JPS60233610A - Range finding device - Google Patents

Range finding device

Info

Publication number
JPS60233610A
JPS60233610A JP59090323A JP9032384A JPS60233610A JP S60233610 A JPS60233610 A JP S60233610A JP 59090323 A JP59090323 A JP 59090323A JP 9032384 A JP9032384 A JP 9032384A JP S60233610 A JPS60233610 A JP S60233610A
Authority
JP
Japan
Prior art keywords
light
center
subject
screen
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59090323A
Other languages
Japanese (ja)
Inventor
Shuichi Tamura
秀一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59090323A priority Critical patent/JPS60233610A/en
Publication of JPS60233610A publication Critical patent/JPS60233610A/en
Priority to US07/102,828 priority patent/US4748469A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To obtain range finding information matching with a main subject by providing a center weighting means for weighting range finding information on the periphery of the center part of a photographic image plane more than on other parts. CONSTITUTION:A projection lens 2 is formed of three lenses with different optical axes in one body and signal light emitted by an infrared-light emitting element 1 is split and projected on three different places, i.e. the center and peripheral parts of the photographic image plane and all reflected light beams are incident on a photodetecting element 4. The photodetecting element 4 uses a semiconductor position detector and detects the incidence position of reflected light which changes with subject distance to find the range. Then, this semiconductor position detector varies in the rate of outputs of both terminals according to the photodetection position of the incident light and the ratio of the outputs is detected to calculate the subject range. For the purpose, a circuit A is connected as a concrete processing circuit to the photodetecting element 4. Therefore, the range finding information on the subject is obtained without prefocusing operation, etc.

Description

【発明の詳細な説明】 本発明は画面内の複数箇所を、JJ距可能な測距装置の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a distance measuring device capable of measuring JJ distances at multiple locations within a screen.

従来、特にカメラ忙於いて焦点検出を自動的に行なう為
、被写体までの距離に対応した情報を検出する所謂測距
装置は、撮影画面の中央部付近の被写体に対してのみ上
記検出を行なっていた。従って被写体を撮影画面の端に
置くような構図の場合、最初その被写体を撮影画面の中
央に設けられた測距マーク内に入れ、まずその被写体の
測距だけを行なってから、その後該被写体を撮影画面の
端に置き直して撮影するといった所謂プリフォーカスと
いう操作が必要であった。
Conventionally, so-called distance measuring devices that detect information corresponding to the distance to the subject in order to automatically perform focus detection, especially when the camera is busy, have performed the above detection only for subjects near the center of the shooting screen. . Therefore, in the case of a composition where the subject is placed at the edge of the shooting screen, first place the subject within the distance measurement mark set in the center of the shooting screen, measure the distance of the subject only, and then move the subject. It was necessary to perform a so-called prefocus operation, in which the camera was placed at the edge of the photographic screen and photographed.

しかし、この操作は初心者にはわがj)K<<。However, this operation is difficult for beginners.

また自動焦点検出装置の性能が良くなった今日、ピンボ
ケ写真のほとんどが、このプリフォーカスを忘れたり、
また誤操作を行なったために起きている。
Also, today, as the performance of automatic focus detection devices has improved, most of the out-of-focus photos are caused by forgetting to prefocus or
This also occurs due to an incorrect operation.

そとで、本出願人は、特願昭58−145068号に於
いて撮影画面の種々の位置に向けてスポット光を投射し
、その反射光から複数の被写体距離を検出するととKよ
って上記プリ7オーカスのいらない自動焦点検出装置を
提案している。
In Japanese Patent Application No. 58-145068, the present applicant proposed that the above-mentioned pre-processing method would be implemented by projecting spot light toward various positions on the photographic screen and detecting a plurality of subject distances from the reflected light. 7 We are proposing an automatic focus detection device that does not require an orcus.

ところが特願昭58−145068号に於いて提案され
ているものは検出した上記複数の被写体距離を単に平均
してその距離に被写体があるものとして撮影レンズのピ
ント位置を対応させている為、撮影者の意図した被写体
とそうでない被写体が同様に扱われ全体的にはピントが
合うものの撮影者の意図する主被写体に対して十分満足
できるピントが得られないといった欠点があった。
However, the method proposed in Japanese Patent Application No. 58-145068 simply averages the plurality of detected subject distances and assumes that the subject is at that distance, and matches the focus position of the photographing lens. This method has the drawback that the subject intended by the photographer and the subject not intended for the photograph are treated in the same way, and although the overall focus is in focus, it is not possible to obtain a sufficiently satisfactory focus on the main subject intended by the photographer.

本発明は以上の事情に鑑みなされたもので、画面内の複
数箇所を測距可能な測距装置に於いて、上記画面内の中
央部付近の測距情報を他の部分の測距情報より重く扱う
為の中央重点手段を設けることにより、主被写体が画面
の中央に置いた場合には、従来の自動焦点検出装置に遜
色なくその主被写体にピントが合う様にすると共に主被
写体が画面の端にある場合にもその主被写体を一旦画面
の中央に設けられた測距マーク内に入れて測距をする様
な操作を必要としない機能性操作性にきわめて優れた測
距装置を提供しようとするものである。
The present invention has been made in view of the above circumstances, and includes a distance measuring device capable of measuring distances at multiple points within a screen, in which distance measurement information near the center of the screen is compared to distance measurement information in other parts. By providing a center focusing means for heavy handling, if the main subject is placed in the center of the screen, it will be able to focus on the main subject as well as conventional automatic focus detection devices, and the main subject will be in the center of the screen. We would like to provide a distance measuring device with excellent functionality and operability that does not require operations such as placing the main subject within the distance measuring mark provided in the center of the screen to measure the distance even when the main subject is at the edge. That is.

第1図は本発明に係る測距装置の概略構成図で、1は投
光素子としての赤外発光素子、2は該赤外発光素子1の
光束を被写体に向は投射するだめの投光光学系としての
投光レンズで赤外発光素子1から発せられた投射光を撮
影画面の3つのポイントに向けて投射すべく異った方向
に3つの投射光束が出て行くように光軸の異なる3個の
レンズが一体的に形成されている。3は被写界面に投射
された該投射光束の反射光を受光素子4に導く為の受光
光学系としての受光レンズで投光レンズ2と同様の光軸
の異なる3個のレンズが一体的に形成され、被写界面上
に投射された3つの投射光束が全て受光素子4に入射す
るよう形成しである。
FIG. 1 is a schematic configuration diagram of a distance measuring device according to the present invention, in which 1 is an infrared light emitting element as a light projecting element, and 2 is a light projector for projecting the luminous flux of the infrared light emitting element 1 toward a subject. The projection lens as an optical system projects the projection light emitted from the infrared light emitting element 1 toward three points on the photographic screen by adjusting the optical axis so that three projection light beams exit in different directions. Three different lenses are integrally formed. 3 is a light-receiving lens as a light-receiving optical system for guiding the reflected light of the projected light beam projected onto the object surface to the light-receiving element 4, which is made up of three lenses with different optical axes, similar to the light-emitting lens 2, integrated together. The three projection light beams formed and projected onto the object surface are all formed to enter the light receiving element 4.

ここで、投光レンズ203つの光軸の成す角度と受光し
/ズ3の3つの光軸の成す角度は3次元的に見て同一で
ある。即ち投光レンズ203つの光軸を平行移動するこ
とによって受光レンズ403つの光軸と重ね合せること
ができるのである。
Here, the angle formed by the three optical axes of the light projecting lens 20 and the angle formed by the three optical axes of the light receiving lens 3 are the same from a three-dimensional perspective. That is, by moving the three optical axes of the light projecting lens 20 in parallel, it is possible to overlap the three optical axes of the light receiving lens 40.

本実施例では受光素子4に半導体装置検出器(PSD)
が用層られておシ、受光素子4に入射する投射光束の反
射光である信号光の入射位置により被写体距離を検知す
るものである。実際の測距の為の処理回路は例えば特開
昭54−44809号等に開示されているものがそのま
ま使用できるのでここではその説明は省略する。
In this embodiment, the light receiving element 4 is a semiconductor device detector (PSD).
The distance to the object is detected based on the incident position of the signal light, which is the reflected light of the projected light flux that enters the light receiving element 4. As a processing circuit for actual distance measurement, the one disclosed in, for example, Japanese Patent Application Laid-Open No. 54-44809 can be used as is, so its explanation will be omitted here.

本発明では3つの投射光束を投射しているが、各投射光
束が同一距離の被写体に当った場合、その反射光は受光
素子4の同一位置に入射することになりその入射位置か
ら被写体距離が検知出来るのである。そして投射光束が
それぞれ異なった距離の被写体に当たった場合その反射
光は受光素子2の各々異なる位置に入射するが、その場
合それらの入射位置の入射光量の加重平均位置が被写体
距離として検知されるようになっている。
In the present invention, three projection light beams are projected, but if each projection light beam hits a subject at the same distance, the reflected light will be incident on the same position of the light receiving element 4, and the distance from the incident position to the subject will be It can be detected. When the projected light beam hits objects at different distances, the reflected light enters the light receiving element 2 at different positions, but in that case, the weighted average position of the amount of incident light at those incident positions is detected as the object distance. It looks like this.

ところで上記撮影画面の測距される3つのポイントのう
ち1つのポイントだけが被写体をとらえ、他の2つのポ
イントは上記被写体の背景を測距している様な場合(実
際はこうなる場合がほとんどである)被写体距離として
検出されるものは、従来であると上記背景の影響を受け
て、上記本来の被写体距離よりもかなり遠方になってし
まうといった事態が生じていた。この為この様な測距装
置をカメラの自動焦点検出装置として用いる場合、本来
撮影者が意図していた被写体にピントの合った写真が得
られなくなってしまうといった不都合があった。
By the way, if only one of the three points on the above shooting screen is measuring the subject, and the other two points are measuring the background of the subject (in reality, this is almost always the case). In the past, the detected object distance was affected by the background and was much further away than the original object distance. For this reason, when such a distance measuring device is used as an automatic focus detection device of a camera, there is an inconvenience that it becomes impossible to obtain a photograph in which the subject originally intended by the photographer is in focus.

そこでこの撮影者が撮影を意図する被写体について考察
し′てみる忙、撮影をする場合一般に被写体は画面の中
央に置く場合がほとんどで、事実、スナップ撮影の7〜
8割は、被写体を画面の中央に置いて撮影している。従
って撮影画面の測距される3つのポイントのうち撮影画
面の中央部分を測距したその距離位置にあるものに常に
適正なピントが合うような距離情報が得られれば大低の
写真は満足できるものとなる。
So, this photographer is busy thinking about the subject he intends to photograph, and when taking a picture, he generally places the subject in the center of the screen.
80% of the time, the subject is placed in the center of the screen. Therefore, if you can obtain distance information that allows you to always properly focus on the object at the center of the shooting screen among the three points that are measured from the shooting screen, you will be satisfied with high-low shots. Become something.

第2図に被写体に反射された反射光の強さと背景に反射
された反射光の強さをパラメーターに被写体距離を1.
5鵠とし背景の距離を徐々に遠ざけた場合のピントのボ
ケ具合を焦点距離f=38WII11開放FナンバF2
.8の撮影レンズについて計算したグラフを示す。
Figure 2 shows how the distance to the subject is set to 1.
The degree of blurring when the background is gradually moved away from the focal length f = 38 WII 11 aperture F number F2
.. A graph calculated for No. 8 photographic lens is shown.

尚、上記反射光の強さは、距離の2乗にほぼ反比例し、
反射率に比例する。第2図に於いて縦軸は被写体像の錯
乱円径、横軸は背景の距離を示している。図中■は同一
距離に対する被写体に反射された反射光と背景で反射さ
れた反射光の光量比を1=4と設定した時のグラフ、■
は同光量比を1:2とした時のグラフ、■は同光量比を
1:1とした時のグラフ、■は同光量比を2二1とした
時のグラフ、■は従来の自動焦点検出装置で起こる背景
にピントが合った時の被写体の錯乱円径である。
The intensity of the reflected light is approximately inversely proportional to the square of the distance.
Proportional to reflectance. In FIG. 2, the vertical axis represents the diameter of the circle of confusion of the subject image, and the horizontal axis represents the distance to the background. In the figure, ■ is a graph when the light intensity ratio of the reflected light reflected by the subject and the reflected light reflected by the background for the same distance is set as 1 = 4.
is a graph when the same light amount ratio is set to 1:2, ■ is a graph when the same light amount ratio is set to 1:1, ■ is a graph when the same light amount ratio is set to 221, ■ is a graph when the same light amount ratio is set to 221, and ■ is a graph when the same light amount ratio is set to 1:1. This is the diameter of the circle of confusion of the subject when the background is in focus, which occurs in the detection device.

一般的に35w1カメラの許容錯乱円径は0.03〜0
.035と言われているが、一般的な撮影条件等を考慮
すると錯乱円径は0.05程度まで許容出来る。その他
、背景と被写体の反射率の相違等を考慮すると同一距離
、同一反射率での画面中央に対応する反射光と他の2ケ
所の反射光の強度比が中央℃反射光≧他の2ケ所の反射
光となることが必要となる。
Generally, the allowable circle of confusion diameter for 35w1 camera is 0.03 to 0.
.. 0.035, but considering general photographing conditions etc., the diameter of the circle of confusion can be tolerated up to about 0.05. In addition, considering the difference in reflectance between the background and the subject, the intensity ratio of the reflected light corresponding to the center of the screen and the reflected light at the other two locations at the same distance and the same reflectance is the center °C reflected light ≧ the other two locations It is necessary that the reflected light be .

つまり、画面の中央と他の2ケ所を測距するものに於て
は画面中央以外の1ケ所当りの測距情報としての反射光
量を画面中央の反射光量の半分以下処することが必須の
条件になってくる。
In other words, when measuring the distance between the center of the screen and two other points, it is an essential condition that the amount of reflected light as distance measurement information for each point other than the center of the screen must be less than half of the amount of reflected light at the center of the screen. It's coming.

一方画面中央以外の測距情報に距離情報としての効果を
出すためには画面中央以外の反射光量がある程度以上必
要であるのでこれについて論じてみる。
On the other hand, in order for distance measurement information other than the center of the screen to have the effect of being distance information, a certain amount of reflected light from areas other than the center of the screen is required, so this will be discussed.

従来の自動焦点検出装置を用いて失敗した場合の多くを
占める2人並んだ撮影の場合を考えると、画面中央の投
射光束が背景に当り、他2ケ所の投射光束が本来の被写
体に当ると想定出来る。この状態では従来の中央部の゛
み測距する自動焦点検出装置に於て、第2図■のグラフ
で示す錯乱円径となりピンボケ写真となる場合が多かっ
た。3ケ所測距ではこれをいくらかでも改善出来れば効
果があると言えるのであるが、錯乱円径0.3のものが
0.2になったとしてもピンボケはピンボケである。一
般的な屋外での撮影ではほとんどの場合FナンバF5.
6程度以下に絞り込むと考えられるので錯乱円径も半分
以下となり、第2図の■程度までは効果有りと判定出来
る。つまり画面中央以外の1ケ所当りの反射光強さを画
面中央の反射光の強さの178程度以上にすれば有効で
あるといえる。画面中央部の反射光強度と他の個所の反
射光強度を変える手段、即ち中央重点手段としては第1
図に於て投光レンズ2の撮影画面のほぼ中央をねらう光
軸を持つレンズ部分の面積と他の光軸を持つレンズ部の
面積を変えれば良く、基本的には面積に比例して反射光
強度が変化する。受光レンズ3も同様のことが言える。
Considering the case where two people are photographed side by side, which is a common occurrence when conventional automatic focus detection devices fail, the projected light beam at the center of the screen will hit the background, and the projected light beams from two other places will hit the original subject. I can imagine it. In this state, in conventional automatic focus detection devices that measure the distance from the center, the diameter of the circle of confusion as shown in the graph (2) in Figure 2 often results in out-of-focus photographs. In three-point distance measurement, if this can be improved to some extent, it can be said to be effective, but even if the diameter of the circle of confusion changes from 0.3 to 0.2, it is still out of focus. For general outdoor photography, the F number is F5 in most cases.
Since the diameter of the circle of confusion is considered to be narrowed down to about 6 or less, the diameter of the circle of confusion is also less than half, and it can be determined that the effect is effective up to about ■ in Fig. 2. In other words, it can be said that it is effective to make the intensity of reflected light at each point other than the center of the screen about 178 times higher than the intensity of reflected light at the center of the screen. The first means for changing the intensity of reflected light at the center of the screen and the intensity of reflected light at other parts, that is, center-weighted means, is
In the figure, all you have to do is change the area of the lens part with the optical axis aimed at approximately the center of the shooting screen of the projection lens 2 and the area of the lens part with other optical axes, and basically the reflection is proportional to the area. Light intensity changes. The same can be said of the light receiving lens 3.

トータルの信号光量の比は投光レンズの面積比と受光レ
ンズの面積比の掛算値となる。
The ratio of the total amount of signal light is the product of the area ratio of the light emitting lens and the area ratio of the light receiving lens.

第1の装置に於ける具体的な投光レンズ又は受光レンズ
の作成法としては第3図に示す様に同一性能の3枚のレ
ンズ5,6.7からそれぞれレンズの一部を切り出して
つなぎ合わせ、3つの光軸a、b、cを有する合成レン
ズ8とすればよい。
As shown in Fig. 3, a specific method for making the light emitting lens or light receiving lens in the first device is to cut out a part of each lens from three lenses 5, 6, and 7 of the same performance and connect them. In combination, a composite lens 8 having three optical axes a, b, and c may be obtained.

第4図は本発明の他の実施例を示すもので、投射光束を
3つの方向に分けるのにミラーを用いた実施例である。
FIG. 4 shows another embodiment of the present invention, in which a mirror is used to divide the projected light beam into three directions.

図中9は第1図と同様の赤外発光素子、10は投光レン
ズで光軸け1つしか有していない。
In the figure, 9 is an infrared light emitting element similar to that in FIG. 1, and 10 is a projection lens having only one optical axis.

11.12は反射ミラーで赤外発光素子9からの投射光
束を反射させ、被写界面P上に投光スポット像す、cを
形成する。尚、aは反射ミラー11.12を介さずに赤
外発光素子9から直接投射された投射光束忙よって形成
される投光スポット像である。13は受光レンズで投光
レンズ10と同様光軸は1つしか有していない。
Reference numeral 11 and 12 refer to a reflecting mirror that reflects the projected light flux from the infrared light emitting element 9 to form a projected light spot image c on the object surface P. Note that a is a projected light spot image formed by a projected light beam directly projected from the infrared light emitting element 9 without passing through the reflecting mirrors 11 and 12. 13 is a light receiving lens which, like the light projecting lens 10, has only one optical axis.

14は第1図と同様の受光素子でみる。被写界面P上の
スポット像aは受光レンズ13により、直接受光素子1
4上に結像され、被写界面P上の投光スポット像すは受
光レンズ13を通り、ミラー15により反射されて受光
素子14に結像される。また被写界面P上の投光スポッ
ト像Cは同じく受光レンズ13を通シミラー1′6によ
り反射され、受光素子14に結像される。
14 is a light receiving element similar to that shown in FIG. A spot image a on the object surface P is directly transmitted to the light receiving element 1 by the light receiving lens 13.
The projected light spot image on the object surface P passes through the light-receiving lens 13, is reflected by the mirror 15, and is imaged on the light-receiving element 14. Further, the projected light spot image C on the object surface P similarly passes through the light receiving lens 13 and is reflected by the mirror 1'6, and is imaged on the light receiving element 14.

この場合の各投光スポット像の強度(測距に対する寄与
率)は上記レンズの有効面積と上記ミラーの反射面の大
きさで調整可能であり、赤外発光素子9の発光分布およ
び上記ミラーの反射率等を考慮して、反射光量比が前述
の範囲内に入るように各面積を設定すれば良い。
In this case, the intensity of each projected spot image (contribution rate to distance measurement) can be adjusted by the effective area of the lens and the size of the reflective surface of the mirror, and the light emission distribution of the infrared light emitting element 9 and the Each area may be set in consideration of reflectance and the like so that the reflected light amount ratio falls within the above range.

ところで−膜外来光の影響を極力少なくするためには投
光系と受光系の各伝達光量比の配分に注意する必要があ
る。
By the way, in order to minimize the influence of extraneous light on the membrane, it is necessary to pay attention to the distribution of the transmission light amount ratio between the light projecting system and the light receiving system.

いま、光源の単位立体角当りのエネルギーが一定でE1
投光レンズのほぼ画面中心をねらう光軸を持つ部分が覆
う立体角をPc、その他の光軸を持つ部分の各々が覆う
立体角をPs、同様に受光レンズのほぼ6面中心をねら
う光軸を持つ部分の被写体からの立体角をRe、その他
の光軸を持つ部分の各々が覆う立体角をR8とし、被写
体面上の外光強度をNとすると、受光素子に入射する反
射光量8pは Sp = (Pc−助士P8・R,s・2)・S(被写
体の反射率1) 外来光量Npは Np= (Rc+Rs −2) −N
トータルの反射光量対外来光量比は8 p/Npである
Now, if the energy per unit solid angle of the light source is constant, E1
Pc is the solid angle covered by the part of the light emitting lens that has an optical axis aimed at approximately the center of the screen, Ps is the solid angle covered by each of the other parts with optical axes, and similarly, the optical axis is aimed at approximately the center of the 6 sides of the light receiving lens. If the solid angle from the object of the part with the optical axis is Re, the solid angle covered by each of the other parts with the optical axis is R8, and the external light intensity on the subject surface is N, then the amount of reflected light incident on the light receiving element 8p is Sp = (Pc - assistant P8・R, s・2)・S (reflectance of subject 1) External light amount Np is Np= (Rc+Rs -2) -N
The total ratio of reflected light amount to external light amount is 8 p/Np.

また画面のほぼ中央部をねらった投射光量と他の部分を
ねらった投射光量の比をXとするとx=Pc−Rc/ 
(Ps−Rs) Xを一定とした時にSp/Np を最大になるような投
光、受光の中央1周辺の光量比を選べば良い。その結果
はPc/Ps : 、/’;i 、 Rc/ Rs =
〆マである。つまり、被写体面上の中央部分と他の部分
の反射光量の比がメT:1となるようにし、被写体面上
が均一輝度であった時に画面のほぼ中心部の光軸を有す
る受光レンズ部分を通過した光量と、その他の光軸を持
った受光レンズ部分を通過した光量比がメマ:1となる
ようKすれば良いのである。
Also, if the ratio of the amount of projected light aimed at approximately the center of the screen and the amount of projected light aimed at other parts is X, then x=Pc-Rc/
(Ps-Rs) It is sufficient to select the light amount ratio around the center 1 of light emission and light reception that maximizes Sp/Np when X is constant. The result is Pc/Ps: , /';i, Rc/Rs =
It's the last time. In other words, the ratio of the amount of reflected light between the central part on the subject plane and other parts is set to T:1, and when the subject plane has uniform brightness, the light-receiving lens has an optical axis almost at the center of the screen. The ratio of the amount of light passing through the lens to the amount of light passing through the light-receiving lens portion having the other optical axis is mema:1.

尚、本実施例では複数のポイントを測距する為投光、受
光レンズに複数の光軸を持たせたり、或はミラーを使っ
たりしているがこれはプリズム等を用いるようにしたも
のでもよい。この場合の反射光量比の選択方法としては
反射面の面積あるいは反射率等で調節出来る。
In this embodiment, in order to measure distances at multiple points, the light emitting and receiving lenses have multiple optical axes, or mirrors are used, but this can also be done by using a prism or the like. good. In this case, the ratio of the amount of reflected light can be selected by adjusting the area or reflectance of the reflecting surface.

また、投射光束は撮影画面の3つのポイントの向けて投
射する場合に限らず、必要に応じて測距ポイントをいく
つにしても本発明力;適用できることは言うまでもない
Furthermore, it goes without saying that the present invention is applicable not only to the case where the projected light beam is projected to three points on the photographic screen, but also to any number of distance measurement points as required.

以上説明したように、本発明によれば多数箇所を測距す
る測距装置に於いて、被写体lx中央部のみにある場合
にも従来の中央部のみ測距する測距装置に比してもほぼ
同等の性能が得られ、一方画面の中央部に被写体がない
場合にもその被写体に良好な焦点調節状態が得られ、従
来の画面中央部のみを測距する自動焦点検出装置の最大
の欠点を解消するとともに、画面の複数箇所の測距情報
を得ることによる新たな弊害の発生をも防止することが
出来、測距装置としてはきわめて有効なものとなる。
As explained above, according to the present invention, in a distance measuring device that measures distances at multiple locations, even when the object lx is located only at the center, compared to conventional distance measuring devices that measure distance only at the center. Almost the same performance can be obtained, and on the other hand, even when there is no subject in the center of the screen, good focus adjustment can be obtained for the subject, which is the biggest drawback of conventional automatic focus detection devices that measure distance only in the center of the screen. It is possible to solve this problem and also prevent the occurrence of new problems caused by obtaining distance measurement information from a plurality of locations on the screen, making it extremely effective as a distance measurement device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る測距装置の一実施例を示す概略構
成図、第2図はピントのボケに対する被写体と背景の関
係を示すグラフ、第3図は第1図の投、受光レンズの作
成方法を示す説明図、第4図は本発明に係る測距装置の
他の実施例を示す概略構成図。 1.9・・・赤外発光素子、2.10・・・投光レン、
(,3,13・・・受光レンズ、4.14・・・受光素
子、11.12.15.16・・・反射ミラー。 貨景#距離 タ 67 手続補正書(自発) 昭和60年 5月14日 特許庁長官 志 賀 学 殿 昭和59年 特許願 第 90323 号2、発明の名
称 カメラの測距装置 3、補正をする者 事件との関係 特許出願人 住所 東京都大田区下丸子3−30−2名称 (100
)キャノン株式会社 代表者 賀 来 龍 三 部 4、代理人 居所 〒146東京都大田区下丸子3−30−25、補
正の対象 明細書及び図面 6、補正の内容 (1)明細書全文をMI紙のとおり補正する。 (2)第1図乃至第4図を別紙のとおり補正する。 訂正明細書 1、発明の名称 カメラの測距装置 2、特許請求の範囲 撮影画面の複数箇所を測距する測距装置に於いて、上記
撮影画面の中央部付近の測距情報を他の部分の測距情報
よシ重く扱う為の中央重点手段を設けたことを特徴とす
るカメラの測距装置。 3、発明の詳細な説明 (産業上の利用分野) 本発明は撮影画面の複数箇所を測距可能なカメラの測距
装置の改良に関するものである。 (従来波*> 従来カメラに於いて、焦点検出を自動的に行なう為に被
写体までの距離に対応した情報を検出する所謂測距装置
は、撮影画面の中央部付近の被写体に対してのみ測距を
行なっていた。従って被写体を撮影画面の端に置くよう
な構図の場合、最初その被写体をファインダーの晧中央
に設けられた測距マーク内に入れ、該被写体に対して測
距のみを行なってその測距情報を保持した後、該被写体
をファインダーの端に置き直して撮影動作に移行すると
いった所謂プリ7オーカスの操作が必要であった。 しかし、このプリフォーカス操作は初心者にはわかりに
<<、また自動焦点検出装置の性能 □が良くなった今
日、ピンボケ写真のほとんどが、このプリフォーカス操
作を忘れたシ、誤操作したシしたために起きている。 そこで、本出願人は、特願昭58−145068号に於
いて撮影両面の種々の箇所に向けてスポット光を投射し
、その反射光から複数の測距情報を得ることによって上
記プリフォーカス操作のいらない自動焦点検出装置を提
案している。ところが特願昭58−145068号に於
いて提案されているものは検出した複数の測距結果を単
に平均してその平均した距離に撮影レンズのピント位置
を対応させている為、撮影者の意図した被写体とそうで
ない被写体が同等に扱われ、全体的にはピントが合うも
のの撮影者の意図する主被写体に対して十分満足できる
ピントが得られないといった欠点があった。 (発明の、目的) 本発明は以上の事情に鑑み為されたもので撮影画面の複
数箇所を測距可能な測距装置に於いて撮影画面内の中央
部付近の測距情報を他の部分の測距情報よシ重く扱う為
の中央重点手段を設け、主被写体が撮影画面の中央に存
在する場合には撮影画面の中央部のみを測距するように
構成された従来の自動焦点検出装置に比して遜色のない
ピント合せを可能にすると共に主被写体が撮影画面の端
に存在する場合にはプリフォーカス操作等を行なわなく
とも主被写体にピントの合う機能性並びに操作性の極め
て優れたカメラの測距装置を提供しようとするものであ
る。 (実施例) 以下本発明の一実施例を図面を基に説明する。 第1図は本発明に係るカメラの測距装置の戦略構成図で
、1は投光素子としての赤外発光素子、2は該赤外発光
素子1からの信号光を被写体に向は投射するための投光
光学系としての投光レンズで、光軸の異なった3個のレ
ンズが一体的に形成されておシ赤外発光素子1から発せ
られた信号光を撮影画面の中央及び周辺の3つの異なっ
た箇所に向けて分割、投射する。3は撮影画面の3つの
箇所に投射された上記信号光の被写体による反射光を受
光素子4に導く為の受光光学系としての受光レンズで、
投光レンズ2と同様に、光軸の異なる3個のレンズが一
体的に形成され、上記反射光を全て受光素子4に入射さ
せる。 ここで、投光レンズ2の3つの光軸の成す角度と受光レ
ンズ303つの光軸の成す角度は3次元的に見て同一で
ある。即ち投光レンズ2の3つの光軸を平行移動するこ
とによって受光レンズ4の3つの光軸と重ね合せること
ができるのである。 本実施例では受光素子4に半導体装置検出器(PSD)
が用いられておシ、被写体距離に応じて変化する上記反
射光の入射位置を上記受光素子4が検知することによっ
て測距が行なわれる。半導体装置検出器では入射光の受
光位置に応じて両端の出力の割合が変化し、この出力の
割合を検知する゛ことで被写体距離がめられる。 その為の具体的処理回路としては特開昭57−4481
9号公報等に開示されているような回路Aを受光素子4
に接続すればよい。 本実施例では受光素子4は撮影画面の3つの箇所から反
射光を受光することになるが、上記3つのポイントにあ
る被写体が、いずれも同一被写体距離である場合、反射
光は受光素子4の同一位置に入射することになシ、それ
らの入射位置がそのまま被写体距離として検知される。 又、撮影画面の3つの箇所にある被写体がそれぞれ異な
った被写体距離にある場合、反射光は受光素子4の各々
異なる位置に入射するが、その場合それらの入射位置の
入射光量の加重平均位置が被写体距離として検知される
ことになる。 ところで上記撮影画面の測距される3つの箇所のうちl
yI所だけが被写体をとらえ、他の2つの箇所は上記被
写体の背景を測距している様な場合(実際はこうなる場
合がほとんどである)被写体距離として検出されるもの
は、従来であると上記背景の影響を受けて、上記本来の
被写体距離よシもかなシ遠方になってしまうといった事
態が生じていた。この為この様な測距装置をカメラの自
動焦点検出装置として用いる場合、本来撮影者が意図し
ていた被写体に対して十分満足できるようなピント状態
の写真が得られなくなるといった不都合があった。 そこでこの撮影者が撮影を意図する被写体について考察
してみるに、撮影をする場合一般に被写体は画面の中央
に置く場合かはとんどで、事実、スナップ撮影の7〜8
割は、被写体を画面の中央に置いて撮影している。従っ
て撮影画面の測距される3つの箇所のうち撮影画面の中
央部付近を測距したその距離位置にあるものに常に適正
にピントが合うような距離情報が得られれば大抵の写真
は満足できるものとなる。 そこで本発明では中央重点手段を設けこれによシ、撮影
画面の測距される3つの箇所のうち撮影画面の中央部付
近に対する測距情報を他の部分の測距情報よシ重視し、
撮影画面の中央部分に存在する被写体を中心としたピン
ト合わせが行なえるようにしている。 本実施例では中央重点手段として投光レンズ2に於いて
撮影画面の中央部付近に向けて信号光を投射するレンズ
部分の面積を、撮影画面の周辺部に向けて信号光を投射
するいずれのレンズ部分の面積よシも大きく設定してい
る。撮影画面の3つの箇所に向けて分割投射される信号
光の光量の割合は、投光レンズ2の対応するレンズ部分
の面積の割合に比例し、従って反射光の光量の割合も基
本的には投光レンズ2の対応するレンズ部分の面積の割
合に比例する。従って撮影画面の中央部付近に存在する
被写体からの反射光が撮影画面の周辺部に存在する被写
体からのいずれの反射光よシも多くの反射光量を受光素
子4に入射する。PSDで構成された受光素子4は入射
位置の入射光量に応じた加重平均値が被写体距離として
検知されるので反射光の多く入射する撮影画面中央部付
近の被写体に関する測距情報が撮影画面周辺部の被写体
に関する測距情報よシ重く扱かわれ、結果として受光素
子4からの出力は撮影画面の中央部付近に存在する被写
体を中心としたピント合わせに適する被写体距離情報と
なる。 尚、上記説明では投光レンズについて撮影画面の中央部
付近に向けて、信号光を投射するレンズ部分の面積を他
のいずれのレンズ部分よ)も大きく設定することによっ
て中央重点手段を構成することを述べたが、受光レンズ
3についても同様のことが言える。すなわち受光レンズ
3に於ける撮影画面の中央部付近からの反射光を受ける
レンズ部分を他のいずれのレンズ部分の面積よりも大き
く設定することで投光レンズ2の場合と同様に中央重点
手段が構成できる。 尚、受光素子4に入射するトータルの信号光量の比は投
光レンズ2の面積比と受光レンズ3の面積比の掛算値と
なる。 第1の装置に於ける投光レンズ2又は受光レンズ3の具
体的な作成法としては第2図に示す様に同一性能の3枚
のレンズ5,6.7からそれぞれレンズの一部を切シ出
してつなぎ合わせ3つの光軸a、b、cを有する合成レ
ンズ8とすればよい。 次に投光レンズ2又は受光レンズ3に於いて撮影画面の
中央部付近に向けて信号光を投射するレンズ部分の面積
と他のレンズ部分の面積の割合について更に述べる。 第3図に被写体に反射された反射光の光量と背景に反射
された反射光の光量をパラメーターに被写体距離を1.
5mとし背景の距離を徐々に遠ざけた場合のピントのボ
テ具合を焦点距離f= 38 m m 、開放Fナンバ
F2.8の撮影レンズについて計算したグラフを示す。 尚、上記反射光の光量は、距離の2乗にほぼ反比例し、
反射率に比例する。$3図に於いて縦軸は被写体像の錯
乱円径、横軸は背景の距離を示している。図中■は同一
距離に対する被写体に反射された反射光と背景で反射さ
れた反射光の光量比を1=4と設定した時のグラフ、■
は同光量比を1:2とした時のグラフ、■は同光量比を
1=1とした時のグラフ、■は同光量比を2:1とした
時のグラフ、■は従来の自動焦点検出装置で起こる背景
にピントが合った時の被写体の錯乱円径である。 一般的に35mmカメラの許容錯乱円径は0゜03〜0
.035と言われているが、一般的な撮影条件等を考慮
すると鉛部円径はO,OS程度まで許容出来る。その他
、背景と被写体の反射率の相違等を考慮すると同一距離
、同一反射率での撮影画面の中央部付近に対応する反射
光と他の部分の反射光の光量の割合は中央部付近以外の
部分の反射光量の総和≦中央部付近の反射光量程度とす
るのが好ましい。 従って、撮影画面の中央部付近と他の2箇所を測距する
ものに於ては撮影画面中央部付近以外の1fIJ所当し
の測距情報としての反射光量を撮影画面中央部付近の反
射光量の半分以下程度にするのが好ましいことになる。 一方撮影画面中央部付近以外の測距情報に距離情報とし
ての効果を出すためKは撮影画面中央部付近以外の反射
光量がある程度以上必要であるのでこれについて論じて
みる。 従来の自動焦点検出装置を用いて失敗した場合の多くを
占める2人並んだ撮影の場合を考えると、撮影画面中・
央部付近に向けて投射された信号光が背景に当シ、他2
箇所に向けて反射された信号光が本来の被写体に当ると
想定出来る。 この状態では従来の撮影画面中央部のみ測距する測距装
置に於て、第3図■のグラフで示す錯乱円径となシピン
ボケ写真となる場合が多かった。3箇所測距ではこれを
いくらかでも改善出来れば効果があると言えるのである
が、錯乱円径0.3のものが0.2になったとしてもピ
ンボケはピンボケである。一般的な屋外での撮影ではは
とんどの場合FナンバF5.6程度以下に絞シ込むと考
えられるので錯乱円径も半分以下となシ、第3図の■程
度までは効果有シと判定出来る。つまシ撮影画面の中央
部付近に対応する反射光と他の部分の反射光の光量の割
合を中央部付近の反射光量/4≦中央部付近以外の部分
の反射光量の総和程度とするのが好ましい。 従って、撮影画面の中央部付近と他の2箇所を測距する
ものに於いては撮影画面中央部付近以外の1箇所当夛の
測距情報としての反射光量を撮影画面中央付近の反射光
量の1/8以上程度とするのが好ましいことになる。 以上まとめると一般の35mmカメラでは、撮影画面の
中央部付近に対応する反射光と他の部分の反射光の光量
の割合は 程度とするのが好ましい。 また、撮影画面の中央部付近と他の2箇所を測距するも
のに於いては、撮影画面中央部付近以外の1箇所当シの
反射光量と撮影画面中央付近の反射光量の割合は 程度とすればよいことになる。 そして上記光量比をそのまま投光レンズ又は受光レンズ
に於ける撮影画面の中央付近に対するレンズ部分とその
他のレンズ部分の面積とすることによシ、上記光量比を
与える゛中央重点手段が構成できカメラにとって極めて
好適な測距情報が得られる。 尚、上記実施例では投、受光レンズの各光軸方向に対応
したレンズ部分の面積によって反射光量比を設定してい
るが、上記レンズ部分の透過率を変えることによって反
射光量比を設定することも可能である。この場合、レン
ズ前面にフィルター等を設けることによって調整するこ
とも可能である。 第4図は本発明の他の実施例を示すもので、信号光を撮
影画面の3方向に分割投射する為にミラーを用いた実施
例である。 図中9は第1図と同様の赤外発光素子、10は投光レン
ズで光軸は1つしか有していない。 11.12は反射ミラーで赤外発光素子9からの信号光
を反射させ、被写界面P上に投光スポット像す、cを形
成する。尚、aは反射ミラー11.12を介さずに赤外
発光素子9から直接投射された信号光によって形成され
る投光スポット像である。13は受光レンズで投光レン
ズ10と同様光軸は1つしか有していない。14は第1
図と同様の受光素子である。被写界面P上のスポット像
aは受光レンズ13によシ、直接受光素子14上に結像
され、被写界面P上の投光スポット像すは受光レンズ1
3を通ル、ミラー15により反射されて受光素子14に
結像される。また被写界面P上の投光スポット像Cは同
じく受光レンズ13を通シミラー16によシ反射され、
受光素子14に結像される。 この場合の各投光スポット像の光量(測距に対する寄与
率、)は上記レンズの有効面積と上記ミラーの反射面の
大きさで調整可能であシ、赤外見光素子9の発光分布お
よび上記ミラーの反射率等を考慮して、反射光量比が前
述の範囲内に入るように各面積を設定すれば良い。 ところで−膜外来光の影響を極力少なくするためには投
光系と受光系の各伝達光量比の配分に注意する必要があ
る。 いま、光源の単位立体角光シのエネルギーが一定でE1
投光レンズのほぼ画面中心をねらう光軸を持つ部分が覆
う立体角をPc1その他の光軸を持つ部分の各々が覆う
立体角をPs、同様に受光レンズのほぼ画面中心をねら
う光軸を持つ部分の被写体からの立体角をRc、その他
の光軸を持つ部分の各々が覆う立体角をRsとし、被写
体面上の外光強度をNとすると、受光素子に入射する反
射光量Spは 8p=(Pc−Rc+Ps−Rs・2)・S(被写体の
反射率1) 外来光量NPは Np=(Ro+R8・2)・Nトータ
ルの反射光量対外来光量比はS P / NPである。 また撮影画面のほぼ中央部をねらった投射光量と他の部
分をねらった投射光量の比をXとすると x=Po−Ro/(Pg−Rs) Xを一定とした時に8P/NPを最大になるような投光
、受光の中央2周辺の光量比を選べば良い。その結果は
P O/ P 8 ” 6t R’ / R♂=にiで
ある。つまシ、撮影画面の中央部付近と他の部分の反射
光量の比が6=1となるよう圧し、被写体面上が均一輝
度であった時に撮影両面のけば中央部付近に対して光軸
を有する受光レンズ部分を通過した光量と、その他の光
軸を持つ支受光レンズ部分を通過した光量比が6=1と
なるようにすれば良いのである。 尚、本実施例では複数のポイントを測距する為投光、受
光レンズに複数の光軸を持たせたに、或はミラーを使っ
たシしているがこれはプリズム等を用いるようにしたも
のでもよい。この場合の反射光量比の選択方法としては
反射面の面積あるいは反射率等でN節できる。 上記実施例では信号光を撮影画面の中央部付近及び周辺
部2箇所の計3箇所に向けて投射する場合のものを示し
たが、撮影画面の中央部付近とその他の箇所という前提
に従えば撮影画面に対する信号光の投射箇所はいくつ設
けても良く、そのいずれの場合にも本発明が適用できる
ことは言うまでもない。 (発明の効果) 以上説明したように本発明は撮影画面の複数箇所を測距
装置に於いて撮影画面の中央部付近の測距情報を他の部
分の測距情報よシ重く扱う為の中央重点手段を設けたも
のであるから主被写体が撮影画面の中央部付近にない場
合でもプリフォーカス操作など行なうことなく該被写体
にピントの合うような測距情報が得られ、且つ主被写体
が撮影画面の中央部付近にある場合にはこの種の測距装
置に於いてとかく甘くなりがちな主被写体に対するピン
ト合せが従来の撮影画面中央部のみを測距する測距装置
に比して遜色のないものとなるような測距情報が得られ
ることになル、その効果は極めて高いものである。 4、図面の簡単な説明 第1図は本発明に係るカメラの測距装置の一実施例を示
す概略構成図、第2図は第1図の投。 受光レンズの作成方法を示す説明図、第3図はピントの
ボケに対する被写体と背景の関係を示すグラフ、第4図
は本発明に係るカメラの測距装置の他の実施例を示す概
略構成図。 1.9・・・赤外発光素子、2.10・・・投光レンズ
、3.13・・・受光レンズ、4.14・・・受光素子
、11,12,15.16・・・反射ミラー。 特許出願人 キャノン株式金社 貨景の距離
Fig. 1 is a schematic configuration diagram showing an embodiment of the distance measuring device according to the present invention, Fig. 2 is a graph showing the relationship between the subject and the background with respect to blurring of focus, and Fig. 3 is the projection and light receiving lenses of Fig. 1. FIG. 4 is a schematic diagram showing another embodiment of the distance measuring device according to the present invention. 1.9... Infrared light emitting element, 2.10... Light projection lens,
(, 3, 13... Light-receiving lens, 4.14... Light-receiving element, 11.12.15.16... Reflection mirror. 67 Procedural amendment (voluntary) May 1985 14th Japan Patent Office Commissioner Manabu Shiga 1981 Patent Application No. 90323 2 Name of the invention Camera distance measuring device 3 Relationship to the person making the amendment Case Patent applicant address 3-30 Shimomaruko, Ota-ku, Tokyo 2 names (100
)Representative of Canon Co., Ltd. Ryu Kaku Part 4, Agent address: 3-30-25 Shimomaruko, Ota-ku, Tokyo 146, Specification subject to amendment and drawing 6, Contents of amendment (1) Full text of the specification on MI paper Correct as shown below. (2) Figures 1 to 4 will be corrected as shown in the attached sheet. Amended Description 1, Name of the Invention Camera Distance Measuring Device 2, Claims In a distance measuring device that measures distances at multiple locations on a photographic screen, distance measurement information near the center of the photographic screen is transferred to other parts. A distance measuring device for a camera, characterized in that it is provided with a center-weighted means for handling distance measuring information more seriously. 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an improvement of a distance measuring device for a camera that can measure distances at multiple locations on a photographic screen. (Conventional Wave*> In conventional cameras, the so-called distance measuring device that detects information corresponding to the distance to the subject to automatically perform focus detection only measures objects near the center of the shooting screen. Therefore, when composing a photograph with a subject at the edge of the photographic screen, first place the subject within the distance measurement mark set in the center of the viewfinder, and only measure the distance to the subject. It was necessary to perform a so-called pre-focus operation, which involves holding the distance measurement information, repositioning the subject at the edge of the viewfinder, and then proceeding to shooting.However, this pre-focus operation is difficult for beginners to understand. Today, as the performance of automatic focus detection devices has improved, most of the out-of-focus photos are caused by forgetting or erroneously operating the prefocus operation. In Japanese Patent No. 58-145068, they proposed an automatic focus detection device that does not require the above-mentioned prefocus operation by projecting spot light toward various locations on both sides of the photographic surface and obtaining a plurality of distance measurement information from the reflected light. However, the method proposed in Japanese Patent Application No. 58-145068 simply averages the detected distance measurement results and makes the focus position of the photographing lens correspond to the average distance. The main subject intended by the photographer was treated equally as the intended subject, and although the subject was in focus overall, it was not possible to obtain a sufficiently satisfactory focus on the main subject intended by the photographer. Purpose) The present invention has been made in view of the above circumstances, and in a distance measuring device that can measure distances at multiple points on the photographic screen, distance measurement information near the center of the photographic screen can be used to store distance measurement information on other parts. Compared to conventional automatic focus detection devices, which are equipped with a center focusing means to handle the subject more intensively, and are configured to only measure the distance at the center of the shooting screen when the main subject is located at the center of the shooting screen. A camera distance measurement that enables comparable focusing, and also has excellent functionality and operability to focus on the main subject without performing prefocus operations when the main subject is at the edge of the shooting screen. (Embodiment) An embodiment of the present invention will be described below with reference to the drawings. Fig. 1 is a strategic configuration diagram of a distance measuring device for a camera according to the present invention; An infrared light-emitting element 2 serves as a light-emitting element, and 2 is a light-emitting lens serving as a light-emitting optical system for projecting the signal light from the infrared light-emitting element 1 toward a subject. A lens is integrally formed to divide and project the signal light emitted from the infrared light emitting element 1 to three different locations at the center and periphery of the photographic screen. 3 is a light-receiving lens as a light-receiving optical system for guiding the light reflected by the subject of the signal light projected onto the three locations on the photographic screen to the light-receiving element 4;
Similar to the light projecting lens 2, three lenses having different optical axes are integrally formed, and all the reflected light is made to enter the light receiving element 4. Here, the angles formed by the three optical axes of the light projecting lens 2 and the angles formed by the three optical axes of the light receiving lens 30 are the same from a three-dimensional perspective. That is, by moving the three optical axes of the light projecting lens 2 in parallel, they can be superimposed on the three optical axes of the light receiving lens 4. In this embodiment, the light receiving element 4 is a semiconductor device detector (PSD).
is used, and distance measurement is performed by the light receiving element 4 detecting the incident position of the reflected light, which changes depending on the distance to the subject. In a semiconductor device detector, the ratio of outputs at both ends changes depending on the light receiving position of the incident light, and by detecting this ratio of outputs, the object distance can be determined. A specific processing circuit for this purpose is published in Japanese Patent Application Laid-Open No. 57-4481.
The circuit A as disclosed in Publication No. 9 etc. is connected to the light receiving element 4.
Just connect to. In this embodiment, the light-receiving element 4 receives reflected light from three locations on the photographic screen, but if the objects at the three points are all at the same distance, the reflected light will be reflected from the light-receiving element 4. Even if they are not incident on the same position, the incident position is directly detected as the subject distance. Furthermore, when the objects at three locations on the photographic screen are at different distances, the reflected light enters the light receiving element 4 at different positions, but in that case, the weighted average position of the amount of incident light at those incident positions is This will be detected as the subject distance. By the way, out of the three points in the above photographic screen where the distance is measured,
In the case where only the yI point captures the subject and the other two points measure the background of the subject (which is actually the case in most cases), what is detected as the subject distance is conventionally Under the influence of the above-mentioned background, a situation has arisen in which the object distance becomes even further away than the original object distance. For this reason, when such a distance measuring device is used as an automatic focus detection device of a camera, there is a problem in that it becomes impossible to obtain a photograph with a sufficiently satisfactory focus on the subject originally intended by the photographer. Therefore, when considering the subject that this photographer intends to photograph, it turns out that when taking a photograph, the subject is generally placed in the center of the screen.
Most of the time, the subject is placed in the center of the screen. Therefore, most photographs will be satisfactory if distance information is obtained that will always properly focus on the object at the center of the photographic screen among the three distance-measured points on the photographic screen. Become something. Therefore, in the present invention, a center emphasis means is provided, which gives more importance to the distance measurement information for the vicinity of the center of the photographic screen among the three points on the photographic screen where the distance is measured, compared to the distance measurement information for other parts.
This allows you to focus on the subject located in the center of the shooting screen. In this embodiment, the area of the lens part of the light projecting lens 2 that projects the signal light toward the vicinity of the center of the photographic screen is used as the center focusing means, and the area of the lens portion that projects the signal light toward the vicinity of the center of the photographic screen is The area of the lens part is also set large. The ratio of the amount of signal light that is split and projected to three locations on the photographic screen is proportional to the ratio of the area of the corresponding lens portion of the projection lens 2, and therefore the ratio of the amount of reflected light is also basically It is proportional to the area ratio of the corresponding lens portion of the light projecting lens 2. Therefore, a larger amount of reflected light from an object present near the center of the photographic screen enters the light receiving element 4 than any reflected light from any object present at the periphery of the photographic screen. The light-receiving element 4 composed of a PSD detects a weighted average value according to the amount of incident light at the incident position as the subject distance, so distance measurement information about the subject near the center of the shooting screen where a lot of reflected light enters is collected from the periphery of the shooting screen. As a result, the output from the light-receiving element 4 becomes object distance information suitable for focusing on an object located near the center of the photographic screen. In addition, in the above description, the center-weighted means is constructed by setting the area of the lens portion that projects the signal light to be larger (compared to any other lens portion) toward the vicinity of the center of the photographing screen for the light projection lens. However, the same can be said about the light receiving lens 3. That is, by setting the area of the light-receiving lens 3 that receives the reflected light from near the center of the photographic screen larger than the area of any other lens part, the center-weighted means can be used as in the case of the light-emitting lens 2. Can be configured. Note that the ratio of the total amount of signal light incident on the light receiving element 4 is the product of the area ratio of the light projecting lens 2 and the area ratio of the light receiving lens 3. As shown in Fig. 2, a specific method for making the light emitting lens 2 or the light receiving lens 3 in the first device is to cut a part of each lens from three lenses 5, 6.7 having the same performance. The composite lens 8 having three optical axes a, b, and c can be obtained by taking out the lenses and joining them together. Next, the ratio of the area of the lens portion of the light projecting lens 2 or the light receiving lens 3 that projects the signal light toward the vicinity of the center of the photographic screen to the area of the other lens portions will be further described. Figure 3 shows how the distance to the subject is set to 1.
A graph is shown in which the degree of blur in focus when the background distance is gradually increased to 5 m is calculated for a photographic lens with a focal length of 38 mm and an open F number of F2.8. Note that the amount of reflected light is approximately inversely proportional to the square of the distance,
Proportional to reflectance. In Figure $3, the vertical axis shows the diameter of the circle of confusion of the subject image, and the horizontal axis shows the distance to the background. In the figure, ■ is a graph when the light intensity ratio of the reflected light reflected by the subject and the reflected light reflected by the background for the same distance is set as 1 = 4.
is a graph when the same light amount ratio is 1:2, ■ is a graph when the same light amount ratio is 1 = 1, ■ is a graph when the same light amount ratio is 2:1, ■ is a graph when the same light amount ratio is 2:1, and ■ is a graph when the same light amount ratio is 1:1. This is the diameter of the circle of confusion of the subject when the background is in focus, which occurs in the detection device. Generally, the allowable circle of confusion diameter for a 35mm camera is 0°03~0.
.. Although it is said to be 0.035, if general photographing conditions are considered, the diameter of the lead part can be allowed up to about 0.035. In addition, considering the difference in reflectance between the background and the subject, the ratio of the amount of light reflected near the center of the shooting screen at the same distance and the same reflectance to the amount of light reflected from other parts is It is preferable that the sum of the amounts of reflected light in the portions≦the amount of reflected light near the central portion. Therefore, when measuring the distance near the center of the shooting screen and two other places, the amount of reflected light near the center of the shooting screen is the amount of reflected light as the distance measurement information for 1fIJ other than the center of the shooting screen. It is preferable to make it about half or less. On the other hand, in order to produce an effect as distance information on distance measurement information other than near the center of the photographic screen, K requires a certain amount of reflected light at areas other than the center of the photographic screen, so this will be discussed. Considering the case of shooting with two people side by side, which is the most common failure when using conventional automatic focus detection devices,
The signal light projected toward the center area is in the background, and the other 2
It can be assumed that the signal light reflected towards the location hits the original subject. In this state, conventional distance measuring devices that measure distance only at the center of the photographic screen often result in out-of-focus photographs with the diameter of the circle of confusion shown in the graph (2) in FIG. 3. In three-point distance measurement, if this can be improved to some extent, it can be said to be effective, but even if the diameter of the circle of confusion changes from 0.3 to 0.2, it is still out of focus. In general outdoor shooting, it is thought that the f-number will be stopped down to about F5.6 or less in most cases, so the diameter of the circle of confusion will be less than half, and it will be effective up to about ■ in Figure 3. It can be determined. The ratio of the amount of reflected light corresponding to the vicinity of the center of the photographic screen to the amount of reflected light from other parts is set to approximately the amount of reflected light near the center/4≦the sum of the amounts of reflected light in areas other than the vicinity of the center. preferable. Therefore, when measuring the distance near the center of the shooting screen and two other places, the amount of reflected light as the distance measurement information for one point other than the center of the shooting screen is the amount of reflected light near the center of the shooting screen. It is preferable to set it to about 1/8 or more. To summarize the above, in a general 35 mm camera, it is preferable that the ratio of the amount of light reflected near the center of the photographic screen to the amount of light reflected from other parts be approximately the same. In addition, when measuring distances near the center of the shooting screen and two other locations, the ratio of the amount of reflected light at one point other than near the center of the shooting screen to the amount of reflected light near the center of the shooting screen is approximately the same. It would be a good thing to do. By using the above light quantity ratio as the area of the lens part and other lens parts in the vicinity of the center of the photographing screen in the light emitting lens or the light receiving lens, it is possible to construct a "center weighted means" that provides the above light quantity ratio. It is possible to obtain distance measurement information that is extremely suitable for In the above embodiment, the ratio of the amount of reflected light is set by the area of the lens portion corresponding to each optical axis direction of the projecting and receiving lenses, but the ratio of the amount of reflected light can be set by changing the transmittance of the lens portion. is also possible. In this case, it is also possible to adjust by providing a filter or the like on the front surface of the lens. FIG. 4 shows another embodiment of the present invention, in which mirrors are used to divide and project the signal light in three directions on the photographic screen. In the figure, 9 is an infrared light emitting element similar to that in FIG. 1, and 10 is a projection lens, which has only one optical axis. Reference numeral 11 and 12 reflect the signal light from the infrared light emitting element 9 with a reflecting mirror to form a projected spot image c on the object surface P. Note that a is a projected spot image formed by the signal light directly projected from the infrared light emitting element 9 without passing through the reflecting mirrors 11 and 12. 13 is a light receiving lens which, like the light projecting lens 10, has only one optical axis. 14 is the first
This is a light receiving element similar to the one shown in the figure. The spot image a on the subject surface P is directly focused on the light receiving element 14 by the light receiving lens 13, and the projected spot image on the subject surface P is formed by the light receiving lens 1.
3, is reflected by a mirror 15, and is imaged on a light receiving element 14. The projected light spot image C on the object surface P is also reflected by the mirror 16 through the light receiving lens 13,
An image is formed on the light receiving element 14. In this case, the light intensity (contribution rate to distance measurement) of each projected spot image can be adjusted by the effective area of the lens and the size of the reflective surface of the mirror, and the light emission distribution of the infrared light emitting element 9 and the above-mentioned Taking into consideration the reflectance of the mirror, etc., each area may be set so that the reflected light amount ratio falls within the above-mentioned range. By the way, in order to minimize the influence of extraneous light on the membrane, it is necessary to pay attention to the distribution of the transmission light amount ratio between the light projecting system and the light receiving system. Now, if the energy of the unit solid angle beam of the light source is constant, E1
The solid angle covered by the part of the light emitting lens with an optical axis aiming at approximately the center of the screen is Pc1 The solid angle covered by each of the other parts with optical axes is Ps, Similarly, the light receiving lens has an optical axis aiming at almost the center of the screen. Assuming that the solid angle from the subject of the part is Rc, the solid angle covered by each of the other parts with optical axes is Rs, and the external light intensity on the subject surface is N, the amount of reflected light that enters the light receiving element Sp is 8p= (Pc-Rc+Ps-Rs・2)・S (reflectance of subject 1) The amount of extraneous light NP is Np=(Ro+R8・2)・N The ratio of the total amount of reflected light to the amount of extraneous light is S P / NP. Also, if X is the ratio of the amount of projected light aimed at approximately the center of the shooting screen and the amount of projected light aimed at other parts, then x=Po-Ro/(Pg-Rs) When X is constant, 8P/NP is maximized. What is necessary is to select the light intensity ratio of the center 2 and periphery of light emission and light reception such that The result is P O / P 8 '' 6t R' / R♂ = i.Press the tab so that the ratio of the amount of reflected light near the center of the shooting screen and other parts becomes 6 = 1, and When the upper side has uniform brightness, the ratio of the amount of light that passed through the light-receiving lens part that has an optical axis relative to the fuzzy central part of both sides and the light amount that passed through the light-receiving lens part that has other optical axes is 6 = 1. Note that in this embodiment, in order to measure distances at multiple points, the light emitting and receiving lenses have multiple optical axes, or a mirror is used. However, this may be achieved by using a prism or the like.In this case, the reflected light amount ratio can be selected by N sections based on the area of the reflecting surface or the reflectance.In the above embodiment, the signal light is set at the center of the photographic screen. The case where the signal light is projected toward a total of three locations, one near the center and two at the periphery is shown, but if you follow the premise that the signal light is projected near the center of the shooting screen and other points, then how many points can the signal light be projected onto the shooting screen? It goes without saying that the present invention can be applied to any of these cases. (Effects of the Invention) As explained above, the present invention allows the distance measuring device to measure multiple locations on the photographic screen near the center of the photographic screen. Since the camera is equipped with a center-weighted means to handle distance measurement information more heavily than other distance measurement information, even if the main subject is not near the center of the shooting screen, the main subject can be photographed without performing prefocus operations. If you can obtain distance measurement information that allows you to focus on the subject, and if the main subject is near the center of the shooting screen, focusing on the main subject, which tends to be difficult with this type of rangefinder, is difficult compared to conventional methods. The effectiveness of this method is extremely high, as it allows you to obtain distance measurement information that is comparable to distance measurement devices that measure only the center of the photographic screen.4. Explanation Fig. 1 is a schematic configuration diagram showing an embodiment of a distance measuring device for a camera according to the present invention, Fig. 2 is an illustration of the projection of Fig. 1. A graph showing the relationship between a subject and a background with respect to blur, and FIG. 4 is a schematic configuration diagram showing another embodiment of a distance measuring device for a camera according to the present invention. 1.9... Infrared light emitting element, 2.10... ... Light projecting lens, 3.13 ... Light receiving lens, 4.14 ... Light receiving element, 11, 12, 15.16 ... Reflecting mirror. Distance of patent applicant Canon Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1) 画面内の複数箇所を測距可能な測距装置に於い
て、上記画面内の中央部付近の測距情報を他の部分の測
距情報よシ重く扱う為の中央重点手段を設けたことを特
徴とする測距装置。
(1) In a distance measuring device capable of measuring distances at multiple points within the screen, a center emphasis means is provided to handle distance measurement information near the center of the screen more heavily than distance measurement information from other parts. A distance measuring device characterized by:
(2) 上記中央部付近の測距情報に対する他の部(2) Other parts for distance measurement information near the center above
JP59090323A 1984-05-07 1984-05-07 Range finding device Pending JPS60233610A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59090323A JPS60233610A (en) 1984-05-07 1984-05-07 Range finding device
US07/102,828 US4748469A (en) 1984-05-07 1987-09-23 Distance measuring device for camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59090323A JPS60233610A (en) 1984-05-07 1984-05-07 Range finding device

Publications (1)

Publication Number Publication Date
JPS60233610A true JPS60233610A (en) 1985-11-20

Family

ID=13995312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59090323A Pending JPS60233610A (en) 1984-05-07 1984-05-07 Range finding device

Country Status (1)

Country Link
JP (1) JPS60233610A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800409A (en) * 1986-04-28 1989-01-24 Minolta Camera Kabushiki Kaisha Control device for use in a camera having an objective lens
JPH02101413A (en) * 1988-10-11 1990-04-13 Canon Inc Light projecting system for focus detection
JPH02101412A (en) * 1988-10-11 1990-04-13 Canon Inc Light projecting system for focus detection
US4943824A (en) * 1987-11-12 1990-07-24 Minolta Camera Kabushiki Kaisha Device for measuring object distance used for camera
US5125735A (en) * 1989-07-31 1992-06-30 Canon Kabushiki Kaisha Automatic multi-point distance measuring device
JPH04217236A (en) * 1990-12-18 1992-08-07 Fuji Photo Film Co Ltd Active type range finding method
JP2001503579A (en) * 1996-11-07 2001-03-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Lens device for converging radar waves
JP2003163532A (en) * 2002-10-04 2003-06-06 Murata Mfg Co Ltd Dielectric lens antenna and wireless device using it

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800409A (en) * 1986-04-28 1989-01-24 Minolta Camera Kabushiki Kaisha Control device for use in a camera having an objective lens
US4943824A (en) * 1987-11-12 1990-07-24 Minolta Camera Kabushiki Kaisha Device for measuring object distance used for camera
JPH02101413A (en) * 1988-10-11 1990-04-13 Canon Inc Light projecting system for focus detection
JPH02101412A (en) * 1988-10-11 1990-04-13 Canon Inc Light projecting system for focus detection
US5125735A (en) * 1989-07-31 1992-06-30 Canon Kabushiki Kaisha Automatic multi-point distance measuring device
JPH04217236A (en) * 1990-12-18 1992-08-07 Fuji Photo Film Co Ltd Active type range finding method
JP2001503579A (en) * 1996-11-07 2001-03-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Lens device for converging radar waves
JP2003163532A (en) * 2002-10-04 2003-06-06 Murata Mfg Co Ltd Dielectric lens antenna and wireless device using it

Similar Documents

Publication Publication Date Title
JP2859270B2 (en) Camera gaze direction detection device
JPH05188281A (en) Camera
JPS60233610A (en) Range finding device
US6774945B1 (en) Focusing apparatus for image recording system
JP2526933B2 (en) camera
US4429964A (en) Mirror-reflex camera with electronic rangefinder
JPS6120808A (en) Range measuring instrument
US4428653A (en) Mirror reflex camera with an electronic range finder
JPS63259521A (en) Composite type focusing detection device
JPS63309810A (en) Range finder
JPS63229439A (en) Automatic focusing device
JPS6220535B2 (en)
JPH01266503A (en) Focus detecting device
JP2756413B2 (en) Optical device provided with gaze detection device
US20080111991A1 (en) Photometry apparatus and camera
JPS6252538A (en) Automatic focusing camera
JPS60201312A (en) Automatic focusing camera
JPS61295523A (en) Focus detector
JPS61129609A (en) Optical system for automatic focus detection
JP2017219654A (en) Interchangeable lens, camera main body, and camera system
JPS63311141A (en) Method for measuring deviation and fall-down of image of pentagonal prism
JPH02264212A (en) Automatic focus adjusting device
JPS6190113A (en) Single-lens reflex camera with automatic focusing mechanism
JPH01116609A (en) Multipoint focus detecting device
JPS5912406A (en) Automatic focus detector