed by using the above-mentioned shading, it has been found that the sensitivity changes depending on the angle of incidence of the imaging light beam on the sensor 5 as shown below. FIG. 2 depicts a graph in which the output from the sensor is normalized for each wavelength by the output at the time of vertical incidence, depending on the angle at which the imaging light beam is incident on the CCD sensor.

この場合、垂直入射を0度とし入射角10瓜、20度の
場合が示され、入射角が大きい程波長の影響が顕著とな
る傾向が明瞭に表われている。
In this case, cases where normal incidence is 0 degrees and incident angles of 10 degrees and 20 degrees are shown, and it is clearly shown that the larger the incident angle is, the more pronounced the influence of wavelength becomes.

ここで再び第1図に戻ると、光軸0上の一次像の結像点
FOはそれぞれのセンサ5a、5b上で点Fa、 Fb
として結像され、センサ5a、5bに対して垂直に入射
はしていないが入射角の絶対値はそれぞれ同じとなる。
Returning to FIG. 1 again, the imaging points FO of the primary image on the optical axis 0 are points Fa and Fb on the respective sensors 5a and 5b.
Although the light is not incident perpendicularly to the sensors 5a and 5b, the absolute values of the incident angles are the same.

これに対し光軸Oから離れた結像点FO′は、それぞれ
のセンサ5a、5b上に点Fa’ 、 Fb’として結
像され、点Fa’への結像光束の入射角度は相対的に大
きく例えば20度であり、Fb’への入射角度は小さく
数度と1/1う不平衡が生じ、第2図のグラフを基に波
長によっては感度が20%以上異なることが判る。この
ように結像光束の入射位置によって入射角度が異なる現
象が生じ、一様輝度面が一様輝度面として結像されなく
なり、2像の相関から合焦・非合焦を判定する方式に於
いては致命的な欠陥となる。
On the other hand, the imaging point FO' which is far from the optical axis O is imaged as points Fa' and Fb' on the respective sensors 5a and 5b, and the incident angle of the imaging light beam to the point Fa' is relatively The angle of incidence on Fb' is large, for example, 20 degrees, and the angle of incidence on Fb' is small, resulting in an unbalance of 1/1 of several degrees. Based on the graph of FIG. 2, it can be seen that the sensitivity differs by more than 20% depending on the wavelength. In this way, a phenomenon occurs in which the incident angle differs depending on the incident position of the imaging light beam, and a uniform brightness surface is no longer imaged as a uniform brightness surface, making it difficult to use the method of determining in-focus/out-of-focus based on the correlation between two images. Otherwise, it becomes a fatal flaw.

本発明の目的は、上述したように従来の二次結像方式で
のセンサアレイの入射角によってセンサ出力が異なると
いう欠点を除去し、センサに対し結像光束がほぼ垂直に
近い角度で入射するようにし、合焦精度を向上させる合
焦状態検出装置を提供することにあり、その要旨は、第
1の結像系による予定結像面又はそれと共役な面上に結
像される像を、第2“の結像系によって少なくとも2系
列のセンサアレイ上に導き、それぞれのセンサ上の像の
センサ配列方向の相対的な位置を基に合焦状態を検出す
る装置に於いて、それぞれのセンサの前に、結像光束の
センサへの入射角を小さくするための正のパワーを有す
る補正用光学系を配置することを特徴とするものである
An object of the present invention is to eliminate the disadvantage of the conventional secondary imaging method in that the sensor output varies depending on the incident angle of the sensor array, as described above, and to make the imaging light beam incident on the sensor at an almost perpendicular angle. The object of the present invention is to provide a focusing state detection device that improves focusing accuracy by detecting an image formed by a first imaging system on a planned imaging plane or a plane conjugate thereto. In an apparatus that detects a focusing state based on the relative position of an image on each sensor in the sensor array direction, the image is guided onto at least two series of sensor arrays by a second imaging system. A correction optical system having positive power is disposed in front of the sensor to reduce the angle of incidence of the imaging light beam onto the sensor.

本発明を第3図、第4図の実施例に基づいて詳細に説明
する。尚、第1図と同一の符号は同一の部材を示してい
るものとする。
The present invention will be explained in detail based on the embodiments shown in FIGS. 3 and 4. Note that the same reference numerals as in FIG. 1 indicate the same members.

第3図に示す第1の実施例に於いて、それぞれのセンサ
5a、5bの直前には、補正用フィールドレンズ10a
、10bが配置さルている。そして一方の補正用フィー
ルドレンズtOaの前側焦点は、対応する結像レンズ4
aの例えば後側主点Haに存在するようになっている。
In the first embodiment shown in FIG. 3, a correction field lens 10a is provided immediately before each sensor 5a, 5b.
, 10b are arranged. The front focal point of one correction field lens tOa is the corresponding imaging lens 4.
For example, it exists at the rear principal point Ha of a.

他方の補正用フィールドレンズlobの前側焦点も同様
に対応する結像レンズ4bの後側主点Hbにある。11
は結像レンズ4a、4bの開口を決める絞り、12は二
次結像系の視野を決める視野絞りであり。
The front focal point of the other correction field lens lob is also located at the rear principal point Hb of the corresponding imaging lens 4b. 11
12 is a diaphragm that determines the apertures of the imaging lenses 4a and 4b, and a field diaphragm that determines the field of view of the secondary imaging system.

フィールドレンズ3に関して絞り11と第1の結像系の
瞳Pとは共役関係にあり、絞り11は瞳Pの内部に結像
される。
Regarding the field lens 3, the aperture 11 and the pupil P of the first imaging system have a conjugate relationship, and the aperture 11 forms an image inside the pupil P.

従って撮影レンズ1の予定結像面F上の光軸0と交わる
点FOから射出された光線で、かつ二次結像レンズ4a
の主点Haす通る光線jaは、補正用フィールドレンズ
10aを通過後にセンサ5aの面に垂直に入射すること
になる。光軸0外の結像点FO’から射出された光線N
a′も同様に補正用フィールドレンズ10aを経て、セ
ンサ5aの面上に垂直に入射する。他方の二次結像系4
b、10b、5aについても同じような作用となるため
、これらのセンサ5a、5bの出力は第2図の入射角が
0度のときの点線で示す特性に相当し。
Therefore, the light ray is emitted from the point FO that intersects the optical axis 0 on the planned imaging plane F of the photographing lens 1, and the secondary imaging lens 4a
The light ray ja passing through the principal point Ha will be perpendicularly incident on the surface of the sensor 5a after passing through the correction field lens 10a. Ray N emitted from the imaging point FO' outside the optical axis 0
Similarly, a' also passes through the correction field lens 10a and is incident perpendicularly onto the surface of the sensor 5a. The other secondary imaging system 4
Since the same effect applies to sensors 5a, 10b, and 5a, the outputs of these sensors 5a and 5b correspond to the characteristics shown by the dotted line when the incident angle is 0 degrees in FIG.

一様輝度面は一様輝度面として出力されることになる。The uniform brightness surface will be output as a uniform brightness surface.

第4図は第2の実施例を示し、第3図の実施例ではそれ
ぞれの二次結像系に個々の補正用フィールドレンズlo
a、fobが配置されていたのに対し、この実施例では
正のパワーを有する1個の補正用のフィールドレンズ1
3で済ませたことと、この補正用フィールドレンズ13
と、センサ5a、5bとの間を例えば結像光束に対し透
明な接着剤層14を介在させたことに於いて相違がある
FIG. 4 shows a second embodiment, and in the embodiment of FIG. 3, each secondary imaging system has an individual correction field lens.
a and a fob, whereas in this embodiment, one correction field lens 1 having positive power is used.
What was done in step 3 and this correction field lens 13
The difference is that, for example, an adhesive layer 14 transparent to the imaging light beam is interposed between the sensor 5a and the sensor 5b.

この第4図に示すような構成にすると、接着剤層14は
第2図に示された現象を緩和する作用があり、例えば入
射角が20度であったとしても10度程度の変化で済む
ことになる。このような場合、各像点FO1FO’から
出た主光線j!a、Ja’はこの補正用フィールドレン
ズ13を通過した楡に必ずしも平行光になる必要はなく
、フィールドレンズ作用がないときの光線joの入射角
θQが接着剤層14の埋め込み効果により、第2図のグ
ラフ図に於いて余り問題にならない入射角、例えばθI
 (θ1くθ0)程度になるに十分なだけ折曲すればよ
い、実験によるとセンサ5aへの入射角θ凰が15度程
度であれば、補正用フィールドレンズ13とセンサ5の
間に接着剤層14を埋め込んだ場合の第2図に対応する
感度のばらつきは、幅5%に治まることが確認された。
With the configuration shown in FIG. 4, the adhesive layer 14 has the effect of alleviating the phenomenon shown in FIG. 2, and for example, even if the incident angle is 20 degrees, the change is only about 10 degrees. It turns out. In such a case, the chief ray j! emitted from each image point FO1FO' a, Ja' do not necessarily have to become parallel light to the elm that has passed through this correction field lens 13, and the incident angle θQ of the light ray jo when there is no field lens effect is the second due to the embedding effect of the adhesive layer 14. In the graph shown in the figure, the angle of incidence that does not matter much, for example, θI
According to experiments, if the angle of incidence θ to the sensor 5a is about 15 degrees, adhesive should be used between the correction field lens 13 and the sensor 5. It was confirmed that the variation in sensitivity corresponding to FIG. 2 when the layer 14 was embedded was suppressed to a width of 5%.

第4図に於ける透明接着剤層14としては、各種の接着
剤が使用でき、場合によっては液体でもよい。
Various adhesives can be used as the transparent adhesive layer 14 in FIG. 4, and in some cases, a liquid may be used.

本発明の構成は、二次結像方式の全ての合焦状態検出装
置に実施でき、幾多の変形が可能であって、必ずしも前
述の実施例に示した光学系に限られるものではない、又
、二次結像系は実施例のような透過型のものに限らず、
反射型のものであってもよいことは勿論fある。
The configuration of the present invention can be implemented in all secondary imaging type focusing state detection devices, and can be modified in many ways, and is not necessarily limited to the optical system shown in the above-mentioned embodiments. , the secondary imaging system is not limited to the transmission type as in the embodiment,
Of course, it may also be of a reflective type.

以上詳しく説明したように本臭明に係る合焦状S検出装
置によれば、数10〜100ビクセル程度のCCDライ
ンセンサ等を像検出に用いる場合に、結像光束の入射角
を小さくするための補正用光学系を設置することにより
、センサ上の各位置に入射する光束の入射角の違いによ
る出力の違いを緩和し、2像の相関をとる各種のアルゴ
リズムを用いたときに誤信号が生じない正確な合焦判定
が可能となる。特に−眼レフレックスカメラなどで省空
間を必要とする場合に、二次結像系の結像倍率を1以下
好ましくは0.5程度にすることを要求されるが、この
ようなとき−凍結像面、二次結像レンズ、二次結像面が
接近しセンサ面の各位置に入射する各結像光束の入射角
度の変化量が大きくなるので、本発明に係る装置を極め
て効果的に用いることかで゛きる。
As explained in detail above, according to the focused S detection device according to the present invention, when a CCD line sensor or the like of several tens to 100 pixels is used for image detection, it is possible to reduce the incident angle of the imaging light beam. By installing a correction optical system, the difference in output due to the difference in the angle of incidence of the light beam incident on each position on the sensor is alleviated, and erroneous signals are prevented when using various algorithms that correlate the two images. It is possible to accurately determine the focus without causing any problems. In particular, when it is necessary to save space, such as with an eye reflex camera, it is required that the imaging magnification of the secondary imaging system be 1 or less, preferably about 0.5. As the image plane, the secondary imaging lens, and the secondary imaging surface approach each other, the amount of change in the angle of incidence of each imaging light beam incident on each position on the sensor surface becomes large, so that the apparatus according to the present invention can be used extremely effectively. You can use it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の二次結像方式合焦状態検出装置の光学系
、第2図はセンサに対する光束の入射角度と出力の関係
を示す特性図、第3図、l@4図は本発明に係る合焦状
態検出装置の実施例の構成図である。 符号1は撮影レンズ、3はフィールドレンズ、4a、4
bは二次結像L/7ズ、5.5a、5bはセンサ、lO
a、lOb、13は補正用フィールドレンズ、14は接
着剤層である。 特許出願人  キャノン株式会社
Fig. 1 shows the optical system of a conventional secondary imaging type focusing state detection device, Fig. 2 shows a characteristic diagram showing the relationship between the incident angle of the light beam on the sensor and the output, and Figs. 3 and 1@4 show the present invention. FIG. 2 is a configuration diagram of an embodiment of a focusing state detection device according to the present invention. 1 is a photographic lens, 3 is a field lens, 4a, 4
b is secondary image formation L/7z, 5.5a, 5b are sensors, lO
a, lOb, 13 are correction field lenses, and 14 is an adhesive layer. Patent applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】 1、第1の結像系による予定結像面又はそれと共役な面
上に結像される像を、第2の結像系によって少なくとも
2系列のセンサアレイ上に導き、それぞれのセンサ上の
像のセンサ配列方向の相対的な位置を基に合焦状態を検
出する装置に於いて、それぞれのセンサの前に、結像光
束のセンサへの入射角を小さくするための正のパワーを
有する補正用光学系を配置することを特徴とする合焦状
態検出装置。 2、前記補正用光学系をフィールドレンズとし、このフ
ィールドレンズを第2の結像系列ごとに設け、それぞれ
の焦点面を前記それぞれの第2の結像系の射出瞳とする
特許請求の範囲第1項記載の合焦状態検出装置。 3、前記補正用光学系をフィールドレンズとし、このフ
ィールドレンズとセンサとの間に前記結像光束に対し透
明な充填層を介在した特許請求の範囲第1項記載の合焦
状態検出装置。
[Claims] 1. An image formed by a first imaging system on a predetermined imaging plane or a plane conjugate thereto is guided by a second imaging system onto at least two series of sensor arrays; In a device that detects the focusing state based on the relative position of the image on each sensor in the sensor arrangement direction, a A focusing state detection device characterized by disposing a correction optical system having positive power. 2. The correction optical system is a field lens, and this field lens is provided for each second imaging system, and each focal plane is an exit pupil of the respective second imaging system. The focusing state detection device according to item 1. 3. The focusing state detection device according to claim 1, wherein the correction optical system is a field lens, and a filling layer transparent to the imaging light beam is interposed between the field lens and the sensor.
JP4001782A 1982-03-13 1982-03-13 Detector for focusing state Pending JPS58156909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4001782A JPS58156909A (en) 1982-03-13 1982-03-13 Detector for focusing state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4001782A JPS58156909A (en) 1982-03-13 1982-03-13 Detector for focusing state

Publications (1)

Publication Number Publication Date
JPS58156909A true JPS58156909A (en) 1983-09-19

Family

ID=12569132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4001782A Pending JPS58156909A (en) 1982-03-13 1982-03-13 Detector for focusing state

Country Status (1)

Country Link
JP (1) JPS58156909A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225715A (en) * 1985-07-26 1987-02-03 Asahi Optical Co Ltd Optical system for focus detecting device
JPS63305312A (en) * 1987-06-05 1988-12-13 Nikon Corp Focus detector
JPH01120519A (en) * 1987-11-05 1989-05-12 Canon Inc Focus detecting device
US4992818A (en) * 1987-05-08 1991-02-12 Minolta Camera Kabushiki Kaisha Focus detecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225715A (en) * 1985-07-26 1987-02-03 Asahi Optical Co Ltd Optical system for focus detecting device
US4992818A (en) * 1987-05-08 1991-02-12 Minolta Camera Kabushiki Kaisha Focus detecting device
JPS63305312A (en) * 1987-06-05 1988-12-13 Nikon Corp Focus detector
JPH01120519A (en) * 1987-11-05 1989-05-12 Canon Inc Focus detecting device

Similar Documents

Publication Publication Date Title
US4670645A (en) Focus detecting device with shading reduction optical filter
US4636627A (en) Focus detecting apparatus
JPS58156909A (en) Detector for focusing state
JP2007033653A (en) Focus detection device and imaging apparatus using the same
JPS60233610A (en) Range finding device
US4716284A (en) Photographic optical system having enhanced spectral transmittance characteristics
JP4938922B2 (en) Camera system
JP2630771B2 (en) Focus detection optical system
US4717819A (en) Focus detecting device
JPH11325887A (en) Branch optical system automatic focus detector
JPS6332508A (en) Projecting system for automatic focus detection
JPS63259521A (en) Composite type focusing detection device
US4536073A (en) Apparatus for detecting a condition of sharpest focus
US8077251B2 (en) Photometry apparatus and camera
JPS6032013A (en) Optical system for detecting focus
JPH0522883B2 (en)
JP2006184321A (en) Focus detecting device and optical equipment equipped with focus detecting device
JPH01266503A (en) Focus detecting device
US20010023917A1 (en) Focus detecting device
JPS59208512A (en) Automatic focusing camera
JPS5910911A (en) Detector of focal position
JPH0352608B2 (en)
JPH0711622B2 (en) Projection system for automatic focus detection
JPS5928885B2 (en) Focus detection device
JPS6187114A (en) Single-lens reflex camera having automatic focus mechanism