JPH01120519A - Focus detecting device - Google Patents
Focus detecting deviceInfo
- Publication number
- JPH01120519A JPH01120519A JP27983687A JP27983687A JPH01120519A JP H01120519 A JPH01120519 A JP H01120519A JP 27983687 A JP27983687 A JP 27983687A JP 27983687 A JP27983687 A JP 27983687A JP H01120519 A JPH01120519 A JP H01120519A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- objective lens
- image
- field
- mask
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 31
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- 238000009826 distribution Methods 0.000 claims abstract description 15
- 238000001514 detection method Methods 0.000 claims description 16
- 238000003384 imaging method Methods 0.000 claims description 16
- 238000013459 approach Methods 0.000 claims description 2
- 238000003491 array Methods 0.000 claims 1
- 230000004907 flux Effects 0.000 abstract description 12
- 230000000007 visual effect Effects 0.000 abstract description 4
- 238000005259 measurement Methods 0.000 description 25
- 230000000694 effects Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000011514 reflex Effects 0.000 description 5
- 238000005286 illumination Methods 0.000 description 3
- 210000001747 pupil Anatomy 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- -1 silver halide Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Focusing (AREA)
- Automatic Focus Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は焦点検出装置に関し、特に対物レンズの焦点調
整状態を検出する装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a focus detection device, and more particularly to a device for detecting the focus adjustment state of an objective lens.
写真用カメラあるいはビデオカメラが自動焦点調節のた
めの検出装置を内蔵するのは極(普通の事になっている
。但し、測距範囲を決めるのはファインダーの中央で行
う様になっており、ファインダー画面内の所望の位置の
被写体に焦点を合わせるカメラはまだ実現されていない
。It is common for photo cameras or video cameras to have a built-in detection device for automatic focus adjustment. However, the distance measurement range is determined at the center of the viewfinder. A camera that focuses on a subject at a desired position within the viewfinder screen has not yet been realized.
即ち画面の中央に測距視野が設定されていると、被写体
の主要部が画面の中央に位置する場合は問題がないもの
の、画面の中央を外れている場合は誤測距を起し、ピン
トのボケた写真となる不都合がある。この難点を解消す
るために、−度カメラを横に振って画面の中央に被写体
の主要部を入れて測距を行い、その時の焦点調節状態を
保ったままカメラの方向を戻した後、シャッターレリー
ズする操作を行える様になっているが、操作が面倒であ
るし、急いでいる場合に:さ実行できない場合もある。In other words, if the distance measurement field of view is set at the center of the screen, there will be no problem if the main part of the subject is located at the center of the screen, but if it is off the center of the screen, erroneous distance measurement will occur and the focus will be incorrect. There is an inconvenience that the photo will be blurry. In order to solve this problem, we measured the distance by shaking the camera horizontally and placing the main part of the subject in the center of the screen, then returned the direction of the camera while maintaining the current focus adjustment state, and then released the shutter. Although it is possible to perform a release operation, it is cumbersome and may not be possible if you are in a hurry.
例えば横に移動する被写体が画面の中央を外れた位置に
在る写真を取ると云った要求に答えるのは難しかった。For example, it was difficult to respond to a request to take a photo in which a subject moving laterally was located off the center of the screen.
一方、対物レンズによる結像光束を一組の再結像レンズ
へ導き、これらレンズにより形成された光量分布を光電
変換素子の画素列で受け、両光量分布の間隔から対物レ
ンズの焦点調節状態を検出する装置は周知である。On the other hand, the imaging light flux from the objective lens is guided to a set of re-imaging lenses, the light intensity distribution formed by these lenses is received by the pixel array of the photoelectric conversion element, and the focus adjustment state of the objective lens is determined from the interval between both light intensity distributions. Devices for detection are well known.
上述の画面中央以外に位置する被写体に対して、カメラ
を振ることなく測距したいと云う要求を充たすための一
法として、光軸の上に配した画素列の外側に別の画素列
を配置し、新たに設けた画素列は画面の中央を外れた被
写体像を受けることが考えられる。As a method to satisfy the above-mentioned requirement to measure distance to objects located outside the center of the screen without shaking the camera, another pixel row is placed outside the pixel row placed on the optical axis. However, it is conceivable that the newly provided pixel row receives a subject image that is off the center of the screen.
しかしながら、光学レンズには一般に収差が残存し、対
物レンズの光軸に近い位置と遠い位置とでは光束の結像
状態が相違するから、光軸から遠い位置で正確な焦点検
出を行うことは困難である。However, optical lenses generally have residual aberrations, and the imaging state of the light beam differs between positions near and far from the optical axis of the objective lens, making it difficult to perform accurate focus detection at positions far from the optical axis. It is.
本発明は上記難点を解消し、実際に多数位置で測距を実
施できる様な現実的構成の提供を目的とする。そして、
その目的を達成するため、対物レンズの予定結像面の近
傍に配され、複数の開口が並列配置されたマスクと、該
マスクに隣接配置されたフィールドレンズと、対物レン
ズの焦点調節状態に応じて相対位置の変化する、物体像
に基づく光量分布を形成する再結像手段と、前記光量分
布を受ける画素列の組を複数有し、光量分布を電気信号
に変換する光電変換手段を設け、前記開口の並び方向は
前記画素列の並び方向と光学的に直交し、また前記開口
の一方の辺は光電変換手段上において前記物体像に基づ
く光量分布が接近する様に設定され、更に、前記フィー
ルドレンズは前記対物レンズの光軸に近い開口を通った
光束と光が反射面等で折れ曲ったために物理的に直交し
ていな(でも、光軸を反射面で展開したときには直交す
る場合を言う。また、光とは可視光のみに限定されない
。It is an object of the present invention to solve the above-mentioned difficulties and provide a practical configuration that can actually perform distance measurement at multiple locations. and,
To achieve this purpose, a mask is placed near the intended image formation plane of the objective lens and has a plurality of apertures arranged in parallel, a field lens is placed adjacent to the mask, and a re-imaging means for forming a light quantity distribution based on an object image whose relative position changes; and a photoelectric conversion means having a plurality of sets of pixel rows receiving the light quantity distribution and converting the light quantity distribution into an electrical signal; The direction in which the apertures are arranged is optically orthogonal to the direction in which the pixel rows are arranged, one side of the aperture is set so that the light intensity distribution based on the object image approaches each other on the photoelectric conversion means, and In a field lens, the light flux passing through the aperture near the optical axis of the objective lens and the light are bent by a reflective surface, etc., so they are physically not perpendicular to each other. Also, light is not limited to only visible light.
本発明の焦点検出装置は、銀塩フィルムを使う一眼レフ
レックスカメラや、−眼レフレックス電子カメラあるい
はビデオカメラに使われる他、記録装置や加工機械の位
置検出装置あるいはロボットの目などに使用できる。The focus detection device of the present invention can be used in single-lens reflex cameras that use silver halide film, -lens reflex electronic cameras, or video cameras, as well as in position detection devices for recording devices, processing machines, robot eyes, etc. .
第6図は使用形態の一例で、−眼レフレックスカメラの
光学系を描いており、10はカメラボディ、20は着脱
交換可能もしくは固設のレンズ鏡筒を示す。21は対物
レンズで、1はその光軸である。光軸1は半透過域を具
えるクイックリターンミラー22に達し、2つに分割さ
れる。反転された光軸に沿ってフォーカシングスクリー
ン23、ペンタプリズム24.接眼レンズ25が装置さ
れ、視認のためのファインダ系を構成する。FIG. 6 shows an example of the usage mode, and depicts the optical system of a -eye reflex camera, where 10 is a camera body and 20 is a detachable or replaceable lens barrel. 21 is an objective lens, and 1 is its optical axis. The optical axis 1 reaches a quick return mirror 22 with a semi-transparent region and is split into two parts. Along the inverted optical axis are a focusing screen 23, a pentaprism 24. An eyepiece lens 25 is provided to constitute a finder system for visual recognition.
又透過された光軸に沿って可動サブミラー26、次いで
本発明に係る焦点検出装置27が配され、焦点検出装置
27の出力で図示しない駆動器が作動し、対物レンズ2
1の位置が調節される。尚、可動サブミラー26はクイ
ックリターンミラー22に保持されている点は周知の通
りである。A movable sub-mirror 26 and then a focus detection device 27 according to the present invention are arranged along the transmitted optical axis, and a driver (not shown) is operated by the output of the focus detection device 27, and the objective lens 2
1 position is adjusted. Incidentally, as is well known, the movable sub-mirror 26 is held by the quick return mirror 22.
28は被写体照明装置の例えばLEDの如き光源で、投
影パターンが形成された投影チャート29を照明し、透
過光は投光レンズ30で投光される。A light source 28 such as an LED of an object illumination device illuminates a projection chart 29 on which a projection pattern is formed, and transmitted light is projected by a projection lens 30.
以下、27で示した焦点検出装置の構成を第1図乃至第
3図を使って説明する。第1図は斜視形態、第2図は縦
断面形状、第3図は単一チップから成る光電変換デバイ
スの画素列と光量分布との位置関係を示している。42
は多孔視野マスクで、図中、横方向に長辺を持ち、並列
された矩形開口を具え、例えば第6図の対物レンズ21
の予定結像面近傍に配される。43は近赤外光より長波
長光を遮断するフィルター。50は分割フィールドレン
ズで、対物レンズの予定結像面から若干ずらして配置す
る。分割フィールドレンズ50は後述する様に光学作用
を異にするレンズ部50a・50b、50c、50d、
50e。Hereinafter, the configuration of the focus detection device shown at 27 will be explained using FIGS. 1 to 3. FIG. 1 shows a perspective view, FIG. 2 shows a vertical cross-sectional shape, and FIG. 3 shows a positional relationship between a pixel row and a light amount distribution of a photoelectric conversion device consisting of a single chip. 42
is a multi-hole field mask, which in the figure has long sides in the horizontal direction and has rectangular apertures arranged in parallel; for example, the objective lens 21 in FIG.
is placed near the planned imaging plane. 43 is a filter that blocks light with wavelengths longer than near-infrared light. Reference numeral 50 denotes a split field lens, which is arranged slightly offset from the intended image formation plane of the objective lens. The divided field lens 50 includes lens parts 50a, 50b, 50c, 50d, which have different optical functions as described later.
50e.
50f・50gから成っており、これらの部分はレンズ
厚又はレンズ面の曲率半径の一方あるいは両方を変える
ことで形成される。また、分割フィールドレンズ50の
替りに、多孔視野マスクの各開口ごとに異なるプリズム
を並べたフレネルレンズ様の光学系と両凸レンズの組合
わせを使用することもできる。50f and 50g, and these parts are formed by changing either or both of the lens thickness and the radius of curvature of the lens surface. Furthermore, instead of the split field lens 50, a combination of a Fresnel lens-like optical system in which different prisms are arranged for each aperture of the multi-hole field mask and a biconvex lens can be used.
51と53は2孔絞り52を挟んで再結像レンズユニッ
トを形成し、凸レンズ5工は入射光を平行光に近い状態
に変換しく光学作用は特公昭62−33564号に述べ
られている)、また2枚の凸レンズ53a、53bを並
べて接合した2像形成レンズ53は対物レンズで結像さ
れた物体像の2次像を2つ形成する。前述の2孔絞り5
2は、図面中、横方向に並んだ縦に長い楕円開口52a
、52bを具える。51 and 53 form a re-imaging lens unit with a two-hole diaphragm 52 in between, and the convex lens 5 converts the incident light into a state close to parallel light.The optical function is described in Japanese Patent Publication No. 62-33564) , and a two-image forming lens 53 formed by joining two convex lenses 53a and 53b side by side forms two secondary images of the object image formed by the objective lens. The aforementioned two-hole aperture 5
2 denotes vertically long elliptical openings 52a arranged in the horizontal direction in the drawing.
, 52b.
54は像面湾曲補正用の凹レンズで、光電変換デバイス
55(第2図、第3図)を収容する透明プラスチックパ
ッケージ56上に配設される。54 is a concave lens for field curvature correction, and is arranged on a transparent plastic package 56 that houses a photoelectric conversion device 55 (FIGS. 2 and 3).
尚、分割フィールドレンズ50.再結像レンズユニット
の凸レンズ51、凹レンズ54は縦長に整形されている
が、いずれも回転対称の球面レンズ系である。In addition, the split field lens 50. Although the convex lens 51 and the concave lens 54 of the re-imaging lens unit are shaped vertically, both are rotationally symmetrical spherical lens systems.
多孔視野マスク42の開口42・・・42gを通った光
束は、第2図に示すように分割フィールドL/:/ス5
0(DLzンス部50 a ・50 b、 50 c
。The light flux passing through the apertures 42...42g of the multi-hole field mask 42 is divided into divided fields L/:/S 5 as shown in FIG.
0 (DLz unit 50a, 50b, 50c
.
50d、50e、50f−50gを透過して、光電変換
デバイス上に夫々、物体の2次像を形成する。第3図は
この様子を示したもので、60aと60b、・・60m
と60nおよび62aと62bが多数の画素より成る画
素列の組で、62a。50d, 50e, and 50f-50g to form secondary images of the object on the photoelectric conversion device, respectively. Figure 3 shows this situation: 60a and 60b,...60m
and 60n, and 62a and 62b are a set of pixel columns consisting of a large number of pixels, 62a.
62b上には後述する物体照明装置の発光波長とほぼ等
しいバンドパス特性を有するフィルターが形成されてい
る。これらの画素列に対応して多孔視野マスクの開口4
2a・・・42gの像61a・・・61nが投影され、
この内部に物体の2次像が形成される。その際、多孔視
野マスク42の各開口の幅と各開口間の遮光帯42h・
・・42mの幅及び光電変換デバイス55上の画素列の
幅と画素列のピッチに合わせてマスク42とデバイス5
5を中継する光学系、特に分割フィールドレンズの各レ
ンズ部や再結像レンズユニットの屈折力が調定されてい
るので、多孔視野マスクの遮光帯42h・・・42mは
それぞれ所定の開口を射出した光束の一部が、この開口
と一対一で対応する画素列以外の画素列へ入射するのを
防止する。また視野マスク像は、絞り開口52a、52
bおよびレンズ部53a、53bの作用により多孔視野
マスク42の1つの開口につき2個横方向に並んで形成
され、物体像の予定結像面に対する位置に関係してその
内部の物体の2次像は伴に矢印A方向およびB方向に移
動する。したがって、各画素列の組は対となる2次像に
関する光量分布の相対的間隔を光電変換出力に基いて検
出することから、複数点の測距位置について対物レンズ
のピント状態を知ることができる。A filter having a bandpass characteristic approximately equal to the emission wavelength of an object illumination device to be described later is formed on the filter 62b. The aperture 4 of the multi-hole field mask corresponds to these pixel columns.
Images 61a...61n of 2a...42g are projected,
A secondary image of the object is formed inside this. At that time, the width of each aperture of the multi-hole field mask 42 and the light-shielding zone 42h between each aperture are determined.
...The mask 42 and the device 5 are arranged in accordance with the width of 42 m, the width of the pixel rows on the photoelectric conversion device 55, and the pitch of the pixel rows.
5, the refractive power of each lens part of the split field lens and the re-imaging lens unit is adjusted, so the light-shielding bands 42h...42m of the multi-hole field mask each emit light through a predetermined aperture. This prevents a part of the light flux from entering pixel columns other than the pixel column corresponding one-to-one with this aperture. Further, the field mask image includes the aperture apertures 52a, 52
b and lens portions 53a and 53b, two secondary images of the object inside are formed in each opening of the multi-hole field mask 42 in a row in the lateral direction, and the secondary images of the object therein are formed in relation to the position of the object image with respect to the intended imaging plane. moves in the directions of arrows A and B. Therefore, since each set of pixel rows detects the relative interval of the light intensity distribution regarding the paired secondary images based on the photoelectric conversion output, it is possible to know the focus state of the objective lens for multiple distance measurement positions. .
尚、画素列は視野マスク像の歪みに合わせた形状とし、
上記の2次像の移動方向と画素列方向が完全に一致する
ように構成するのが望ましい。また各画素列は分離され
た形で組を作っているが、1本の画素列の2つの範囲を
割り当てて組を作っても良い。In addition, the pixel row is shaped to match the distortion of the visual field mask image,
It is desirable that the moving direction of the secondary image and the pixel column direction be configured to completely match. Further, each pixel column is separated to form a set, but a set may be created by allocating two ranges of one pixel column.
分割フィールドレンズの作用を次に説明するが、比較の
ために本発明の実施例に係る分割フィールドレンズと多
孔視野絞りの替りに従来のフィールドレンズ101と単
孔視野マスク100を設けた構成(第7図)でまず作用
の説明をする。The function of the split field lens will be explained next. For comparison, we will use a configuration (No. 7), we will first explain the effect.
測距視野内の光軸上の点Pと光軸外の測距視野内の点Q
はどちらも予定結像面上にあるが、これらが視野マスク
開口100aを通して光電変換デバイス55上に投影さ
れる際の光束の様子は第8図のようになる。図中112
でおよび113はそれぞれ点Pおよび点Qから発した光
線であり、その結像点は光電変換素子上の点Rと凹レン
ズ54内の点Sである。−眼レフカメラにこの焦点検出
装置を適用した場合には、点Pと点Qの距離は6〜15
(mm)であり、さらに点Pから光電変換素子までの距
離も20〜35[mm)と制限されるため、仮に像面湾
曲補正用凹レンズ54を用いても、このような測距視野
による2次像面のズレは解消できない。この結果、測距
視野によって焦点・検出精度が大きく変化し好ましくな
い。Point P on the optical axis within the distance measurement field of view and point Q outside the optical axis within the distance measurement field of view
Both are on the expected image formation plane, and the state of the light flux when these are projected onto the photoelectric conversion device 55 through the field mask aperture 100a is as shown in FIG. 112 in the diagram
and 113 are light rays emitted from points P and Q, respectively, and their imaging points are point R on the photoelectric conversion element and point S inside the concave lens 54. - When this focus detection device is applied to an eye reflex camera, the distance between points P and Q is 6 to 15
(mm), and furthermore, the distance from point P to the photoelectric conversion element is limited to 20 to 35 [mm], so even if the concave lens 54 for field curvature correction is used, the range of 2 The deviation of the next image plane cannot be resolved. As a result, focus and detection accuracy vary greatly depending on the distance measurement field of view, which is undesirable.
一方、光軸lの近傍の測距視野と光軸1から離れた測距
視野を通る光束がどちらも対物レンズ21でケラレない
ようにすることが簡単なフィールドレンズ構成では極め
て難かしい。On the other hand, with a simple field lens configuration, it is extremely difficult to prevent the light beams passing through the distance measurement field near the optical axis l and the distance measurement field distant from the optical axis 1 from being eclipsed by the objective lens 21.
光束のケラレについて、第9図を用いて説明する。図中
114および115は、2孔絞りの2つの開口を各画素
列位置ごとに視野マスク開口100aを通して対物レン
ズ21の射出瞳上に逆投影した像であり、逆にこの領域
114.115を通って視野マスク開口100aを通過
した光束は絞りを通り光電変換デバイスまで°到達する
。したがって、図のように逆投影領域114,115が
対物レンズの射出瞳からはずれている場合には、光電変
換素子上に達するべきAF光束が対物レンズでケラレる
ために、焦点検出精度が著しく低下するか、延ては焦点
検出不能となる。The vignetting of the light beam will be explained using FIG. 9. In the figure, 114 and 115 are images obtained by back projecting the two apertures of the two-hole diaphragm onto the exit pupil of the objective lens 21 through the field mask aperture 100a for each pixel column position; The light flux that has passed through the field mask aperture 100a passes through the aperture and reaches the photoelectric conversion device. Therefore, when the back projection areas 114 and 115 are off the exit pupil of the objective lens as shown in the figure, the AF light flux that should reach the photoelectric conversion element is vignetted by the objective lens, resulting in a significant decrease in focus detection accuracy. Otherwise, the focus becomes impossible to detect.
以上の光学作用上の難点を補正することは通常のフィー
ルドレンズではできないため、多孔視野絞りの外側の開
口を射出した光束と光軸に近い開口を射出した光束は別
異のフィールドレンズで補正すれば補正することができ
る。Since it is not possible to correct the above-mentioned difficulties in optical operation with a normal field lens, the light flux emitted from the outer aperture of the multi-hole field diaphragm and the light flux emitted from the aperture near the optical axis must be corrected using different field lenses. It can be corrected if
次に第4図、第5図を用いて本発明による分割フィール
ドレンズの効果を説明する。第4図は、予定結像面上に
ある光軸上の測距視野内の点T(第2図)と光軸外の測
距視野内の点Uが視野マスク開口426.42gを通し
て光電変換素子上に投影される様子を表わし、図中70
は点Tより発した光線、71は点Uより発した光線であ
る。Next, the effects of the divided field lens according to the present invention will be explained using FIGS. 4 and 5. In Figure 4, a point T (Figure 2) within the distance measurement field on the optical axis on the planned imaging plane and a point U in the distance measurement field off the optical axis are photoelectrically converted through the field mask aperture 426.42g. 70 in the figure shows how it is projected onto the element.
71 is a ray of light emitted from point T, and 71 is a ray of light emitted from point U.
第2図に示したように、光線70はフィールドレンズの
中央のレンズ部50dを透過し、一方、光線71は周辺
のレンズ部50f・50gを透過している。このとき、
これら2つのレンズ部は光電変換デバイス上の結像状態
を揃えるように構成され、定性的には50f・50gの
方のレンズ厚を増していることにより、点19点Uの結
像点はどちらも光電変換デバイス上に位置した点v、W
となる。この結果、各測距視野の焦点検出精度を一様に
高く保2ことが可能となる。As shown in FIG. 2, the light ray 70 is transmitted through the central lens portion 50d of the field lens, while the light ray 71 is transmitted through the peripheral lens portions 50f and 50g. At this time,
These two lens parts are configured to align the image formation state on the photoelectric conversion device, and qualitatively, by increasing the lens thickness of 50f and 50g, which point is the image formation point of point 19 U? Points v and W also located on the photoelectric conversion device
becomes. As a result, it becomes possible to maintain uniformly high focus detection accuracy in each distance measurement field of view.
第5図は、絞り52の2つの開口52a、52bを多孔
視野マスクの最も端の開口42aと光軸上の視野マスク
開口42dを通して対物レンズの射出瞳上に逆投影した
像を示し、図中、80a。FIG. 5 shows an image obtained by back projecting the two apertures 52a and 52b of the diaphragm 52 onto the exit pupil of the objective lens through the endmost aperture 42a of the multi-hole field mask and the field mask aperture 42d on the optical axis. , 80a.
81aおよび80b、81bはそれぞれ絞り開口52a
、52b (第1図)の逆投影像であり、80a、81
bは視野マスク開口42dを通過したもの、81a、8
1bは視野マスク開口42aを通過したものである。図
より分るように測距視野毎にフィールドレンズを最適化
することにより、どの測距視野位置でも焦点検出光束が
ケラレることない構成が可能である。この結果測距視野
位置を光軸1の近傍に限定されることなく、広範囲に設
定することが可能となる。81a, 80b, and 81b are aperture apertures 52a, respectively.
, 52b (Fig. 1), and 80a, 81
b is what passes through the field mask aperture 42d, 81a, 8
1b is what passes through the field mask aperture 42a. As can be seen from the figure, by optimizing the field lens for each distance measurement field of view, it is possible to create a configuration in which the focus detection light beam is not eclipsed at any distance measurement field position. As a result, the distance measurement visual field position is not limited to the vicinity of the optical axis 1, but can be set over a wide range.
尚、フィールドレンズの接合部50h〜50gへ向う光
は視野マスクの遮光帯42h、42i。Incidentally, the light directed to the joint portions 50h to 50g of the field lens is through the light-shielding bands 42h and 42i of the field mask.
42j!、42mによって遮光され、この部分への光入
射によるゴースト光の発生を防いでいる。42j! , 42m to prevent the generation of ghost light due to light incident on this part.
また、図示の分割フィールドレンズはプラスチックの一
体成形で作られているが、各レンズ部をそれぞれ作成し
た後、結合して構成することもできる。Further, although the illustrated split field lens is made by integral molding of plastic, it is also possible to form each lens part individually and then combine them.
第10図は測距視野の配置を示しており、第6図の一眼
レフレックスカメラに即して言えば、フォーカシングス
クリーン23上で、その長辺方向の中心軸上に測距視野
91a・・・91gおよび92が平行に並ぶ様にレイア
ウトされている。FIG. 10 shows the arrangement of the distance measurement field of view, and in accordance with the single-lens reflex camera shown in FIG. - 91g and 92 are laid out in parallel.
そして第3図の画素列の組60a・60b・・・60′
m・60nを固結像レンズユニットで予定結像面上へ逆
投影し、他方フォーカシングスクリーン23の測距視野
を予定結像面上に置き換えれば、画素列の組と測距視野
は夫々重なり合うことになる。画素列の組の並び方向を
カメラボディサブミラー26を含む面の交線方向(図面
に垂直方向)に一致した方向である。And the set of pixel columns 60a, 60b, . . . 60' in FIG.
If m.60n is back-projected onto the intended image forming plane using a solid imaging lens unit, and the distance measuring field of the focusing screen 23 is replaced on the intended image forming plane, the set of pixel rows and the distance measuring field will overlap with each other. become. This is a direction in which the arrangement direction of the set of pixel columns coincides with the intersecting direction of the plane including the camera body sub-mirror 26 (perpendicular to the drawing).
この配置を採ることで、可動サブミラーの上下方向の幅
を拡大することなく、一端の測距視野から他端の測距視
野までの範囲を最大限大きくすることができる利点があ
る。Adopting this arrangement has the advantage that the range from the distance measurement field of view at one end to the distance measurement field of view at the other end can be maximized without increasing the width of the movable submirror in the vertical direction.
第11図の横縞パターンは、低コントラストあるいは低
輝度の物体に投影する投影パターンの一例を示しており
、第6図のチャート29に描かれている。本図を物体上
に投影した投影パターン像と仮定すると、93は第3図
の画素列の組62a・62bを物体上に逆投影した時の
測距範囲を示している。前述した様に、画素列62a・
62b上には照明光源28(第6図)の発光波長とほぼ
等しい波長のバンドパスフィルターが形成されており、
画素列は物体で反射した投影パターンを選別して感知す
る。これにより、通常は検出の難しい物体にも強制的に
コントラストを付加し、画素列62a・62bによる焦
点検出が可能となる。因みに94は画素列60g・62
hによる物体上測距範囲である。The horizontal stripe pattern in FIG. 11 is an example of a projection pattern projected onto an object with low contrast or low brightness, and is depicted in chart 29 in FIG. 6. Assuming that this figure is a projected pattern image projected onto an object, reference numeral 93 indicates the distance measurement range when the set of pixel columns 62a and 62b in FIG. 3 is back-projected onto the object. As mentioned above, the pixel rows 62a and
A bandpass filter having a wavelength substantially equal to the emission wavelength of the illumination light source 28 (FIG. 6) is formed on the light source 62b.
The pixel array selects and senses the projected pattern reflected by the object. This forcibly adds contrast to objects that are normally difficult to detect, and enables focus detection using the pixel rows 62a and 62b. By the way, 94 is pixel row 60g/62
This is the distance measurement range on the object by h.
以上の構成で、光電変換デバイス56(第1図等)から
の電気信号は、各画素列ごとに読み出され、例えば各測
距視野ごとに合焦状態の演算を施連続性を検定し、連続
性の強い範囲内の近い物体を選択するとか、予め所定の
測距視野を選んでおいて、そこに入り込んだ物体に焦点
合わせを行うと言った種々の信号処理アルゴリズムを選
択し得る。With the above configuration, the electrical signal from the photoelectric conversion device 56 (FIG. 1, etc.) is read out for each pixel column, and, for example, the in-focus state is calculated for each distance measurement field of view, and the continuity is verified. Various signal processing algorithms can be selected, such as selecting a nearby object within a highly continuous range, or selecting a predetermined distance measurement field of view in advance and focusing on an object that has entered that field.
以上説明した本発明によれば、中心から外れた測距視野
を含む多数位置の測距を実現できる効果がある。According to the present invention described above, there is an effect that distance measurement can be performed at multiple positions including a distance measurement field of view located off the center.
第1図は本発明の実施例を示す斜視図。第2図はその光
学断面図。第3図は光電変換デバイスの正面図。第4図
は光学部分断面図。第5図は斜視図。第6図はカメラへ
の適用例を示す構成の断面図。第7図は作用の比較説明
のための光学断面図。第8図は光学部分断面図。第9図
は作用の比較説明のための斜視図。第10図は観察視野
の平面図。第11図は投影パターンと画素列の関係を示
す図。
図中42は多孔視野マスク、50は分割フィールドレン
ズ、50a・・・50gはレンズ部、51は再結像レン
ズユニットの凸レンズ、53は2像形成レンズ、52は
2孔絞り、55は光電変換デバイス、60a−60n、
62a、62bは画素列である。
/l)σ f3FIG. 1 is a perspective view showing an embodiment of the present invention. FIG. 2 is an optical cross-sectional view. FIG. 3 is a front view of the photoelectric conversion device. FIG. 4 is an optical partial cross-sectional view. FIG. 5 is a perspective view. FIG. 6 is a sectional view of a configuration showing an example of application to a camera. FIG. 7 is an optical cross-sectional view for comparative explanation of effects. FIG. 8 is an optical partial cross-sectional view. FIG. 9 is a perspective view for comparative explanation of effects. FIG. 10 is a plan view of the observation field. FIG. 11 is a diagram showing the relationship between a projection pattern and a pixel row. In the figure, 42 is a multi-hole field mask, 50 is a split field lens, 50a...50g are lens parts, 51 is a convex lens of a re-imaging lens unit, 53 is a two-image forming lens, 52 is a two-hole aperture, and 55 is a photoelectric conversion device, 60a-60n,
62a and 62b are pixel columns. /l)σ f3
Claims (1)
て、前記対物レンズの予定結像面の近傍に配され、複数
の開口が並列配置されたマスクと、該マスクに隣接配置
されたフィールドレンズと、対物レンズの焦点調節状態
に応じて相対位置の変化する、物体像に基づく光量分布
を形成する再結像手段と、前記光量分布を受ける画素列
の組を複数有し、光量分布を電気信号に変換する光電変
換手段を具え、前記開口の並び方向は前記画素列の並び
方向と光学的に直交し、また前記開口の一方の辺は光電
変換手段上において前記物体像に基づく光量分布が接近
する様に設定され、更に、前記フィールドレンズは前記
対物レンズの光軸に近い開口を通った光束と光軸から離
れた光束に現われる結像状態の相違を補正することを特
徴とする焦点検出装置。A device for detecting a focus adjustment state of an objective lens, comprising: a mask disposed near a planned imaging plane of the objective lens and having a plurality of apertures arranged in parallel; and a field lens disposed adjacent to the mask. It has a re-imaging means that forms a light intensity distribution based on an object image whose relative position changes according to the focus adjustment state of the objective lens, and a plurality of sets of pixel arrays that receive the light intensity distribution, and converts the light intensity distribution into an electrical signal. a photoelectric conversion means for converting the image, the direction in which the apertures are arranged is optically orthogonal to the direction in which the pixel rows are arranged, and one side of the aperture is such that a light amount distribution based on the object image approaches the object image on the photoelectric conversion means. The focus detection device is configured such that the field lens corrects a difference in imaging state between a light beam passing through an aperture near the optical axis of the objective lens and a light beam distant from the optical axis.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62279836A JPH07117644B2 (en) | 1987-11-05 | 1987-11-05 | Focus detection device |
US07/266,804 US5005041A (en) | 1987-11-05 | 1988-11-03 | Focus detecting apparatus having a plurality of focus detecting areas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62279836A JPH07117644B2 (en) | 1987-11-05 | 1987-11-05 | Focus detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01120519A true JPH01120519A (en) | 1989-05-12 |
JPH07117644B2 JPH07117644B2 (en) | 1995-12-18 |
Family
ID=17616599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62279836A Expired - Lifetime JPH07117644B2 (en) | 1987-11-05 | 1987-11-05 | Focus detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07117644B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5258804A (en) * | 1990-02-13 | 1993-11-02 | Canon Kabushiki Kaisha | Focus detection device having a mechanism for adjusting light-receiving state |
JP2015138090A (en) * | 2014-01-21 | 2015-07-30 | キヤノン株式会社 | Image capturing device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5878101A (en) * | 1982-08-05 | 1983-05-11 | Nippon Kogaku Kk <Nikon> | Focus detecting device |
JPS58156909A (en) * | 1982-03-13 | 1983-09-19 | Canon Inc | Detector for focusing state |
JPS5965814A (en) * | 1982-10-07 | 1984-04-14 | Canon Inc | Focusing detector |
JPS63278012A (en) * | 1987-05-08 | 1988-11-15 | Minolta Camera Co Ltd | Optical device for focus detection |
-
1987
- 1987-11-05 JP JP62279836A patent/JPH07117644B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58156909A (en) * | 1982-03-13 | 1983-09-19 | Canon Inc | Detector for focusing state |
JPS5878101A (en) * | 1982-08-05 | 1983-05-11 | Nippon Kogaku Kk <Nikon> | Focus detecting device |
JPS5965814A (en) * | 1982-10-07 | 1984-04-14 | Canon Inc | Focusing detector |
JPS63278012A (en) * | 1987-05-08 | 1988-11-15 | Minolta Camera Co Ltd | Optical device for focus detection |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5258804A (en) * | 1990-02-13 | 1993-11-02 | Canon Kabushiki Kaisha | Focus detection device having a mechanism for adjusting light-receiving state |
JP2015138090A (en) * | 2014-01-21 | 2015-07-30 | キヤノン株式会社 | Image capturing device |
Also Published As
Publication number | Publication date |
---|---|
JPH07117644B2 (en) | 1995-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5005041A (en) | Focus detecting apparatus having a plurality of focus detecting areas | |
US6112029A (en) | Camera, exchangeable lens, and camera system | |
US4841326A (en) | Apparatus for detecting the focus adjusted state of an objective optical system | |
JP2756351B2 (en) | Focus detection device | |
JPS6295511A (en) | Focus adjustment state detecting device | |
JP2608297B2 (en) | Focus detection device | |
JPH01120519A (en) | Focus detecting device | |
US5485001A (en) | Focus detecting apparatus | |
JPH01120520A (en) | Single-lens reflex camera equipped with focus detecting device | |
JP2699360B2 (en) | Focus detection device | |
JP2927047B2 (en) | Focus detection device | |
JP3134429B2 (en) | Focus detection device | |
US4428653A (en) | Mirror reflex camera with an electronic range finder | |
US6370333B1 (en) | Multipoint focus detecting apparatus | |
JP3703153B2 (en) | Focus detection device | |
JP4289707B2 (en) | Focus detection device | |
JP2600934B2 (en) | Projection system for automatic focus detection | |
JPH0688938A (en) | Focus detector | |
JP2600823B2 (en) | Focus detection device | |
JPH01266503A (en) | Focus detecting device | |
JPH01232314A (en) | Automatic focus detecting device for camera | |
JPH0518402B2 (en) | ||
JPH0643359A (en) | Focus detector | |
JPS6173119A (en) | Focus detecting device | |
JPH07104481B2 (en) | Focus detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |