JPH01266503A - Focus detecting device - Google Patents

Focus detecting device

Info

Publication number
JPH01266503A
JPH01266503A JP9532688A JP9532688A JPH01266503A JP H01266503 A JPH01266503 A JP H01266503A JP 9532688 A JP9532688 A JP 9532688A JP 9532688 A JP9532688 A JP 9532688A JP H01266503 A JPH01266503 A JP H01266503A
Authority
JP
Japan
Prior art keywords
light
lens
objective lens
focus detection
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9532688A
Other languages
Japanese (ja)
Inventor
Akihiko Nagano
明彦 長野
Kazuki Konishi
一樹 小西
Hiroki Someya
広己 染矢
Tokuichi Tsunekawa
恒川 十九一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9532688A priority Critical patent/JPH01266503A/en
Publication of JPH01266503A publication Critical patent/JPH01266503A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the accuracy of focus detection for an object corresponding to the center of a screen and a position distant from it by arranging three photodetecting element arrays corresponding to at least secondary image-forming lenses, selecting two optional photodetecting element arrays according to the signal from an input means, and utilizing the output signals of those two photodetecting element arrays. CONSTITUTION:An optical means is provided with at least one field lens which is arranged nearby a plane equivalent to the image formation plane of an objective 1 and the three secondary image forming lenses 41-43 arranged at least linearly in a plane perpendicular to the optical axis of the objective 1. Then the optical axis of the center secondary image forming lens among the three secondary image forming lenses 41-43 is aligned nearly with the optical axis of the objective 1 and a photodetecting means is provided with the three photodetecting element arrays 51-53 corresponding to the three secondary image forming lenses 41-43. Two optical photodetecting element arrays are selected among those three photodetecting element arrays 51-53 by an input means and its output signal is used to perform focus detection at an optional position in the screen. Consequently, the focus detection for a position distant from the center of the screen is performed with high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は写真用カメラやビデオカメラ等に好適な焦点検
出装置に関し、特に対物レンズの瞳を複数の領域に分割
し、各領域を通過する光束を用いて複数の被写体像に関
する光量分布を形成し、これら複数の光量分布の相対的
な位置関係を求めることにより対物レンズの合焦状想を
検出する焦点検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a focus detection device suitable for photographic cameras, video cameras, etc. In particular, the pupil of an objective lens is divided into a plurality of regions, and the focus detection device is configured to pass through each region. The present invention relates to a focus detection device that uses a light flux to form light intensity distributions for a plurality of subject images and detects the in-focus condition of an objective lens by determining the relative positional relationship of these plurality of light intensity distributions.

(従来の技術) 従来より対物レンズを通過した光束を利用した受光型の
焦点検出方式に所謂像ずれ方式と呼ばれる方式がある。
(Prior Art) Conventionally, there is a so-called image shift method as a light-receiving focus detection method that utilizes a light beam passing through an objective lens.

この像すれ方式は例えば第4図に示すように対物レンズ
1による被写体像の形成される予定結像面2近傍にフィ
ールドレンズ3を配置し、フィールトレンズ3の後方に
絞り6と2つの2次レンズ4A、4Bとを有する2次光
学系4を配置し、更にその後方に複数の受光素子列5A
、5Bを有する受光手段5とを配置した構成を採ってい
る。
For example, as shown in FIG. 4, this image blurring method places a field lens 3 near the expected imaging plane 2 where the object image is formed by the objective lens 1. Behind the field lens 3, an aperture 6 and two secondary A secondary optical system 4 having lenses 4A and 4B is arranged, and a plurality of light receiving element rows 5A are arranged behind it.
, 5B.

そしてフィールドレンズ3と2次光学系4とから対物レ
ンズ1の瞳の異った2つの領域を通過した光束を用いて
2つの被写体像に関する光量分布を各々受光素子列面上
に形成している。このときの受光素子列面上に形成され
る2つの光量分布の相対的な位置関係、即ち光量分布の
ずれ量は対物レンズの合焦状態により異ってくる。例え
ば受光素子列上の素子の並び方向に対物レンズの予定結
像面からの焦点外れ量に応じた横ずれ量となって現われ
てくる。
Using the light beams that have passed through two different areas of the pupil of the objective lens 1 from the field lens 3 and the secondary optical system 4, light intensity distributions regarding the two subject images are formed on the respective light receiving element array surfaces. . At this time, the relative positional relationship between the two light quantity distributions formed on the light receiving element row surface, that is, the amount of deviation of the light quantity distributions, differs depending on the focusing state of the objective lens. For example, the amount of lateral shift appears in the direction in which the elements on the light receiving element array are arranged in accordance with the amount of defocus of the objective lens from the intended imaging plane.

第4図(A)は対物レンズ1が合焦状態にある場合で、
点光源である被写体Pが受光素子列5A、58面上の略
中夫に形成されている。第5図(A)はこのときの受光
素子列5A、5Bからの出力信号を示し、点光源Pの受
光素子列5A。
FIG. 4(A) shows the case where the objective lens 1 is in focus,
A subject P, which is a point light source, is formed approximately at the center of the light receiving element array 5A, 58 surface. FIG. 5(A) shows the output signals from the light receiving element arrays 5A and 5B at this time, and the light receiving element array 5A of the point light source P.

5B面上における間隔は1゜どなっている。The spacing on the 5B plane is offset by 1°.

第4図(B)は対物レンズ1が被写体側に繰り出された
航どン状態であり、このとき受光素子列5A、5B面上
に形成される焦光fiPの間隔は第5図(B)に示す如
く同図(A)に比べてずれて狭くなってくる。
FIG. 4(B) shows a flying state in which the objective lens 1 is extended toward the object side, and at this time, the interval between the focal lights fiP formed on the surfaces of the light receiving element rows 5A and 5B is as shown in FIG. 5(B). As shown in (A), it becomes narrower than in the figure (A).

第4図(C)は対物レンズ1がフィルム面側に繰り込ま
れた後ピン状態であり、このとき受光素子列5A、5B
面上に形成される焦光d’I Pの間隔はずれて第5図
(C)に示す如く同図(A)に比べて広くなワてくる。
FIG. 4(C) shows the objective lens 1 in a focused state after being retracted to the film surface side, and at this time, the light receiving element arrays 5A, 5B
The interval between the focal beams d'I P formed on the surface is shifted, and as shown in FIG. 5(C), it becomes wider than that in FIG. 5(A).

一般にはこのときの2つの受光素子列上の光量分布の相
対的な横ずれ量δと対物レンズの焦点外れ量dとは一定
の関数の関係にある。
Generally, at this time, the relative lateral shift amount δ of the light quantity distribution on the two light receiving element arrays and the defocus amount d of the objective lens have a constant functional relationship.

対物レンズの合焦状態、即ち焦点外れ量はこのときの2
つの光量分布の相対的な位置関係、即ち光量分布の横ず
れ量を受光手段により検出することにより行っている。
The in-focus state of the objective lens, that is, the amount of defocus at this time, is 2
This is done by detecting the relative positional relationship between the two light quantity distributions, that is, the amount of lateral deviation of the light quantity distributions using a light receiving means.

第4図に示す焦点検出装置においては、絞り6の開口部
は開口部を通過する光束が対物レンズ1内でケラレない
ように比較的小さく設定されている。
In the focus detection device shown in FIG. 4, the aperture of the diaphragm 6 is set to be relatively small so that the light beam passing through the aperture is not eclipsed within the objective lens 1.

又、同図に示す焦点検出装置は画面中央の測距を行って
おり、画面中央以外の位置の被写体の測距を行う場合に
は絞り6の開口径を更に小さくし、又は2次結像レンズ
4及びそれに対応した絞り6の開口部の間隔を各々狭く
する必要があった。
In addition, the focus detection device shown in the same figure measures the distance at the center of the screen, and when measuring the distance of a subject at a position other than the center of the screen, the aperture diameter of the diaphragm 6 is made smaller, or secondary imaging is performed. It was necessary to narrow the distance between the apertures of the lens 4 and the corresponding aperture 6.

この為、光量が減少したり、物体像の光量分布のずれ量
か少なくなったりして被写体の明るさに対する検出能力
及び検出績度が低下するという問題点があった。
For this reason, there is a problem in that the amount of light decreases or the amount of deviation in the light amount distribution of the object image decreases, resulting in a decrease in the ability and performance of detecting the brightness of the object.

これに対して1対の2次結像レンズと1対の受光素子列
を各々複数個用いて画面中央以外の点での測距を行うこ
とが考えられるが、この方法は装置全体が複雑化及び大
型化してくるという問題点があった。
On the other hand, it is conceivable to measure the distance at a point other than the center of the screen by using a pair of secondary imaging lenses and a pair of light-receiving element rows, but this method would complicate the entire device. There were also problems in that the size of the device increased.

(発明が解決しようとする問題点) 本発明は像ずれ方式の焦点検出装置において、2次結像
レンズを有する光学手段及び受光素子列を有する受光手
段の構成を適切に設定することにより、画面中央から離
れた位置での焦点検出を装置全体の小型化を図りつつ高
精度に行うことのてきる焦点検出装置の提供を目的とす
る。
(Problems to be Solved by the Invention) The present invention provides an image shift type focus detection device, in which a screen is An object of the present invention is to provide a focus detection device that can perform focus detection at a position away from the center with high precision while reducing the size of the entire device.

(問題点を解決するための手段) 対物レンズの像面側に配置した光学手段により前記対物
レンズの瞳の異なる領域を通過した光束を用いて被写体
像に関する複数の光量分布を形成し、該複数の光量分布
の相対的な位置関係を受光手段により求め、該受光手段
からの信号を用いて面記対物レンズの合焦状態を演算手
段により求める焦点検出装置において、前記光学手段は
該対物レンズの結像面と等価面近傍に配置した少なくと
も1つのフィールドレンズと、該対物レンズの光軸と垂
直な平面内の少なくとも1次元方向に配(ξされた3つ
の2次結像レンズとを有しており、該3つの2次結像レ
ンズのうち中央の2次結像レンズの光軸は該対物レンズ
の光軸と略一致するように配置されており、前記受光手
段は該3つの2次結像レンズに対応した3つの受光素子
列を有しており、該3つの受光素子列のうち入力手段に
より任意の2つの受光素子列を選択し、該2つの受光素
子列からの出カイ3号を用いて画面中の任意の位置での
焦点検出を行ったことである。
(Means for Solving the Problem) A plurality of light intensity distributions regarding a subject image are formed using a light flux that has passed through different regions of the pupil of the objective lens by an optical means disposed on the image plane side of the objective lens, and In the focus detection device, the optical means determines the relative positional relationship of the light quantity distribution by a light receiving means, and uses the signal from the light receiving means to determine the in-focus state of the objective lens by a calculating means. at least one field lens disposed near a plane equivalent to the imaging plane; and three secondary imaging lenses arranged (ξ) in at least one dimension in a plane perpendicular to the optical axis of the objective lens. The optical axis of the central secondary imaging lens among the three secondary imaging lenses is arranged to substantially coincide with the optical axis of the objective lens, and the light receiving means It has three light-receiving element rows corresponding to the imaging lens, and any two light-receiving element rows are selected by input means from the three light-receiving element rows, and the output 3 from the two light-receiving element rows is The focus was detected at any position on the screen using the

(実施例) 第1図(A)、(B)は本発明の一実施例の概略図であ
る。同図(A)は画面中央部の焦点検出を行う場合、同
図(B)は画面周辺部の焦点検圧を行う場合であり、い
ずれも光学系を展開した状態で示している。
(Embodiment) FIGS. 1A and 1B are schematic diagrams of an embodiment of the present invention. FIG. 5A shows a case where focus detection is performed at the center of the screen, and FIG. 1B shows a case where focus pressure detection is performed at the periphery of the screen, both of which are shown with the optical system in an expanded state.

第1図(A) 、 (B)において、1は対物レンズ「
撮影レンズ」ともいう。)、2は対物レンズ1の予定結
像面、3は予定結像面2の近傍に配置されたフィールド
レンズ、4は2次光学系であり対物レンズ1の光軸りと
一致するように配置された2次結像レンズ42と対物レ
ンズ1の光軸に対して対称に配置された2つの2次結像
レンズ41.43の3つのレンズを1次元的に配置して
構成されている。5は受光手段で、前記3つのレンズ4
1゜42.43に対応してその後方1次元方向に配置さ
れた3つの受光素子列51,52.53により構成され
ている。6は絞りであり、前言己3つのレンズ41,4
2.43に対応して配置された3つの開口部61,62
.63を有している。7は対物レンズlの射出瞳てあり
、後述するようにフィールドレンズ3等により複数(本
実施例では3つ)に分割されている。
In Fig. 1 (A) and (B), 1 is the objective lens "
Also called a photographic lens. ), 2 is the intended image-forming plane of the objective lens 1, 3 is a field lens placed near the intended image-forming plane 2, and 4 is a secondary optical system, which is arranged so as to coincide with the optical axis of the objective lens 1. It is constructed by one-dimensionally arranging three lenses: a secondary imaging lens 42 and two secondary imaging lenses 41 and 43 arranged symmetrically with respect to the optical axis of the objective lens 1. 5 is a light receiving means, and the three lenses 4
It is composed of three light-receiving element rows 51, 52, and 53 arranged one-dimensionally behind it corresponding to 1°42.43. 6 is the aperture, and the three lenses 41, 4
2. Three openings 61, 62 arranged corresponding to 43
.. 63. Reference numeral 7 denotes an exit pupil of the objective lens l, which is divided into a plurality of parts (three in this embodiment) by a field lens 3 and the like, as will be described later.

8は演算手段であり、3つの受光素子列51゜52.5
3から被写体像に関する光量分布の信号のうち焦点検出
位置を指定する入力手段9からの指示信号に基づいて2
つ選択し、該2つの被写体像に関する光量分布の相対的
位置関係、即ちずれ量δを求め、これにより指示された
画面位置における対物レンズ1の焦点外れff1dを演
算している。
8 is a calculation means, which has three light receiving element arrays 51°52.5
2 based on the instruction signal from the input means 9 that specifies the focus detection position among the light amount distribution signals regarding the subject image from 3 to 2.
The relative positional relationship of the light amount distributions for the two subject images, that is, the amount of shift δ, is determined, and the out-of-focus ff1d of the objective lens 1 at the designated screen position is calculated based on this.

本実施例においてはフィールドレンズ3.2次結像レン
ズ41,42.43、絞り6、等は光学手段の一部を構
成している。
In this embodiment, the field lens 3, secondary imaging lenses 41, 42, 43, diaphragm 6, etc. constitute a part of the optical means.

尚、フィールドレンズ3は開口部61,62゜63を対
物レンズ1の射出@7の領域71゜72.73付近に結
像する作用を有しており、各領域71,72.73を透
過した光束が受光素子列51,52.53上に各々被写
体像に関する光量分布を形成するようになっている。
The field lens 3 has the function of forming an image of the apertures 61, 62° 63 near the area 71° 72.73 of the exit @ 7 of the objective lens 1, and the light transmitted through each area 71, 72.73 The light flux forms a light amount distribution regarding the subject image on each of the light receiving element arrays 51, 52, and 53.

第1図(A)において撮影レンズ1の光軸上の被写体P
0から発する被写体光は撮影レンズ1により収斂され、
フィルム等価面2上の点P。′に結像する。
In FIG. 1(A), a subject P on the optical axis of the photographic lens 1
The object light emitted from 0 is converged by the photographing lens 1,
Point P on film equivalent surface 2. ′.

点P。′に結像した空中像はさらにフィールドレンズ3
、絞り6を透過し2次結像レンズ41゜42.43によ
って各受光素子列51,52゜53上に結像される。3
つの2次結像レンズ41.42.43は撮影レンズ1の
光軸に垂直な平面内に1次元的に配置されており、中央
に位置する2次結像レンズ42の光軸と撮影レンズ1の
光軸とは一致している。又、中央に位置する2次結像レ
ンズ42の光軸と図中上下に位置する2次結像レンズ4
1.43の光軸とはそれぞれ距fiL離れているため、
点20′の空中像は受光素子列51.52.53の対応
する位置に結像する。焦点検出位置を指定する入力手段
9からの信号により検出する被写体P0が選択されてい
ると、演算手段8は受光素子列51.53の出力を選択
し、各光量出力分布の相関をとることにより画面中央に
おける焦点検出を行う。
Point P. The aerial image formed at ′ is further transmitted to field lens 3
, passes through the aperture 6 and is imaged onto each light receiving element array 51, 52° 53 by the secondary imaging lens 41° 42, 43. 3
The two secondary imaging lenses 41, 42, and 43 are arranged one-dimensionally in a plane perpendicular to the optical axis of the photographing lens 1, and the optical axis of the secondary imaging lens 42 located at the center and the photographing lens 1 are arranged one-dimensionally. coincides with the optical axis of In addition, the optical axis of the secondary imaging lens 42 located at the center and the secondary imaging lenses 4 located above and below in the figure
Since the optical axis of 1.43 is separated by a distance fiL,
The aerial image of the point 20' is formed at the corresponding position of the light receiving element array 51, 52, 53. When the object P0 to be detected is selected by the signal from the input means 9 specifying the focus detection position, the calculation means 8 selects the outputs of the light receiving element arrays 51 and 53, and calculates the correlation between the respective light quantity output distributions. Performs focus detection at the center of the screen.

第1図(B)は焦点検出位置を指示する入力手段9から
の信号より撮影レンズ1の光軸より雛れた被写体P、を
選択した場合である。被写体P。
FIG. 1(B) shows a case where a subject P, which is viewed from the optical axis of the photographic lens 1, is selected based on a signal from the input means 9 instructing the focus detection position. Subject P.

から発する被写体光は撮影レンズ1により収斂されフィ
ルム等価面2上の点P1 ′に結像する。点P1 ′に
結像した空中像はさらにフィールドレンズ3、絞り6を
透過し、2次結像レンズ41゜42によって各受光素子
列51.52上に結像する。
The object light emitted from the camera is converged by the photographing lens 1 and focused on a point P1' on the film equivalent surface 2. The aerial image formed at the point P1' further passes through the field lens 3 and the diaphragm 6, and is imaged onto each light-receiving element array 51, 52 by the secondary imaging lens 41.42.

ここでフィールドレンズ3はSす三レンズ1の身十出瞳
7と絞り6とが結像関係をほぼ満足するように設計され
、又、カメラの本体に実装する時のスペース等からレン
ズの厚みを厚くするには限界があるため、その屈折力は
あまり大きくとれない。
Here, the field lens 3 is designed so that the pupil 7 of the S3 lens 1 and the aperture 6 almost satisfy the imaging relationship, and the thickness of the lens is limited due to the space etc. when mounting it on the camera body. Since there is a limit to how thick the lens can be, its refractive power cannot be increased very much.

その結果、撮影レンズ1のF値が大きい場合、被写体P
1の位置が撮影レンズ1の光軸から離れている場合等に
おいて、2次結像レンズ53に対する被写体P、の有効
光束が射出瞳7、あるいは撮影レンズ1を構成するレン
ズの有効径によりケラレる状態が生じる。受光素子列に
到達する光束の一部がケラレると、相関法による焦点検
出粒度は低下してくる。
As a result, when the F value of the photographic lens 1 is large, the subject P
1 is far from the optical axis of the photographic lens 1, the effective luminous flux of the subject P to the secondary imaging lens 53 is eclipsed by the exit pupil 7 or the effective diameter of the lenses constituting the photographic lens 1. A condition arises. When a portion of the light beam reaching the light-receiving element array is eclipsed, the focus detection particle size by the correlation method decreases.

演算手段8は焦点検出位置を指定する入力手段9より入
力された情報と撮影レンズ1の射出瞳7位置及びF値の
情報より演算処理を行う。このとき受光素子列からの出
力の選択を行ない受光素子列に到達する光束にケラレが
生じない受光素子列からの出力を用い焦点検出を行う。
The calculation means 8 performs calculation processing based on the information inputted from the input means 9 specifying the focus detection position, the position of the exit pupil 7 of the photographic lens 1, and the F value. At this time, outputs from the light-receiving element array are selected and focus detection is performed using the outputs from the light-receiving element array that do not cause vignetting in the light beam reaching the light-receiving element array.

又、第1図(A) 、 (B)において受光素子列51
゜52には被写体20及びP、の光束が同時に入射する
が、被写体位置により受光素子列上への入射位置か異な
るため、実際に演算処理する受光素子列からの出力の範
囲を制限することが行なわれる。又、フィルム等価面2
近傍に液晶素子エレクトロクロミック素子等による視野
マスクを配置するようにしても良い。
In addition, in FIGS. 1(A) and 1(B), the light receiving element array 51
The luminous fluxes of the subject 20 and P are simultaneously incident on ゜52, but since the position of incidence on the light receiving element array differs depending on the subject position, it is not possible to limit the range of output from the light receiving element array that is actually subjected to arithmetic processing. It is done. Also, film equivalent surface 2
A viewing mask made of a liquid crystal element, an electrochromic element, etc. may be placed nearby.

第2図は第1図に示した絞り6の一実施例の概略図であ
る。実線の円で示したのが本発明に係る絞り6の開口部
である。点線の円で示したのは従来の絞りの開口部であ
る。
FIG. 2 is a schematic diagram of an embodiment of the diaphragm 6 shown in FIG. 1. The solid circle indicates the opening of the diaphragm 6 according to the present invention. The dotted circle indicates the aperture of a conventional diaphragm.

同図に示すように従来の絞りでは、軸外被写体にも対応
させるため開口部の範囲は制限されている。これに対し
て本発明に係る絞り6の開口部の重心間隔しは従来の絞
りの開口部の重心間隔L′に対して 2L  >  L’  〜 L の関係を満足するため、軸外被写体を検出する精度は従
来とほぼ同等で、軸上被写体を検出する精度を従来より
高めることが可能となる。
As shown in the figure, in the conventional aperture, the range of the aperture is limited in order to accommodate off-axis subjects. On the other hand, since the center-of-gravity spacing of the apertures of the aperture 6 according to the present invention satisfies the relationship 2L >L' to L with respect to the center-of-gravity distance L' of the conventional aperture apertures, off-axis objects can be detected. The accuracy is almost the same as before, and it is possible to improve the accuracy of detecting on-axis objects compared to before.

前記実施例において、第1図中紙面上下方向に3個の2
次結像レンズを配置した例を示したが、加えて紙面鉛直
方向に2次結像レンズ42を中心に対称に2個の2次結
像レンズを配置した構成をとっても良い。この時、2次
結像レンズ42に対応する受光手段は十文字のあるいは
エリアセンサより構成すれば良い。
In the above embodiment, three 2
Although an example in which the secondary imaging lens is arranged has been shown, a configuration may also be adopted in which two secondary imaging lenses are arranged symmetrically with respect to the secondary imaging lens 42 in the direction perpendicular to the plane of the paper. At this time, the light receiving means corresponding to the secondary imaging lens 42 may be constituted by a cross-shaped or area sensor.

第3図は本発明の他の一実施例の光学系の要部概略図で
ある。本実施例ではフィールドレンズを3つの2次結像
レンズ41,42.43に対応させて3つのレンズ21
,22.23より構成した点が第1図に示す実施例と異
っており、その他の構成は第1図の実施例と同じである
FIG. 3 is a schematic diagram of essential parts of an optical system according to another embodiment of the present invention. In this embodiment, the field lens is made to correspond to the three secondary imaging lenses 41, 42, and 43, and the three lenses 21
, 22, and 23 is different from the embodiment shown in FIG. 1, and the rest of the structure is the same as the embodiment shown in FIG.

本実施例では不図示の撮影レンズの光軸外の被写体から
の被写体光は、フィルム等価面2上の点P1 ′に結像
後、フィールドレンズ21、絞り6の開口部61を透過
し、2次結像レンズ41゜42により受光素子列51.
52上に再結像する。フィールドレンズ21,22.2
3は物体側に凸面を向けた平凸レンズより構成されてお
り、各レンズの凸面の頂点はフィルム等価面2上の予定
検出位置にあわせるように設定されている。
In this embodiment, the subject light from the subject off the optical axis of the photographing lens (not shown) forms an image at a point P1' on the film equivalent surface 2, and then passes through the field lens 21 and the aperture 61 of the diaphragm 6. Next, the light receiving element array 51.
52. Field lens 21, 22.2
3 is composed of a plano-convex lens with a convex surface facing the object side, and the apex of the convex surface of each lens is set to match the scheduled detection position on the film equivalent surface 2.

フィールドレンズ21.23の片側の平面はフィルム等
価面2に対してくさびをなし、被写体光を2次結像レン
ズに導く作用をしている。
The planes on one side of the field lenses 21 and 23 form a wedge with respect to the film equivalent surface 2, and function to guide the subject light to the secondary imaging lens.

(発明の効果) 以上のように本発明によれば少なくとも3つの2次結像
レンズと3つの受光素子列を前述の如く配置し、入力手
段からの信号に基づいて任、きの2つの受光素子列を選
択し、該2つの受光素子列からの出力信号を利用するこ
とにより、画面中央及びそれより蔑れた位置に相当する
被写体の焦点検出を容易に、しかも高績度に行うことが
できる小型の焦点検出装置を達成することができる。
(Effects of the Invention) As described above, according to the present invention, at least three secondary imaging lenses and three light-receiving element arrays are arranged as described above, and two light-receiving elements are selected at any given time based on the signal from the input means. By selecting an element array and using the output signals from the two light-receiving element arrays, it is possible to easily and efficiently detect the focus of subjects at the center of the screen and positions further away from the center of the screen. A focus detection device can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

731図(A) 、 (B)は本発明の一部36例の概
略図、第2図は第1図の絞りの一実施例の概略図、第3
図は本発明の他の実施例の要部概略図、第4図。 第5図は従来の像ずれ方式の焦点検出装置の概略図と光
量分布の説明図である。 図中、1は対物レンズ、2は予定結像面、3゜31.3
2.33はフィールドレンズ、4は2次結像系、41,
42.43は2次結像レンズ、5は受光手段、51,5
2.53は受光素子列、6は絞り、7は射出瞳、8は演
算手段、9は入力手段である。 勇  2  口 勇  4  ア 第  5  図
731 (A) and (B) are schematic diagrams of 36 examples of part of the present invention, FIG. 2 is a schematic diagram of one embodiment of the aperture shown in FIG.
FIG. 4 is a schematic diagram of main parts of another embodiment of the present invention. FIG. 5 is a schematic diagram of a conventional image shift type focus detection device and an explanatory diagram of the light amount distribution. In the figure, 1 is the objective lens, 2 is the intended imaging plane, 3°31.3
2.33 is a field lens, 4 is a secondary imaging system, 41,
42. 43 is a secondary imaging lens, 5 is a light receiving means, 51, 5
2.53 is a light receiving element array, 6 is an aperture, 7 is an exit pupil, 8 is a calculation means, and 9 is an input means. Isamu 2 Kuchi Isamu 4 A Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)対物レンズの像面側に配置した光学手段により前
記対物レンズの瞳の異なる領域を通過した光束を用いて
被写体像に関する複数の光量分布を形成し、該複数の光
量分布の相対的な位置関係を受光手段により求め、該受
光手段からの信号を用いて前記対物レンズの合焦状態を
演算手段により求める焦点検出装置において、前記光学
手段は該対物レンズの結像面と等価面近傍に配置した少
なくとも1つのフィールドレンズと、該対物レンズの光
軸と垂直な平面内の少なくとも1次元方向に配置された
3つの2次結像レンズとを有しており、該3つの2次結
像レンズのうち中央の2次結像レンズの光軸は該対物レ
ンズの光軸と略一致するように配置されており、前記受
光手段は該3つの2次結像レンズに対応した3つの受光
素子列を有しており、該3つの受光素子列のうち入力手
段により任意の2つの受光素子列を選択し、該2つの受
光素子列からの出力信号を用いて画面中の任意の位置で
の焦点検出を行ったことを特徴とする焦点検出装置。
(1) Forming a plurality of light intensity distributions regarding the subject image using an optical means disposed on the image plane side of the objective lens using light fluxes that have passed through different areas of the pupil of the objective lens, and comparing the relative light intensity distributions of the plurality of light intensity distributions. In the focus detection device, the positional relationship is determined by a light receiving means, and the in-focus state of the objective lens is determined by a calculation means using a signal from the light receiving means, wherein the optical means is located near a plane equivalent to the image forming plane of the objective lens. at least one field lens arranged, and three secondary imaging lenses arranged in at least one dimension in a plane perpendicular to the optical axis of the objective lens; The optical axis of the central secondary imaging lens among the lenses is arranged so as to substantially coincide with the optical axis of the objective lens, and the light receiving means includes three light receiving elements corresponding to the three secondary imaging lenses. Out of the three light-receiving element rows, any two light-receiving element rows are selected by the input means, and the output signals from the two light-receiving element rows are used to display the image at any position on the screen. A focus detection device characterized by performing focus detection.
JP9532688A 1988-04-18 1988-04-18 Focus detecting device Pending JPH01266503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9532688A JPH01266503A (en) 1988-04-18 1988-04-18 Focus detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9532688A JPH01266503A (en) 1988-04-18 1988-04-18 Focus detecting device

Publications (1)

Publication Number Publication Date
JPH01266503A true JPH01266503A (en) 1989-10-24

Family

ID=14134608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9532688A Pending JPH01266503A (en) 1988-04-18 1988-04-18 Focus detecting device

Country Status (1)

Country Link
JP (1) JPH01266503A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342642A (en) * 1989-07-10 1991-02-22 Fuji Photo Optical Co Ltd Range finding mechanism for passive automatic focusing device
US7737386B2 (en) 2007-05-15 2010-06-15 Olympus Imaging Corp. Focus detection optical system having a plurality of focus detection areas, and imaging apparatus incorporating the same
US8174607B2 (en) 2008-11-27 2012-05-08 Olympus Corporation Image pickup device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342642A (en) * 1989-07-10 1991-02-22 Fuji Photo Optical Co Ltd Range finding mechanism for passive automatic focusing device
US7737386B2 (en) 2007-05-15 2010-06-15 Olympus Imaging Corp. Focus detection optical system having a plurality of focus detection areas, and imaging apparatus incorporating the same
US8174607B2 (en) 2008-11-27 2012-05-08 Olympus Corporation Image pickup device

Similar Documents

Publication Publication Date Title
JPH11142724A (en) Camera, interchangeable lens device and camera system
JPH01266503A (en) Focus detecting device
JP2630771B2 (en) Focus detection optical system
JP3586365B2 (en) Photometric device
JPH01120518A (en) Focus detecting device
US4593188A (en) Apparatus and method for detecting focus condition of an imaging optical system
JPH07333493A (en) Focus detector
JP2014010284A (en) Focus detector, imaging apparatus and camera system
JPH0667088A (en) Focus detecting device
JPS6113566B2 (en)
JPH052131A (en) Focus detector
JP3134429B2 (en) Focus detection device
US8077251B2 (en) Photometry apparatus and camera
JPS59129811A (en) Focusing detecting device
JP2600823B2 (en) Focus detection device
JP2757373B2 (en) Focus detection device
JP4289707B2 (en) Focus detection device
JPH0378715A (en) Optical system for distance measurement
JPH11352396A (en) Focus detector and optical equipment using the same
JPH0688938A (en) Focus detector
JP2924367B2 (en) Focus detection device
JPS63139310A (en) Pattern projecting device for detecting focus
JPH11271602A (en) Focus detecting device and optical equipment using the same
JPS59195607A (en) Focusing detector
JP2000121927A (en) Focus detector