JPH01120520A - Single-lens reflex camera equipped with focus detecting device - Google Patents

Single-lens reflex camera equipped with focus detecting device

Info

Publication number
JPH01120520A
JPH01120520A JP27983787A JP27983787A JPH01120520A JP H01120520 A JPH01120520 A JP H01120520A JP 27983787 A JP27983787 A JP 27983787A JP 27983787 A JP27983787 A JP 27983787A JP H01120520 A JPH01120520 A JP H01120520A
Authority
JP
Japan
Prior art keywords
lens
image
light
submirror
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27983787A
Other languages
Japanese (ja)
Other versions
JPH0769515B2 (en
Inventor
Yasuo Suda
康夫 須田
Keiji Otaka
圭史 大高
Kenji Suzuki
謙二 鈴木
Akira Ishizaki
明 石崎
Keisuke Aoyama
圭介 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27983787A priority Critical patent/JPH0769515B2/en
Priority to US07/266,804 priority patent/US5005041A/en
Publication of JPH01120520A publication Critical patent/JPH01120520A/en
Publication of JPH0769515B2 publication Critical patent/JPH0769515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To detect a focus by providing a light splitting mirror, a submirror, an image re-forming lens and a photoelectric conversion means and arraying range finding visual fields set by image element rows only on a line in parallel with lines intersecting the planes of plural mirrors. CONSTITUTION:The splitting mirror 22 splits a portion of a luminous flux from a lens system to a finder system, and the submirror 26 reflects the luminous flux passing through the mirror 22 and leads it to a focus detecting device 27. A device 27 is provided with the image re-forming lens 51 which re-forms images of an object formed with the luminous flux reflected by the submirror 26 and forms secondary images, and a photoelectric conversion element train 55 forming plural image element rows. The range finding visual fields set by image element sets 60 and 62 are arrayed along the line intersecting the plane of the splitting mirror 22 and that of the submirror. By this constitution, electrical signals are read out as separate image element rows, and a focused state is operated as separate range finding visual fields. Algorithm for each signal processing is selected, and the camera can focus on an object.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は焦点検出装置に関し、特に対物レンズの焦点調
整状態を検出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a focus detection device, and more particularly to a device for detecting the focus adjustment state of an objective lens.

〔従来の技術〕[Conventional technology]

写真用カメラあるいはビデオカメラが自動焦点調節のた
めの検出装置を内蔵するのは極く普通の事になっている
。但し、測距範囲を決めるのはファインダーの中央で行
う様になっており、ファインダー画面内の所望の位置の
被写体に焦点を合わせるカメラはまだ実現されていない
It has become commonplace for photographic or video cameras to incorporate detection devices for automatic focusing. However, the distance measurement range is determined at the center of the viewfinder, and a camera that focuses on a subject at a desired position within the viewfinder screen has not yet been realized.

即ち画面の中央に測距視野が設定されていると、被写体
の主要部が画面の中央に位置する場合は問題がないもの
の、画面の中央を外れている場合は誤測距を起し、ピン
トのボケた写真となる不都合がある。この難点を解消す
るために、−度カメラを横に振って画面の中央に被写体
の主要部を入れて測距を行い、その時の焦点調節状態を
保ったままカメラの方向を戻した後、シャッターレリー
ズする操作を行える様になっているが、操作が面倒であ
るし、急いでいる場合には実行できない場合もある。例
えば横に移動する被写体が画面の中央を外れた位置に在
る写真を取ると云った要求に答えるのは難しかった。
In other words, if the distance measurement field of view is set at the center of the screen, there will be no problem if the main part of the subject is located at the center of the screen, but if it is off the center of the screen, erroneous distance measurement will occur and the focus will be incorrect. There is an inconvenience that the photo will be blurry. In order to solve this problem, we measured the distance by shaking the camera horizontally and placing the main part of the subject in the center of the screen, then returned the direction of the camera while maintaining the current focus adjustment state, and then released the shutter. Although it is possible to perform a release operation, it is cumbersome and may not be possible if you are in a hurry. For example, it was difficult to respond to a request to take a photo in which a subject moving laterally was located off the center of the screen.

一方、対物レンズによる結像光束を一組の再結像レンズ
へ導き、これらレンズにより形成された光量分布を光電
変換素子の画素列で受け、両光量分布の間隔から対物レ
ンズの焦点調節状態を検出する装置は周知である。
On the other hand, the imaging light flux from the objective lens is guided to a set of re-imaging lenses, the light intensity distribution formed by these lenses is received by the pixel array of the photoelectric conversion element, and the focus adjustment state of the objective lens is determined from the interval between both light intensity distributions. Devices for detection are well known.

上述の画面中央以外に位置する被写体に対して、カメラ
を振ることな(測距したいと云う要求を充たすための一
法として、光軸の上に配した画素列の外側に別の画素列
を配置し、新たに設けた画素列は画面の中央を外れた被
写体像を受けることが考えられる。
One way to meet the requirement of measuring distance without shaking the camera toward objects located outside the center of the screen is to place another pixel row outside the pixel row placed on the optical axis. It is conceivable that the newly provided pixel row may receive a subject image that is off the center of the screen.

〔本発明が解決すべき問題点〕[Problems to be solved by the present invention]

しかしながら、−眼レフレックスカメラにおいては、主
ミラーの背後にサブミラーを配置し、サブミラーで反射
した光束をミラーボックス底部に導いて焦点検出装置に
入射させるのが一般的であるが、その場合、主ミラーと
サブミラーの干渉を避けるため、サブミラーの大きさに
制御を加える必要があり、またサブミラーと主ミラーと
の間隔を大きくとると予定結像等価面と焦点検出装置と
の距離が大きくならざるを得す、焦点検出光学系にして
もその範囲を拡げるのが難しかった。
However, in eye reflex cameras, it is common to place a sub-mirror behind the main mirror and guide the light beam reflected by the sub-mirror to the bottom of the mirror box and enter the focus detection device. In order to avoid interference between the mirror and the sub-mirror, it is necessary to control the size of the sub-mirror, and if the distance between the sub-mirror and the main mirror is increased, the distance between the planned equivalent plane of image formation and the focus detection device must become large. However, it was difficult to expand the range of the focus detection optical system.

本発明はこの様な難点を解消することを目的とする。そ
して、目的を達成するため、対物レンズの光束の一部を
ファインダ系へ分割する光分割ミラーと、前記光束の内
、前記光分割ミラーを通過した光束を反射するサブミラ
ーと、サブミラーで反射した光束が形成する物体像を再
結像して二次像を形成する対の再結像レンズと、それぞ
れ前記二次像に関する光量分布を受ける画素列の組を複
数、例えば3以上有し、光量分布を電気的信号に変換す
る光電変換手段とを具備する一眼レフレックスカメラで
、前記各々の画素列の組で設定される測距視野が、前記
光分割ミラーを含む平面と前記サブミラーを含む平面と
の交線に平行な線に沿って配列される様にして測距視野
の配列長を長く採ることができた。
The present invention aims to solve these difficulties. In order to achieve the purpose, a light splitting mirror that splits a part of the light flux of the objective lens to the finder system, a sub-mirror that reflects the light flux that has passed through the light splitting mirror out of the light flux, and a light flux reflected by the sub-mirror. a pair of re-imaging lenses that re-image an object image formed by a secondary image to form a secondary image, and a plurality of sets of pixel rows, for example, three or more, each receiving a light amount distribution regarding the secondary image, and a light amount distribution. A single-lens reflex camera is equipped with a photoelectric conversion means for converting a signal into an electrical signal, and the distance measurement field of view set by each set of pixel columns is a plane including the light splitting mirror and a plane including the submirror. By arranging them along a line parallel to the intersection line of , it was possible to increase the length of the distance measurement field of view.

〔実施例〕〔Example〕

本発明の焦点検出装置は、銀塩フィルムを使う一眼レフ
レックスカメラや、−眼レフレックス電子カメラあるい
はビデオカメラに使われる他、記録装置や加工機械の位
置検出装置あるいはロボットの目などに使用できる。
The focus detection device of the present invention can be used in single-lens reflex cameras that use silver halide film, -lens reflex electronic cameras, or video cameras, as well as in position detection devices for recording devices, processing machines, robot eyes, etc. .

第6図は使用形態の一例で、−眼レフレックスカメラの
光学系を描いており、10はカメラボディ、20は着脱
交換可能もしくは固設のレンズ鏡筒を示す。21は対物
レンズで、1はその光軸である。光軸1は半透過域を具
えるクイックリターンミラー22に達し、2つに分割さ
れる。反転された光軸に沿ってフォーカシングスクリー
ン23、ペンタプリズム24.接眼レンズ25が装置さ
れ、視認のためのファインダ系を構成する。
FIG. 6 shows an example of the usage mode, and depicts the optical system of a -eye reflex camera, where 10 is a camera body and 20 is a detachable or replaceable lens barrel. 21 is an objective lens, and 1 is its optical axis. The optical axis 1 reaches a quick return mirror 22 with a semi-transparent region and is split into two parts. Along the inverted optical axis are a focusing screen 23, a pentaprism 24. An eyepiece lens 25 is provided to constitute a finder system for visual recognition.

又透過された光軸に沿って可動サブミラー26、次いで
本発明に係る焦点検出装置27が配され、焦点検出装置
27の出力で図示しない駆動器が作動し、対物レンズ2
1の位置糸調節される。尚、可動サブミラー26はクイ
ックリターンミラー22に保持されている点は周知の通
りである。
A movable sub-mirror 26 and then a focus detection device 27 according to the present invention are arranged along the transmitted optical axis, and a driver (not shown) is operated by the output of the focus detection device 27, and the objective lens 2
1 position thread is adjusted. Incidentally, as is well known, the movable sub-mirror 26 is held by the quick return mirror 22.

28は被写体照明装置の例えばLEDの如き光源で、投
影パターンが形成された投影チャート29を照明し、透
過光は投光レンズ30で投光される。
A light source 28 such as an LED of an object illumination device illuminates a projection chart 29 on which a projection pattern is formed, and transmitted light is projected by a projection lens 30.

以下、27で示した焦点検出装置の構成を第1図乃至第
3図を使つて説明する。第1図は斜視形態、第2図は縦
断面形状、第3図は単一チップから成る光電変換デバイ
スの画素列と光量分布との位置関係を示している。42
は多孔視野マスクで、図中、横方向に長辺を持ち、並列
された矩形開口を具え、例えば第6図の対物レンズ21
の予定結像面近傍に配される。43は近赤外光より長波
長光を遮断するフィルター。50は分割フィールドレン
ズで、対物レンズの予定結像面から若干ずらして配置す
る。分割フィールドレンズ50は後述する様に光学作用
を異にするレンズ部50a・50b、50c、50d、
50e、50f−50gから成っており、これらの部分
はレンズ厚又はレンズ面の曲率半径の一方あるいは両方
を変えることで形成される。尚、各レンズ部を別体で構
成する場合は屈折率を異にする素材で作ることもできる
Hereinafter, the configuration of the focus detection device shown at 27 will be explained using FIGS. 1 to 3. FIG. 1 shows a perspective view, FIG. 2 shows a vertical cross-sectional shape, and FIG. 3 shows a positional relationship between a pixel row and a light amount distribution of a photoelectric conversion device consisting of a single chip. 42
is a multi-hole field mask, which in the figure has long sides in the horizontal direction and has rectangular apertures arranged in parallel; for example, the objective lens 21 in FIG.
is placed near the planned imaging plane. 43 is a filter that blocks light with wavelengths longer than near-infrared light. Reference numeral 50 denotes a split field lens, which is arranged slightly offset from the intended image formation plane of the objective lens. The divided field lens 50 includes lens parts 50a, 50b, 50c, 50d, which have different optical functions as described later.
50e, 50f-50g, and these parts are formed by changing either or both of the lens thickness and the radius of curvature of the lens surface. In addition, when each lens part is constructed separately, it can also be made of materials having different refractive indexes.

51と53は2孔絞り52を挟んで再結像レンズユニッ
トを形成し、凸レンズ51は入射光を平行光に近い状態
に変換しく光学作用は特公昭62−33564号に述べ
られている)、また2枚の凸レンズ53a、53bを並
べて接合した2像形成レンズ53は対物レンズで結像さ
れた物体像の2次像を2つ形成する。前述の2孔絞り5
2は、図面中、横方向に並んだ縦に長い楕円開口52a
、52bを具える。
51 and 53 form a re-imaging lens unit with a two-hole diaphragm 52 in between, and the convex lens 51 converts the incident light into a state close to parallel light (the optical function is described in Japanese Patent Publication No. 33564/1983), Further, the two-image forming lens 53, which is made by joining two convex lenses 53a and 53b side by side, forms two secondary images of the object image formed by the objective lens. The aforementioned two-hole aperture 5
2 denotes vertically long elliptical openings 52a arranged in the horizontal direction in the drawing.
, 52b.

54は像面湾曲補正用の凹レンズで、光電変換デバイス
55(第2図、第3図)を収容する透明プラスチックパ
ッケージ56上に配設される。
54 is a concave lens for field curvature correction, and is arranged on a transparent plastic package 56 that houses a photoelectric conversion device 55 (FIGS. 2 and 3).

尚、分割フィールドレンズ50.再結像レンズユニット
の凸レンズ51、凹レンズ54は縦長に整形されている
が、いずれも回転対称の球面レンズ系である。
In addition, the split field lens 50. The convex lens 51 and concave lens 54 of the re-imaging lens unit are shaped vertically, but both are rotationally symmetrical spherical lens systems.

多孔視野マスク42の開口42・・・42gを通りた光
束は、第2図に示すように分割フィールドレンズ50の
レンズ部50a−50b、50c。
The light beams passing through the apertures 42...42g of the multi-hole field mask 42 are directed to the lens portions 50a-50b, 50c of the split field lens 50, as shown in FIG.

50d、50e、50f ・50gを透過して、光電変
換デバイス上に夫々、物体の2次像を形成する。第3図
はこの様子を示したもので、60aと60b、−60m
と60nおよび62aと62bが多数の画素より成る画
素列の組で、62a、   ’62b上には後述する物
体照明装置の発光波長とほぼ等しいバンドパス特性を有
するフィルターが形成されている。これらの画素列に対
応して多孔視野マスクの開口42a・・・42gの像6
1a・・・61nが投影され、この内部に物体の2次像
が形成される。その際、多孔視野マスク42の各開口の
幅と各開口間の遮光帯42h・・・42mの幅及び光電
変換デバイス55上の画素列の幅と画素列のピッチに合
わせてマスク42とデバイス55を中継する光学系、特
に分割フィールドレンズの各レンズ部や再結像レンズユ
ニットの屈折力が調定されているので、多孔視野マスク
の遮光帯42h・・・42mはそれぞれ所定の開口を射
出した光束の一部が、この開口と一対一で対応する画素
列以外の画素列へ入射するのを防止する。ま、た視野マ
スク像は、絞り開口52a、52bおよびレンズ部53
a、53bの作用により多孔視野マスク42の1つの開
口につき2個横方向に並んで形成され、物体像の予定結
像面に対する位置に関係してその内部の物体の2次像は
伴に矢印A方向およびB方向に移動する。したがって、
各画素列の組は対となる2次像に関する光量分布の相対
的間隔を光電変換出力に基いて検出することから、複数
点の測距位置について対物レンズのピント状態を知るこ
とができる。
50d, 50e, 50f and 50g, and form secondary images of the object on the photoelectric conversion device, respectively. Figure 3 shows this situation, with 60a and 60b, -60m
and 60n, and 62a and 62b are a set of pixel rows consisting of a large number of pixels, and a filter having a bandpass characteristic approximately equal to the emission wavelength of an object illumination device to be described later is formed on 62a and 62b. Images 6 of the apertures 42a...42g of the multi-hole field mask correspond to these pixel columns.
1a...61n are projected, and a secondary image of the object is formed inside this. At that time, the mask 42 and the device 55 are adjusted according to the width of each aperture of the multi-hole viewing mask 42, the width of the light shielding zone 42h...42m between each aperture, the width of the pixel row on the photoelectric conversion device 55, and the pitch of the pixel row. Since the refractive power of the optical system that relays the image, especially each lens part of the split field lens and the re-imaging lens unit, is adjusted, the light-shielding bands 42h...42m of the multi-hole field mask each emit a predetermined aperture. Part of the light flux is prevented from entering pixel columns other than the pixel column corresponding one-to-one with this aperture. In addition, the field mask image includes the aperture apertures 52a, 52b and the lens portion 53.
a and 53b, two images are formed in parallel in the lateral direction for each aperture of the multi-hole field mask 42, and the secondary images of the object inside are formed as shown by the arrows in relation to the position of the object image with respect to the intended imaging plane. Move in direction A and direction B. therefore,
Since each set of pixel columns detects the relative interval of the light amount distribution regarding the pair of secondary images based on the photoelectric conversion output, it is possible to know the focus state of the objective lens for a plurality of distance measurement positions.

尚、画素列は視野マスク像の歪みに合わせた形状とし、
上記の2次像の移動方向と画素列方向が完全に一致する
ように構成するのが望ましい。また各画素列は分離され
た形で組を作つているが、1本の画素列の2つの範囲を
割り当てて組を作っても良い。
In addition, the pixel row is shaped to match the distortion of the visual field mask image,
It is desirable that the moving direction of the secondary image and the pixel column direction be configured to completely match. Further, each pixel column is separated to form a set, but a set may be created by allocating two ranges of one pixel column.

次に第4図、第5図を用いて本発明による分割フィール
ドレンズの効果を説明する。第4図は、予定結像面上に
ある光軸上の測距視野内の点T(第2図)と光軸外の測
距視野内の点Uが視野マスク開口42d、42gを通し
て光電変換素子上に投影される様子を表わし、図中70
は点Tより発した光線、71は点Uより発した光線であ
る。
Next, the effects of the divided field lens according to the present invention will be explained using FIGS. 4 and 5. In Figure 4, a point T in the distance measurement field on the optical axis on the planned image formation plane (Figure 2) and a point U in the distance measurement field off the optical axis are photoelectrically converted through field mask apertures 42d and 42g. 70 in the figure shows how it is projected onto the element.
71 is a ray of light emitted from point T, and 71 is a ray of light emitted from point U.

第2図に示したように、光線70はフィールドレンズの
中央のレンズ部50dを透過し、一方、光線71は周辺
のレンズ部50f・50gを透過している。このとき、
これら2つのレンズ部は光電変換デバイス上の結像状態
を揃えるように構成され、定性的には50f・50gの
方のレンズ厚を増していることにより、点19点Uの結
像点はどちらも光電変換デバイス上に位置した点V、W
となる。この結果、各測距視野の焦点検出精度を一様に
高く保つことが可能となる。
As shown in FIG. 2, the light ray 70 is transmitted through the central lens portion 50d of the field lens, while the light ray 71 is transmitted through the peripheral lens portions 50f and 50g. At this time,
These two lens parts are configured to align the image formation state on the photoelectric conversion device, and qualitatively, by increasing the lens thickness of 50f and 50g, which point is the image formation point of point 19 U? Points V and W also located on the photoelectric conversion device
becomes. As a result, it becomes possible to maintain uniformly high focus detection accuracy in each distance measurement field of view.

第5図は、絞り52の2つの開口52a、52bを多孔
視野マスクの最も端の開口42aと光軸上の視野マスク
開口42dを通して対物レンズの射出瞳上に逆投影した
像を示し、図中、80a。
FIG. 5 shows an image obtained by back projecting the two apertures 52a and 52b of the diaphragm 52 onto the exit pupil of the objective lens through the endmost aperture 42a of the multi-hole field mask and the field mask aperture 42d on the optical axis. , 80a.

81aおよび80b、81bはそれぞれ絞り開口52a
、52b (第1図)の逆投影像であり、80a、81
bは視野マスク開口42dを通過したもの、81 a、
  8 l bは視野マスク開口42aを通過したもの
である。図より分るように測距視野毎にフィールドレン
ズを最適化することにより、どの測距視野位置でも焦点
検出光束がケラレることない構成が可能である。この結
果測距視野位置を光軸1の近傍に限定されることな(、
広範囲に設定することが可能となる。
81a, 80b, and 81b are aperture apertures 52a, respectively.
, 52b (Fig. 1), and 80a, 81
b is the image passing through the field mask aperture 42d, 81a,
8 lb is the light that has passed through the field mask aperture 42a. As can be seen from the figure, by optimizing the field lens for each distance measurement field of view, it is possible to create a configuration in which the focus detection light beam is not eclipsed at any distance measurement field position. As a result, the distance measurement field of view position is not limited to the vicinity of optical axis 1 (
This allows for a wide range of settings.

尚、フィールドレンズの接合部50h〜50gへ向う光
は視野マスクの遮光帯42h、42i。
Incidentally, the light directed to the joint portions 50h to 50g of the field lens is through the light-shielding bands 42h and 42i of the field mask.

42f、42mによって遮光され、この部分への光入射
によるゴースト光の発生を防いでいる。
The light is blocked by 42f and 42m to prevent the generation of ghost light due to light incident on these parts.

また、図示の分割フィールドレンズはプラスチックの一
体成形で作られているが、各レンズ部をそれぞれ作成し
た後、結合して構成することもできる。
Further, although the illustrated split field lens is made by integral molding of plastic, it is also possible to form each lens part individually and then combine them.

第7図は測距視野の配置を示しており、第6図の一眼レ
フレックスカメラに即して言えば、フォーカシングスク
リーン23上で、その長辺方向の中心軸上に測距視野9
1a・・・91gおよび92が平行に並ぶ様にレイアウ
トされている。
FIG. 7 shows the arrangement of the distance measurement field of view, and in accordance with the single-lens reflex camera shown in FIG.
1a...91g and 92 are laid out in parallel.

そして第3図の画素列の組60a・60b・・・60m
・60nを再結像レンズユニットで予定結像面上へ逆投
影し、他方フォーカシングスクリーン23の測距視野を
予定結像面上に置き換えれば、画素列の組と測距視野は
夫々重なり合うことになる。画素列の組の並び方向をカ
メラボディサブミラー26を含む面の交線方向(図面に
垂直方向)に一致した方向である。
And the set of pixel columns 60a, 60b...60m in FIG.
・If 60n is back-projected onto the intended imaging plane using the re-imaging lens unit, and the distance measurement field of the focusing screen 23 is replaced on the intended imaging plane, the set of pixel rows and the distance measurement field will overlap, respectively. Become. This is a direction in which the arrangement direction of the set of pixel columns coincides with the intersecting direction of the plane including the camera body sub-mirror 26 (perpendicular to the drawing).

この配置を採ることで、可動サブミラーの上下方向の幅
を拡大することなく、一端の測距視野から他端の測距視
野までの範囲を最大限大きくすることができる利点があ
る。
Adopting this arrangement has the advantage that the range from the distance measurement field of view at one end to the distance measurement field of view at the other end can be maximized without increasing the width of the movable submirror in the vertical direction.

第8図の横縞パターンは、低コントラストあるいは低輝
度の物体に投影する投影パターンの一例を示しており、
第6図のチャート29に描かれている。本図を物体上に
投影した投影パターン像と仮定すると、93は第3図の
画素列の組62a・62bを物体上に逆投影した時の測
距範囲を示している。前述した様に、画素列62a・6
2b上には照明光源28(第6図)の発光波長とほぼ等
しい波長のバンドパスフィルターが形成されており、画
素列は物体で反射した投影パターンを選別して感知する
。これにより、通常は検出の難しい物体にも強制的にコ
ントラストを付加し、画素列62a・62bによる焦点
検出が可能となる。因みに94は画素列60g・62h
による物体上測距範囲である。
The horizontal stripe pattern in FIG. 8 shows an example of a projection pattern projected onto an object with low contrast or low brightness.
This is depicted in chart 29 of FIG. Assuming that this figure is a projected pattern image projected onto an object, reference numeral 93 indicates the distance measurement range when the set of pixel columns 62a and 62b in FIG. 3 is back-projected onto the object. As mentioned above, the pixel rows 62a and 6
A bandpass filter having a wavelength substantially equal to the emission wavelength of the illumination light source 28 (FIG. 6) is formed on 2b, and the pixel array selects and senses the projected pattern reflected by the object. This forcibly adds contrast to objects that are normally difficult to detect, and enables focus detection using the pixel rows 62a and 62b. By the way, 94 is a pixel row of 60g/62h
This is the distance measurement range on the object.

以上の構成で、光電変換デバイス56(第1図等)から
の電気信号は、各画素列ごとに読み出され、例えば各測
距視野ごとに合焦状態の演算を施連続性を検定し、連続
性の強い範囲内の近い物体を選択するとか、予め所定の
測距視野を選んでおいて、そこに入り込んだ物体に焦点
合わせを行うと言った種々の信号処理アルゴリズムを選
択し得る。
With the above configuration, the electrical signal from the photoelectric conversion device 56 (FIG. 1, etc.) is read out for each pixel column, and, for example, the in-focus state is calculated for each distance measurement field of view, and the continuity is verified. Various signal processing algorithms can be selected, such as selecting a nearby object within a highly continuous range, or selecting a predetermined distance measurement field of view in advance and focusing on an object that has entered that field.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によれば、測距視野列を長く取るこ
とができるから、広い範囲内の多数の点で測距を実行す
ることができる効果がある。また、カメラの方向を固定
したまま、移動物体に対して連続的に焦点検出を行うこ
とが可能となる。
According to the present invention described above, since the distance measurement field of view can be made long, it is possible to carry out distance measurement at a large number of points within a wide range. Furthermore, it is possible to continuously perform focus detection on a moving object while keeping the direction of the camera fixed.

しかも、画素列方向が測距視野の並び方向と直交してい
るため、光電変換デバイスにCOD等の電荷蓄積を必要
とするものを用いたとしても、測距視野の並び方向の物
体移動に伴う像信号の低コントラスト比がなく、正確な
焦点検出が可能であるという効果がある。更に、光電変
換デバイスの1つの画素列を再結像レンズに対して位置
合わせを行えば他の画素列も適切な位置にくると云う効
果もある。
Moreover, since the pixel row direction is orthogonal to the direction in which the distance measurement fields of view are arranged, even if a photoelectric conversion device that requires charge accumulation such as COD is used, the movement of the object in the direction of the distance measurement fields of view This has the advantage that there is no low contrast ratio of the image signal and accurate focus detection is possible. Furthermore, there is also the effect that by aligning one pixel column of the photoelectric conversion device with respect to the re-imaging lens, the other pixel columns will also be at appropriate positions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す斜視図。第2図はその光
学断面図。第3図は光電変換デバイスの正面図。第4図
は光学部分断面図。第5図は斜視図。第6図はカメラへ
の適用例を示す構成の断面図。17図は観察視野の平面
図。第8図は投影パターンと画素列の関係を示す図。 図中42は多孔視野マスク、50は分割フィールドレン
ズ、50a・・・50gはレンズ部、51は再結像レン
ズユニットの凸レンズ、53は2像形成レンズ、52は
2孔絞り、55は光電変換デバイス、60a・ Son
、62a、62bは画素列である。
FIG. 1 is a perspective view showing an embodiment of the present invention. FIG. 2 is an optical cross-sectional view. FIG. 3 is a front view of the photoelectric conversion device. FIG. 4 is an optical partial cross-sectional view. FIG. 5 is a perspective view. FIG. 6 is a sectional view of a configuration showing an example of application to a camera. Figure 17 is a plan view of the observation field. FIG. 8 is a diagram showing the relationship between a projection pattern and a pixel column. In the figure, 42 is a multi-hole field mask, 50 is a split field lens, 50a...50g are lens parts, 51 is a convex lens of a re-imaging lens unit, 53 is a two-image forming lens, 52 is a two-hole aperture, and 55 is a photoelectric conversion Device, 60a/Son
, 62a, 62b are pixel columns.

Claims (1)

【特許請求の範囲】 対物レンズの光束の一部をファインダ系へ分割する光分
割ミラーと、前記光束の内、前記光分割ミラーを通過し
た光束を反射するサブミラーと、サブミラーで反射した
光束が形成する物体像を再結像して二次像を形成する対
の再結像レンズと、それぞれ前記二次像に関する光量分
布を受ける画素列の組を複数有し、前記光量分布を電気
的信号に変換する光電変換手段とを具備し、 前記各々の画素列の組で設定される測距視野が、前記光
分割ミラーを含む平面と前記サブミラーを含む平面との
交線に平行な線のみに沿って配列されることを特徴とす
る焦点検出装置を具えた一眼レフレツクスカメラ。
[Scope of Claims] A light splitting mirror that splits a part of the light flux of the objective lens to the finder system, a submirror that reflects the light flux that has passed through the light splitting mirror out of the light flux, and the light flux reflected by the submirror is formed. a pair of re-imaging lenses that re-image an object image to form a secondary image, and a plurality of sets of pixel columns each receiving a light intensity distribution regarding the secondary image, and converting the light intensity distribution into an electrical signal. and photoelectric conversion means for converting, the distance measurement field of view set by each set of pixel columns is along only a line parallel to the intersection of the plane containing the light splitting mirror and the plane containing the sub-mirror. A single-lens reflex camera equipped with a focus detection device characterized in that the focus detection device is arranged in a single-lens reflex camera.
JP27983787A 1987-11-05 1987-11-05 Single-lens reflex camera with focus detection device Expired - Lifetime JPH0769515B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27983787A JPH0769515B2 (en) 1987-11-05 1987-11-05 Single-lens reflex camera with focus detection device
US07/266,804 US5005041A (en) 1987-11-05 1988-11-03 Focus detecting apparatus having a plurality of focus detecting areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27983787A JPH0769515B2 (en) 1987-11-05 1987-11-05 Single-lens reflex camera with focus detection device

Publications (2)

Publication Number Publication Date
JPH01120520A true JPH01120520A (en) 1989-05-12
JPH0769515B2 JPH0769515B2 (en) 1995-07-31

Family

ID=17616615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27983787A Expired - Lifetime JPH0769515B2 (en) 1987-11-05 1987-11-05 Single-lens reflex camera with focus detection device

Country Status (1)

Country Link
JP (1) JPH0769515B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543886A (en) * 1991-05-02 1996-08-06 Canon Kabushiki Kaisha Focus state detection apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659239B (en) * 2018-11-14 2019-05-11 大立光電股份有限公司 Imaging optical lens assembly, imaging apparatus and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543886A (en) * 1991-05-02 1996-08-06 Canon Kabushiki Kaisha Focus state detection apparatus

Also Published As

Publication number Publication date
JPH0769515B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US5005041A (en) Focus detecting apparatus having a plurality of focus detecting areas
US6112029A (en) Camera, exchangeable lens, and camera system
JP2756351B2 (en) Focus detection device
JPH0376442B2 (en)
JPS6311906A (en) Focus detecting device
JPH01120518A (en) Focus detecting device
JPH01120520A (en) Single-lens reflex camera equipped with focus detecting device
US5485001A (en) Focus detecting apparatus
JPH01120519A (en) Focus detecting device
US4428653A (en) Mirror reflex camera with an electronic range finder
JP3134429B2 (en) Focus detection device
JP2600934B2 (en) Projection system for automatic focus detection
JP4289707B2 (en) Focus detection device
JPH01266503A (en) Focus detecting device
JPS63291042A (en) Projection pattern for detecting focus
JPS59129811A (en) Focusing detecting device
JPS63139310A (en) Pattern projecting device for detecting focus
JP2832055B2 (en) Auxiliary lighting device
JPS63291041A (en) Illumination device for detecting focus
JPH01185505A (en) Focus detecting device
JPH05341177A (en) Auto-focusing light device
JPH0341407A (en) Focus detector
JP2000171696A5 (en)
JPH0255306A (en) Focus detecting device for camera
JPH0618773A (en) Camera provided with focus detection device