JPH11352396A - Focus detector and optical equipment using the same - Google Patents

Focus detector and optical equipment using the same

Info

Publication number
JPH11352396A
JPH11352396A JP17811498A JP17811498A JPH11352396A JP H11352396 A JPH11352396 A JP H11352396A JP 17811498 A JP17811498 A JP 17811498A JP 17811498 A JP17811498 A JP 17811498A JP H11352396 A JPH11352396 A JP H11352396A
Authority
JP
Japan
Prior art keywords
objective lens
detection system
lens
pupil
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17811498A
Other languages
Japanese (ja)
Inventor
Yasuo Suda
康夫 須田
Keiji Otaka
圭史 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17811498A priority Critical patent/JPH11352396A/en
Publication of JPH11352396A publication Critical patent/JPH11352396A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable focus detection to be accurately executed by appropriately setting the respective elements of an optical means for focus detection provided on the image surface side of an objective lens (photographing lens). SOLUTION: A 1st reflection mirror 4 is arranged obliquely to the optical axis 1 on the image surface side of the objective lens 101. The light incident side of an image reformation lens block 9 equipped with an aspherical surface and a diffraction lens surface is a single concave aspherical surface having the center on the optical axis of the lens 101 deflected by the mirror 4, and the exit side thereof is composed of two pairs of convex lens surfaces 9e,...9g,... that are made eccentric in the opposite direction to each other. A detection system using luminous flux passing through some element separates the exit pupil of the objective lens in a longitudinal direction, while a detection system using the luminous flux passing through another element separates the exit side of the objective lens in the lateral direction. The 1st focus detection system separates a pupil in the longitudinal direction and the 2nd detection system separates the pupil in the lateral direction. Namely, a secondary object paired by separating the pupil of the objective lens on a 2nd plane PL2 orthogonally crossing a 1st plane is formed on a photoelectric conversion element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、写真用カメラやビ
デオカメラ、そして観察装置等に好適な焦点検出装置及
びそれを用いた光学機器に関し、特に対物レンズ(撮影
レンズ)の瞳を複数の領域に分割し、各領域を通過する
光束を用いて複数の被写体像(物体像)に関する光量分
布を形成し、これら複数の光量分布の相対的な位置関係
を求めることにより、対物レンズの合焦状態を撮影範囲
中の広い領域にわたり検出する際に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focus detection device suitable for a photographic camera, a video camera, an observation device, and the like, and an optical apparatus using the same. And forming a light amount distribution for a plurality of subject images (object images) using the light flux passing through each area, and obtaining a relative positional relationship between the plurality of light amount distributions, thereby obtaining a focusing state of the objective lens. Is suitable for detecting over a wide area in the photographing range.

【0002】[0002]

【従来の技術】従来より対物レンズを通過した光束を利
用した受光型の焦点検出装置に所謂像ずれ方式(位置差
検出方式)と呼ばれる方式がある。
2. Description of the Related Art Conventionally, there has been a so-called image shift method (position difference detection method) in a light receiving type focus detection apparatus utilizing a light beam passing through an objective lens.

【0003】この像ずれ方式の焦点検出装置は、検出可
能なデフォーカス量が大きいことや被写体距離に左右さ
れずに焦点状態を良好に検知できるという特徴がある。
[0003] This image shift type focus detection device is characterized in that the amount of defocus that can be detected is large and that the focus state can be detected satisfactorily regardless of the subject distance.

【0004】像ずれ方式の焦点検出装置においては対物
レンズの像面側に一対の開口部を有する絞りとそれに対
応した一対の2次結像系(再結像レンズ)を有する検出
系を1つ又は複数有した光学手段を設け、該光学手段に
より該対物レンズの瞳の異なる領域を通過した光束を用
いて被写体像に関する複数の光量分布を形成し、該複数
の光量分布の相対的な位置関係を複数の素子より成る光
電変換素子により求め、該光電変換素子からの信号を用
いて該対物レンズの合焦状態を検出している。
In an image shift type focus detection apparatus, one stop system having a pair of apertures on the image plane side of an objective lens and one detection system having a pair of secondary imaging systems (re-imaging lenses) corresponding thereto. Alternatively, a plurality of optical units are provided, and the optical unit forms a plurality of light amount distributions on the subject image using light beams passing through different regions of the pupil of the objective lens, and a relative positional relationship between the plurality of light amount distributions. Is obtained by a photoelectric conversion element composed of a plurality of elements, and the in-focus state of the objective lens is detected using a signal from the photoelectric conversion element.

【0005】[0005]

【発明が解決しようとする課題】像ずれ方式の焦点検出
装置では2次物体像を形成する検出系の構成が焦点検出
精度に大きく影響してくる。
In an image shift type focus detection device, the configuration of a detection system for forming a secondary object image greatly affects the focus detection accuracy.

【0006】本発明は、対物レンズ(撮影レンズ)の像
面側に設ける焦点検出用の光学手段の各要素を適切に設
定することにより焦点検出を高精度に行うことができる
焦点検出装置及びそれを用いた光学機器の提供を目的と
する。
The present invention relates to a focus detection device capable of performing focus detection with high accuracy by appropriately setting each element of a focus detection optical means provided on an image plane side of an objective lens (photographing lens), and a focus detection device therefor. The purpose of the present invention is to provide an optical device using the same.

【0007】[0007]

【課題を解決するための手段】本発明の焦点検出装置
は、(1-1) 対物レンズの像面側に設けた光学手段により
該対物レンズの瞳の異なる領域を通過した光束を用いて
被写体像に関する複数の光量分布を形成し、該複数の光
量分布の相対的な位置関係を複数の素子より成る光電変
換素子により求め、該光電変換素子からの信号を用いて
該対物レンズの合焦状態を撮影視野内の1つ又は複数の
領域において求める焦点検出装置において、該光学手段
は該対物レンズの光軸とは異なる方向に光路を折り曲げ
る所定面上に被写体像を形成する集光性の反射鏡と非球
面及び回折レンズ面を備え、第1平面内に該対物レンズ
の瞳を分離して対となる2次物体像を該光電変換素子上
に形成する第1の検出系と非球面及び回折レンズ面を備
え、該第1平面と直交する第2平面内に該対物レンズの
瞳を分離して対となる2次物体像を該光電変換素子上に
形成する第2の検出系とを有することを特徴としてい
る。
According to the present invention, there is provided a focus detecting apparatus comprising: (1-1) an object using an optical means provided on an image plane side of an objective lens by using a light beam having passed through different regions of a pupil of the objective lens; A plurality of light quantity distributions for an image are formed, a relative positional relationship between the plurality of light quantity distributions is obtained by a photoelectric conversion element including a plurality of elements, and a focusing state of the objective lens is determined using a signal from the photoelectric conversion element. In one or a plurality of regions in the field of view, the optical means comprises a light-collecting reflection forming an object image on a predetermined surface which bends an optical path in a direction different from the optical axis of the objective lens. A first detection system including a mirror, an aspheric surface, and a diffractive lens surface, and separating a pupil of the objective lens in a first plane to form a paired secondary object image on the photoelectric conversion element; A diffractive lens surface, orthogonal to the first plane Secondary object image forming a pair are separated pupil of the objective lens in the second plane is characterized by a second detection system to be formed on the photoelectric conversion element that.

【0008】特に、(1-1-1) 該第1の検出系の瞳分離
による視差は該第2の検出系のそれよりも小さく、該第
1の検出系による2次物体像の該光電変換素子での受光
エリアは該第2の検出系によるそれよりも高画角である
ことを特徴としている。
In particular, (1-1-1) the parallax due to the pupil separation of the first detection system is smaller than that of the second detection system, and the photoelectric conversion of the secondary object image by the first detection system is performed. The light receiving area of the conversion element has a higher angle of view than that of the second detection system.

【0009】本発明の光学機器は、(2-1) 構成(1-1) の
焦点検出装置からの信号を用いて対物レンズを構成する
合焦レンズを駆動させて合焦を行い、撮像手段面上に被
写体像を形成していることを特徴としている。
The optical apparatus according to the present invention performs the focusing by driving the focusing lens constituting the objective lens using the signal from the focus detecting device having the constitution (2-1). It is characterized in that a subject image is formed on a surface.

【0010】[0010]

【発明の実施の形態】図1,図2は本発明の焦点検出装
置をカメラ等の光学機器に適用したときの実施形態1の
要部概略図である。図1は焦点検出装置において対物レ
ンズ(撮影レンズ)の瞳を縦方向に分離する第1の検出
系を示し、図2は対物レンズの瞳を横方向に分離する第
2の検出系を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 and 2 are schematic views of a main part of a first embodiment when a focus detection device according to the present invention is applied to an optical apparatus such as a camera. FIG. 1 shows a first detection system for separating a pupil of an objective lens (photographing lens) in a vertical direction in a focus detection device, and FIG. 2 shows a second detection system for separating a pupil of an objective lens in a horizontal direction. I have.

【0011】図中101は対物レンズ、1は対物レンズ
101の光軸、2はフィルム(撮像面)、3は対物レン
ズ101の光軸1上に配置された半透過性の主ミラー、
103は焦点板であり、対物レンズ101による被写体
像が主ミラー3を介して結像している。
In the figure, reference numeral 101 denotes an objective lens, 1 denotes an optical axis of the objective lens 101, 2 denotes a film (imaging surface), 3 denotes a semi-transmissive main mirror arranged on the optical axis 1 of the objective lens 101,
Reference numeral 103 denotes a reticle, on which a subject image formed by the objective lens 101 is formed via the main mirror 3.

【0012】4は対物レンズ101の像面側に光軸1上
に対して斜めに配置された第1の反射鏡であり、集光性
の凹面鏡や楕円面鏡等から成っている。5は第1の反射
鏡4によるフィルム2に共役な近軸的結像面で被写体像
が結像している。6は第2の反射鏡、7は赤外カットフ
ィルター、8は4つの開口8e,8f,8g,8hを有
する絞り、9は絞り8の4つの開口に対応して配置さ
れ、各々が非球面及び特開平10−133149号公報
に知られる回折レンズ面を備える4つのレンズであり、
凸レンズ面として9e,9f,9g,9hを有する2次
結像系(再結像レンズブロック)、10は第3の反射
鏡、11はエリアセンサーであり、二対の2次元型受光
エリアセンサ11e,11f,11g,11hを有する
光電変換素子(受光手段)をそれぞれ示している。第1
の反射鏡4,第2の反射鏡6,絞り8,そして2次結像
系9等は光学手段の一要素を構成している。
Reference numeral 4 denotes a first reflecting mirror disposed obliquely on the image plane side of the objective lens 101 with respect to the optical axis 1, and comprises a condensing concave mirror, an elliptical mirror, or the like. Reference numeral 5 denotes a paraxial image plane conjugate to the film 2 formed by the first reflecting mirror 4, on which a subject image is formed. 6 is a second reflecting mirror, 7 is an infrared cut filter, 8 is a stop having four openings 8e, 8f, 8g, 8h, 9 is arranged corresponding to the four openings of the stop 8, each of which is aspherical And four lenses having a diffractive lens surface known from JP-A-10-133149,
Secondary imaging system (re-imaging lens block) having 9e, 9f, 9g, 9h as convex lens surfaces, 10 is a third reflecting mirror, 11 is an area sensor, and two pairs of two-dimensional light receiving area sensors 11e , 11f, 11g, and 11h, respectively. First
The reflecting mirror 4, the second reflecting mirror 6, the stop 8 and the secondary imaging system 9 constitute one element of the optical means.

【0013】各受光エリアセンサ11e〜11fは複数
のセンサー列より構成しており、センサー列同士も対を
なしている。
Each of the light receiving area sensors 11e to 11f is composed of a plurality of sensor rows, and the sensor rows also form a pair.

【0014】ここで、第1の反射鏡4は楕円鏡であっ
て、楕円を定義する二つの焦点は、対物レンズ101の
光軸1上の光線が主ミラー3で屈折した後の光路を逆に
対物レンズ101側に延長した線上と、その光線が第1
の反射鏡4によって反射した後の光路を延長した線上に
それぞれ位置する。また、第1の反射鏡4は焦点検出領
域を制限する視野マスクの役割を兼ねるため、必要な領
域のみが光を反射するようになっている。第2の反射鏡
6’、第3の反射鏡10は平面鏡、或は楕円鏡(又は集
光性の鏡)のいずれでも良い。である。なお、これらの
構成要素のうちの光学的に機能する部分は何れも紙面に
対して対称に構成している。
Here, the first reflecting mirror 4 is an elliptical mirror, and the two focal points defining the ellipse reverse the optical path after the light beam on the optical axis 1 of the objective lens 101 is refracted by the main mirror 3. First, on the line extended to the objective lens 101 side and the ray
Are positioned on lines extending the optical path after being reflected by the reflecting mirror 4. The first reflecting mirror 4 also functions as a field mask that limits the focus detection area, so that only the necessary area reflects light. The second reflecting mirror 6 ′ and the third reflecting mirror 10 may be either a plane mirror or an elliptical mirror (or a converging mirror). It is. The optically functioning portions of these components are all symmetrical with respect to the paper.

【0015】図3は絞り8の平面図である。図3におい
て絞り8は金属製あるいは樹脂製の遮光性薄板より成る
絞り、8e〜8fは絞り開口部(開口部)、8i,8j
は位置決め穴である。絞り8は位置決め穴8i,8jを
介して再結像レンズブロック9に固定している。
FIG. 3 is a plan view of the stop 8. In FIG. 3, the stop 8 is a stop made of a light-shielding thin plate made of metal or resin, 8e to 8f are stop openings (openings), 8i and 8j.
Is a positioning hole. The stop 8 is fixed to the re-imaging lens block 9 via the positioning holes 8i and 8j.

【0016】再結像レンズブロック9の光入射側は第1
の反射鏡4によって偏向した対物レンズ101の光軸上
に中心を持つ単一の凹状の非球面、射出側は互いに反対
方向に偏芯した2対の凸レンズ面9e〜9hとなってい
る。ここでレンズ面9e〜9hのすべてが回折レンズ
面、即ち特開平10−133149号公報に知られる回
折現象を用いたレンズ作用面となる。さらに、凹状球面
の中心は第1の反射鏡4によって形成される対物レンズ
101の近軸的結像面5に、また、前記2対のレンズ部
9e〜9hの中心は前記絞り開口8e〜8hの近傍にほ
ぼ等しく設定してある。このようにレンズのパワーを配
置する事によって広い波長域にわたって、また撮影範囲
の複数の領域において高精度な焦点検出を可能としてい
る。
The light incident side of the re-imaging lens block 9 is the first
A single concave aspheric surface having a center on the optical axis of the objective lens 101 deflected by the reflecting mirror 4, and the exit side is a pair of convex lens surfaces 9e to 9h eccentric in opposite directions. Here, all of the lens surfaces 9e to 9h become diffraction lens surfaces, that is, lens action surfaces using a diffraction phenomenon known in Japanese Patent Application Laid-Open No. 10-133149. Further, the center of the concave spherical surface is located on the paraxial imaging plane 5 of the objective lens 101 formed by the first reflecting mirror 4, and the center of the two pairs of lens portions 9e to 9h is located at the aperture openings 8e to 8h. Are set substantially equal to each other. By arranging the power of the lens in this manner, it is possible to perform highly accurate focus detection over a wide wavelength range and in a plurality of regions of the photographing range.

【0017】絞り8と再結像レンズブロック9との位置
関係は、図3に破線で示した如く絞り8の背後に2対の
レンズ9e〜9hが位置するようになっている。絞り開
口8e,8gの開口重心は、対物レンズ101の光軸近
傍の光路に平行であってレンズ部9e,9gの曲率中心
P6,P7を含む第1の平面(図1の紙面)PL1上に
あり、また、絞り開口8f,8hの開口重心とレンズ部
9f,9hの曲率中心は対物レンズ101の光軸近傍の
光路を含み第1の平面PL1と直交する第2の平面(図
2の紙面)PL2上にある。
The positional relationship between the stop 8 and the re-imaging lens block 9 is such that two pairs of lenses 9e to 9h are located behind the stop 8 as shown by broken lines in FIG. The aperture centroids of the aperture openings 8e and 8g are parallel to the optical path near the optical axis of the objective lens 101 and are on a first plane (paper surface in FIG. 1) PL1 including the centers of curvature P6 and P7 of the lens portions 9e and 9g. The center of curvature of the apertures 8f and 8h and the center of curvature of the lens sections 9f and 9h include a second plane (including the optical path near the optical axis of the objective lens 101) and orthogonal to the first plane PL1 (the plane of FIG. 2). ) On PL2.

【0018】焦点検出光束の光路としては、絞り開口部
8e〜8hとレンズ部9e〜9hとは同一の添字で示し
たもの同士が対応し、各開口部を通過した光束は第3の
反射鏡10を介してエリアセンサー11上に2次物体像
を形成する。尚、異なる添字の要素を通過した光束はエ
リアセンサー上の所定の位置に到達しないため焦点検出
には寄与しない。
As the optical path of the focus detection light beam, the aperture openings 8e to 8h and the lens portions 9e to 9h correspond to those indicated by the same suffix, and the light beam passing through each opening is a third reflecting mirror. A secondary object image is formed on the area sensor 11 via the reference numeral 10. It should be noted that the luminous flux passing through the elements with different subscripts does not reach a predetermined position on the area sensor and does not contribute to focus detection.

【0019】添字e,gで示した要素を通過する光束を
用いる検出系は、対物レンズの射出瞳を縦方向に分離
し、一方、添字f,hで示した要素を通過する光束を用
いる検出系は、対物レンズの射出瞳を横方向に分離す
る。以降、瞳を縦方向に分離する検出系を第1の焦点検
出系(第1の検出系)、瞳を横方向に分離する検出系を
第2の焦点検出系(第2の検出系)と呼ぶことにする。
The detection system using the light beam passing through the elements indicated by the subscripts e and g separates the exit pupil of the objective lens in the vertical direction, while detecting the light beam using the light beam passing through the elements indicated by the subscripts f and h. The system laterally separates the exit pupil of the objective lens. Hereinafter, a detection system for separating the pupil in the vertical direction is referred to as a first focus detection system (first detection system), and a detection system for separating the pupil in the horizontal direction is referred to as a second focus detection system (second detection system). I will call it.

【0020】次に以上の構成における光学作用を説明す
る。図1および図2に示した12e,12g,12f,
12hは絞り8を通過して焦点検出に使われる画面中央
への光束である。これらの光線の進む順に説明を加える
と、まず、対物レンズ101からの光束は主ミラー3を
透過した後、第1の反射鏡4によってほぼ主ミラー3の
傾きに沿った方向に反射される。第1の反射鏡4は前述
のように楕円鏡であって、二つの焦点の近傍同士を実質
的に投影関係におくことができる。
Next, the optical function of the above configuration will be described. 12e, 12g, 12f, shown in FIG. 1 and FIG.
Reference numeral 12h denotes a light beam passing through the aperture 8 and used for focus detection at the center of the screen. To add a description in the order in which these rays travel, first, the light beam from the objective lens 101 is transmitted through the main mirror 3 and then reflected by the first reflecting mirror 4 in a direction substantially along the inclination of the main mirror 3. As described above, the first reflecting mirror 4 is an elliptical mirror, and the vicinity of the two focal points can be substantially in a projection relationship.

【0021】ここでは一方の焦点検出を対物レンズ10
1の代表射出瞳位置101aの光学的な等価点に、他方
の焦点を絞り8の光学的な等価点に設定し、フィールド
レンズとしての機能を持たせている。対物レンズ101
の代表射出瞳位置101aとは、カメラに装着される種
々の投影レンズの射出窓の条件を勘案し、総合的に決定
される焦点検出系固有の仮定瞳位置である。
Here, one focus detection is performed by the objective lens 10.
An optical equivalent point of one representative exit pupil position 101a is set to an optical equivalent point of the stop 8, and the other focal point is set to have a function as a field lens. Objective lens 101
The representative exit pupil position 101a is a hypothetical pupil position unique to the focus detection system which is comprehensively determined in consideration of the conditions of the exit windows of various projection lenses mounted on the camera.

【0022】第1の反射鏡4で反射した光束は第2の反
射鏡6で再び反射し、赤外線カットフィルター7に入射
する。ここで焦点検出の精度を低下させる要因となる赤
外線が除去され、対物レンズの収差補正が十分に成され
ている波長域の光のみが背後に置かれた絞り8や再結像
レンズブロック9まで到達する。再結像レンズブロック
9の作用で収斂した光束は第3の反射鏡10を介して2
次物体像をエリアセンサー11上に形成する。
The light beam reflected by the first reflecting mirror 4 is reflected again by the second reflecting mirror 6 and enters the infrared cut filter 7. Here, infrared rays which cause a reduction in the accuracy of focus detection are removed, and only the light in the wavelength range in which the aberration of the objective lens is sufficiently corrected is placed up to the aperture 8 and the re-imaging lens block 9 placed behind. To reach. The luminous flux converged by the action of the re-imaging lens block 9 passes through the third reflecting mirror 10
A next object image is formed on the area sensor 11.

【0023】図4はエリアセンサー11上の2次物体像
22e〜22hの様子を示す図であって、格子状の物体
についての例である。再結像レンズブロック9の四つの
レンズによって四つの2次物体像が形成され、22g,
22e及び22f,22hがそれぞれ相対的位置関係を
検出すべき対の像(2次物体像)となる。
FIG. 4 is a diagram showing the state of the secondary object images 22e to 22h on the area sensor 11, and is an example of a grid-like object. Four secondary object images are formed by the four lenses of the re-imaging lens block 9, and 22g,
22e and 22f, 22h are pairs of images (secondary object images) for which relative positional relationships are to be detected.

【0024】ここで、絞り8の開口部8e,8gの間隔
と、開口部8f,8hの間隔とは異なり、間隔の広い第
2の焦点検出系の方が2次物体像の移動が敏感になるた
め、高精度な焦点検出が可能である。
Here, the distance between the openings 8e and 8g of the stop 8 and the distance between the openings 8f and 8h are different from each other, and the second focus detection system having a wider distance is more sensitive to the movement of the secondary object image. Therefore, highly accurate focus detection is possible.

【0025】物体が投影される範囲は、2次物体像22
g,22eと2次物体像22f,22hとでは異なり、
2次物体像22g,22eでは第1反射鏡4の大きさで
決定される領域に、2次物体像22f,22hではその
絞り開口部8f,8hの間隔の差異から、主ミラーや第
2反射鏡上で光線が通れるだけの領域となって2次物体
像22g,22eよりも狭くなる。また、第1の反射鏡
4が斜設されていることに起因して、各像には軸対称性
のない、かなり大きな歪みが生じる。
The range in which the object is projected is the secondary object image 22
g, 22e are different from the secondary object images 22f, 22h,
In the secondary object images 22g and 22e, the main mirror and the second reflection mirror are located in a region determined by the size of the first reflecting mirror 4 in the secondary object images 22f and 22h due to the difference in the distance between the aperture openings 8f and 8h. It is an area through which light rays can pass on the mirror, and is smaller than the secondary object images 22g and 22e. Further, due to the oblique arrangement of the first reflecting mirror 4, each image has a considerably large distortion without axial symmetry.

【0026】ただし、このような歪みが存在する場合で
あっても、次の二つの条件を満たせば、特に速やかなピ
ント合わせが必要なカメラ用の焦点検出装置としても問
題はない。
However, even if such a distortion exists, there is no problem as a focus detection device for a camera that requires particularly quick focusing if the following two conditions are satisfied.

【0027】その条件とは、正確な合焦判定を得るため
に、 .少なくとも対物レンズが合焦している際に、検出対
象となる一対のセンサー列上には物体上で同一位置に対
応する2次物体像が投影されていること、つまり、セン
サー列に直交する方向において二像の倍率差が小さいこ
と。
The conditions are as follows in order to obtain an accurate focus determination. At least when the objective lens is in focus, a secondary object image corresponding to the same position on the object is projected on a pair of sensor rows to be detected, that is, in a direction orthogonal to the sensor rows. , The difference in magnification between the two images is small.

【0028】また、正確なデフォーカス検出を得るため
に、 .対物レンズのデフォーカスが生じた際に、検出対象
となる一対のセンサー列上には物体上で同一位置に対応
する2次物体像が位置的な位相差を持って投影されてい
ること。である。
In order to obtain accurate defocus detection,. When a defocus of the objective lens occurs, a secondary object image corresponding to the same position on the object is projected with a positional phase difference on a pair of sensor rows to be detected. It is.

【0029】さて、このような観点からこの焦点検出系
について説明する。まず、瞳を縦方向に分離する第一の
焦点検出系については、第一の反射鏡4の傾きが瞳の分
離方向と一致した図1の紙面内であるために、2次物体
像22g,22eの何れについても歪みはこの紙面に対
称な扇形状となり、歪み自体の量はかなり大きい。しか
し、二像間での歪みの差に注目すれば、それは僅かであ
って、特に瞳の分離と直交する方向に相当する図の横方
向の2次物体像22gと22eの像倍率差はほとんど無
い。
Now, this focus detection system will be described from such a viewpoint. First, regarding the first focus detection system that separates the pupil in the vertical direction, since the inclination of the first reflecting mirror 4 is in the plane of FIG. Regarding any of 22e, the distortion has a fan shape symmetric to the plane of the drawing, and the amount of the distortion itself is considerably large. However, if attention is paid to the difference in distortion between the two images, the difference is small. In particular, the image magnification difference between the secondary object images 22g and 22e in the horizontal direction in the figure corresponding to the direction orthogonal to the pupil separation is almost zero. There is no.

【0030】したがって、図6の如く受光エリアのセン
サー列11e,11gを配置すれば、一方の受光エリア
11e上の任意のセンサー列上に投影された物体像22
eと対になる物体像22gは他方の受光エリア11g上
の対応するセンサー列上に投影されることになる。つま
り、上記の条件を満たす。
Therefore, if the sensor rows 11e and 11g in the light receiving area are arranged as shown in FIG. 6, the object image 22 projected on an arbitrary sensor row on one light receiving area 11e can be obtained.
The object image 22g paired with e is projected onto the corresponding sensor array on the other light receiving area 11g. That is, the above condition is satisfied.

【0031】また、2次物体像の歪みの要因は第1の反
射鏡4、すなわち瞳投影光学系にあり、第1反射鏡4の
近軸的結像面5に生じた歪みが再結像レンズブロック9
によってそのままエリアセンサー11上に投影されてい
ると言える。したがって、2次物体像22e,22gの
移動方向は絞り開口部8e,8fの並び方向であって、
エリアセンサー上では図5に示す矢印の方向である。
The secondary object image is distorted by the first reflecting mirror 4, ie, the pupil projection optical system, and the distortion generated on the paraxial imaging plane 5 of the first reflecting mirror 4 is re-imaged. Lens block 9
Can be said to be projected on the area sensor 11 as it is. Therefore, the moving direction of the secondary object images 22e and 22g is the direction in which the aperture openings 8e and 8f are arranged.
On the area sensor, it is the direction of the arrow shown in FIG.

【0032】したがって、上記のように図6の如くセン
サー列を設定することによって同時にの条件をも満た
し、これをもって2次物体像22e,22gの相対的位
置関係を比較し対物レンズのデフォーカス量を求めるこ
とが可能である。
Therefore, by setting the sensor rows as shown in FIG. 6 as described above, the same condition is satisfied, and the relative positional relationship between the secondary object images 22e and 22g is compared based on this, and the defocus amount of the objective lens is determined. Is possible.

【0033】図8にはこのように配置した受光エリアに
よ撮像面上での焦点検出領域を示す。歪みのある2次物
体像22gを矩形に整列した受光エリア11g,11e
で光電変換するために焦点検出領域31は、撮像面30
内で図のように歪んだ形状となる。
FIG. 8 shows a focus detection area on the imaging surface by the light receiving areas arranged as described above. Light receiving areas 11g and 11e in which a distorted secondary object image 22g is arranged in a rectangle.
The focus detection area 31 for photoelectric conversion by the
The shape becomes distorted as shown in the figure.

【0034】次に、瞳を横方向に分離する第2の焦点検
出系について説明する。二像間での像倍率差が瞳の分離
と直交する方向で小さくなるのは、今度は撮像面の中央
部に近い領域だけである。そこで、この部分だけに受光
エリアを限定すれば、一方の受光エリア上の任意のセン
サー列上に投影された物体像と対になる物体像は他方の
受光エリア上の対応するセンサー列上に投影され、上記
の条件を満たすことになる。
Next, a second focus detection system for separating the pupil in the horizontal direction will be described. The difference in image magnification difference between the two images in the direction orthogonal to the pupil separation is reduced only in the region near the center of the imaging surface. Therefore, if the light receiving area is limited to only this part, the object image that is paired with the object image projected on an arbitrary sensor row on one light receiving area is projected on the corresponding sensor row on the other light receiving area. Thus, the above condition is satisfied.

【0035】図7は図6に示した第1の焦点検出系の受
光エリア11g,11eに加えて第2の焦点検出系のた
めの受光エリア11f,11hを描いたエリアセンサー
11の平面図である。対となる2次物体像22f,22
hの移動方向は第1の焦点検出系と同様の理由から絞り
開口部8f,8hの並び方向であって、センサー列を図
のように設定することによりすでにの条件も満たすこ
とができている。このような受光エリアによる撮像面上
での焦点検出領域は図9に示すとおりであり、焦点検出
領域34は撮像面30内の中央部となる。
FIG. 7 is a plan view of the area sensor 11 showing the light receiving areas 11f and 11h for the second focus detection system in addition to the light receiving areas 11g and 11e of the first focus detection system shown in FIG. is there. Secondary object images 22f and 22 that form a pair
The moving direction of h is the direction in which the aperture openings 8f and 8h are arranged for the same reason as in the first focus detection system, and the above conditions can be satisfied by setting the sensor rows as shown in the figure. . The focus detection area on the imaging surface by such a light receiving area is as shown in FIG. 9, and the focus detection area 34 is a central portion in the imaging surface 30.

【0036】このようなエリアセンサー11を用いて光
量分布を電気信号として出力し、検出対象とした一対の
センサー列上の像(2次物体像)の相対的位置関係を検
出することによって、対物レンズの焦点位置を検出する
ことが可能である。この際、検出対象のセンサー列対を
適当に選択すれば、撮像面上で2次元的な結像状態の検
出ができる。
By using such an area sensor 11 to output a light amount distribution as an electric signal and detecting a relative positional relationship between images (secondary object images) on a pair of sensor rows to be detected, an object can be obtained. It is possible to detect the focal position of the lens. At this time, if the sensor row pair to be detected is appropriately selected, a two-dimensional imaging state can be detected on the imaging surface.

【0037】また、例えば図8で領域32や領域33と
して示すように、センサー列を複数の領域に分割して得
られる、より細分化されたフォーカスポイントの焦点情
報から撮像面上のデフォーカスマップを作成し、主とな
る被写体の中で最も適切な任意の位置に対物レンズのピ
ントを自動制御することも可能である。これによって被
写体中の複数の領域において焦点検出を行っている。
Further, as shown as a region 32 or 33 in FIG. 8, for example, a defocus map on the image pickup surface is obtained from the focus information of the more subdivided focus points obtained by dividing the sensor array into a plurality of regions. It is also possible to automatically control the focus of the objective lens at an arbitrary position most appropriate among the main subjects. As a result, focus detection is performed in a plurality of regions in the subject.

【0038】図10は光電変換素子のセンサー列を設け
ない領域まで含んだ2次物体像(以下「像」という)2
2−1〜22−4の様子を表した説明図である。像22
−1と像22−2は平行移動したときにほぼ重なり合う
が、像22−3と像22−4は軸PL1と折り返しの関
係にあって平行移動しても重なり合う領域は中央部のみ
である。
FIG. 10 shows a secondary object image (hereinafter referred to as an "image") 2 including a region where a sensor array of photoelectric conversion elements is not provided.
It is explanatory drawing showing the situation of 2-1 to 22-4. Image 22
-1 and the image 22-2 almost overlap when translated, but the image 22-3 and the image 22-4 are folded back in relation to the axis PL1, and the area where they overlap even when translated is only the central portion.

【0039】像22−1と像22−2を光電変換する
際、特にX方向において対応するセンサー列701−
1,701−2上には対応する像が入射する必要があ
る。同様に像22−3と像22−4を光電変換する際に
はY方向において対応するセンサー列702−3,70
2−4上には対応する像が入射する必要がある。しかし
ながら、センサー列702−3,702−4上の点P3
と点P4は対応するセンサー列上の点であるにもかかわ
らず対応する像上の点ではない。
When photoelectrically converting the image 22-1 and the image 22-2, the corresponding sensor array 701 particularly in the X direction is used.
A corresponding image needs to be incident on 1,701-2. Similarly, when photoelectrically converting the images 22-3 and 22-4, the corresponding sensor arrays 702-3 and 70-2 in the Y direction are used.
The corresponding image needs to be incident on 2-4. However, the point P3 on the sensor rows 702-3 and 702-4
Although the point P4 is a point on the corresponding sensor row, it is not a corresponding point on the image.

【0040】このような理由から、反射鏡で光路を折り
曲げた面の方向(Y方向)に瞳を分離した第1焦点検出
系は高画角まで焦点検出可能であるが、逆にこれと直交
する方向(X方向)に瞳を分離した第2焦点検出系は低
い画角しか焦点検出できない。
For this reason, the first focus detection system in which the pupil is separated in the direction (Y direction) of the plane where the optical path is bent by the reflecting mirror can detect the focus up to a high angle of view, but on the contrary, it is orthogonal to this. The second focus detection system that separates the pupil in the direction (X direction) that can perform focus detection only at a low angle of view.

【0041】そこで本実施例ではすべての撮影レンズに
対応できる小さな視差の焦点検出系を第1の検出系で行
い、特に明るいFNoを持つ撮影レンズに対応する視差
(第1の検出系の視差より大きい)の焦点検出系を第2
の検出系で行うことによって、いかなる撮影レンズでも
少なくとも広視野の測距を可能としている。
Therefore, in the present embodiment, the first detection system performs a small parallax focus detection system capable of coping with all photographing lenses, and particularly a parallax corresponding to a photographing lens having a bright FNo (from the parallax of the first detection system). Large) focus detection system
By using the detection system described above, it is possible to measure at least a wide field of view with any photographing lens.

【0042】このように本実施形態においては集光性の
反射鏡4によって対物レンズの光軸とは異なる方向に光
路を折り曲げて所定面(結像面5)上に被写体像を形成
している。
As described above, in the present embodiment, the light path is bent in a direction different from the optical axis of the objective lens by the converging reflecting mirror 4 to form a subject image on a predetermined surface (imaging surface 5). .

【0043】そして第1の検出系では光路を折り曲げる
第1平面PL1内に該対物レンズ101の瞳を分離して
対となる2次物体像を該光電変換素子11上に形成して
いる。
In the first detection system, the pupil of the objective lens 101 is separated and a pair of secondary object images is formed on the photoelectric conversion element 11 in the first plane PL1 where the optical path is bent.

【0044】又、第2の検出系では該第1平面PL1と
直交する第2平面PL2内に該対物レンズ101の瞳を
分離して対となる2次物体像を該光電変換素子上に形成
している。
In the second detection system, a pupil of the objective lens 101 is separated and a pair of secondary object images is formed on the photoelectric conversion element in a second plane PL2 orthogonal to the first plane PL1. doing.

【0045】そして第1の検出系の瞳分離による視差は
第2の検出系のそれよりも小さく、第1の検出系による
2次物体像の該光電変換素子での受光エリアは第2の検
出系によるそれよりも高画角であるようにしている。
The parallax due to pupil separation of the first detection system is smaller than that of the second detection system, and the light receiving area of the secondary object image by the first detection system at the photoelectric conversion element is the second detection system. The angle of view is set higher than that of the system.

【0046】[0046]

【発明の効果】本発明によれば以上のように、対物レン
ズ(撮影レンズ)の像面側に設ける焦点検出用の光学手
段の各要素を適切に設定することにより焦点検出を高精
度に行うことができる焦点検出装置及びそれを用いた光
学機器を達成することができる。
As described above, according to the present invention, the focus detection can be performed with high accuracy by appropriately setting each element of the focus detection optical means provided on the image plane side of the objective lens (photographing lens). And an optical apparatus using the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1の第1の焦点検出系の光路
説明図
FIG. 1 is a diagram illustrating an optical path of a first focus detection system according to a first embodiment of the present invention.

【図2】本発明の実施形態1の第2の焦点検出系の光路
説明図
FIG. 2 is a diagram illustrating an optical path of a second focus detection system according to the first embodiment of the present invention.

【図3】本発明の実施形態1の絞りの平面図FIG. 3 is a plan view of the diaphragm according to the first embodiment of the present invention.

【図4】本発明の実施形態1のエリアセンサー上の2次
物体像の様子を示す説明図
FIG. 4 is an explanatory diagram showing a state of a secondary object image on the area sensor according to the first embodiment of the present invention.

【図5】本発明の実施形態1の2次物体像の移動方向を
示す説明図
FIG. 5 is an explanatory diagram illustrating a moving direction of a secondary object image according to the first embodiment of the present invention.

【図6】本発明の実施形態1のセンサー列の配置方向を
示す説明図
FIG. 6 is an explanatory diagram showing an arrangement direction of a sensor row according to the first embodiment of the present invention.

【図7】本発明の実施形態1のエリアセンサーの平面図FIG. 7 is a plan view of the area sensor according to the first embodiment of the present invention.

【図8】本発明の実施形態1のエリアセンサーの平面図FIG. 8 is a plan view of the area sensor according to the first embodiment of the present invention.

【図9】本発明の実施形態1のエリアセンサーの平面図FIG. 9 is a plan view of the area sensor according to the first embodiment of the present invention.

【図10】本発明の実施形態1のエリアセンサーの平面
FIG. 10 is a plan view of the area sensor according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101 対物レンズ 1 光軸 2 撮像手段 3 主ミラー 4 第1の反射鏡 5 結像面 6 第2の反射鏡 7 赤外カットフィルター 8 絞り 9 2次結像レンズ 10 第3の反射鏡 11 エリアセンサー 8e〜8h 絞り開口部 9e〜9h レンズ部 PL1 第1の平面 PL2 第2の平面 Reference Signs List 101 Objective lens 1 Optical axis 2 Imaging means 3 Main mirror 4 First reflecting mirror 5 Image plane 6 Second reflecting mirror 7 Infrared cut filter 8 Aperture 9 Secondary imaging lens 10 Third reflecting mirror 11 Area sensor 8e to 8h Aperture opening 9e to 9h Lens part PL1 First plane PL2 Second plane

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 対物レンズの像面側に設けた光学手段に
より該対物レンズの瞳の異なる領域を通過した光束を用
いて被写体像に関する複数の光量分布を形成し、該複数
の光量分布の相対的な位置関係を複数の素子より成る光
電変換素子により求め、該光電変換素子からの信号を用
いて該対物レンズの合焦状態を撮影視野内の1つ又は複
数の領域において求める焦点検出装置において、該光学
手段は該対物レンズの光軸とは異なる方向に光路を折り
曲げる所定面上に被写体像を形成する集光性の反射鏡と
非球面及び回折レンズ面を備え、第1平面内に該対物レ
ンズの瞳を分離して対となる2次物体像を該光電変換素
子上に形成する第1の検出系と非球面及び回折レンズ面
を備え、該第1平面と直交する第2平面内に該対物レン
ズの瞳を分離して対となる2次物体像を該光電変換素子
上に形成する第2の検出系とを有することを特徴とする
焦点検出装置。
An optical unit provided on an image plane side of an objective lens forms a plurality of light amount distributions of a subject image using light beams passing through different regions of a pupil of the objective lens, and a relative light amount distribution of the plurality of light amount distributions. In a focus detection apparatus, a relative positional relationship is determined by a photoelectric conversion element including a plurality of elements, and a focus state of the objective lens is determined in one or a plurality of regions in an imaging visual field by using a signal from the photoelectric conversion element. The optical means includes a converging reflecting mirror, an aspheric surface, and a diffractive lens surface for forming a subject image on a predetermined surface that bends an optical path in a direction different from the optical axis of the objective lens, and includes a first plane within the first plane. A first detection system for forming a secondary object image forming a pair on the photoelectric conversion element by separating a pupil of the objective lens, and an aspherical surface and a diffractive lens surface, in a second plane orthogonal to the first plane; The pupil of the objective lens is separated And a second detection system for forming a secondary object image on the photoelectric conversion element.
【請求項2】 該第1の検出系の瞳分離による視差は該
第2の検出系のそれよりも小さく、該第1の検出系によ
る2次物体像の該光電変換素子での受光エリアは該第2
の検出系によるそれよりも高画角であることを特徴とす
る請求項1の焦点検出装置。
2. The parallax due to pupil separation of the first detection system is smaller than that of the second detection system, and the light receiving area of the secondary object image by the first detection system at the photoelectric conversion element is The second
2. The focus detection device according to claim 1, wherein the angle of view is higher than that of the detection system.
【請求項3】 請求項1の焦点検出装置からの信号を用
いて対物レンズを構成する合焦レンズを駆動させて合焦
を行い、撮像手段面上に被写体像を形成していることを
特徴とする光学機器。
3. An object image is formed on an imaging means surface by driving a focusing lens constituting an objective lens by using a signal from the focus detecting device according to claim 1 to perform focusing. And optical equipment.
JP17811498A 1998-06-10 1998-06-10 Focus detector and optical equipment using the same Pending JPH11352396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17811498A JPH11352396A (en) 1998-06-10 1998-06-10 Focus detector and optical equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17811498A JPH11352396A (en) 1998-06-10 1998-06-10 Focus detector and optical equipment using the same

Publications (1)

Publication Number Publication Date
JPH11352396A true JPH11352396A (en) 1999-12-24

Family

ID=16042911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17811498A Pending JPH11352396A (en) 1998-06-10 1998-06-10 Focus detector and optical equipment using the same

Country Status (1)

Country Link
JP (1) JPH11352396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139056A (en) * 2004-11-12 2006-06-01 Nikon Corp Focus detection module
WO2016042642A1 (en) * 2014-09-18 2016-03-24 富士通フロンテック株式会社 Distance measuring light generating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139056A (en) * 2004-11-12 2006-06-01 Nikon Corp Focus detection module
JP4569268B2 (en) * 2004-11-12 2010-10-27 株式会社ニコン Focus detection module and camera
WO2016042642A1 (en) * 2014-09-18 2016-03-24 富士通フロンテック株式会社 Distance measuring light generating device
JPWO2016042642A1 (en) * 2014-09-18 2017-04-27 富士通フロンテック株式会社 Ranging light generator

Similar Documents

Publication Publication Date Title
CN100533199C (en) Focus detection apparatus, optical apparatus and imaging system
EP0782026B1 (en) Focus detecting apparatus
US5864721A (en) Focus detecting apparatus
US5771413A (en) Focus detecting apparatus
JP3363683B2 (en) Focus detection device and optical apparatus using the same
JP2006071950A (en) Optical equipment
US4580042A (en) Focusing position detecting device using a sector shaped mirror
JPH11352396A (en) Focus detector and optical equipment using the same
US6272291B2 (en) Focus detecting device
JPH07333493A (en) Focus detector
JP3404066B2 (en) Focus detection device
JP3232692B2 (en) Focus detection device
JP4323592B2 (en) Focus detection device
JPH1114896A (en) Focus detector
JP3736266B2 (en) Focus detection device
JPH01266503A (en) Focus detecting device
WO2022123710A1 (en) Wavefront measurement device and wavefront measurement method
JPH11271602A (en) Focus detecting device and optical equipment using the same
JP3179162B2 (en) Focus detection device
JP3912891B2 (en) Focus detection device and optical instrument using the same
JPH023168B2 (en)
JPS5942508A (en) Focal position detector
JP3359682B2 (en) Focus detection device
JPH0378715A (en) Optical system for distance measurement
JPH02910A (en) Focus detection optical device