JPH0140233B2 - - Google Patents

Info

Publication number
JPH0140233B2
JPH0140233B2 JP12473082A JP12473082A JPH0140233B2 JP H0140233 B2 JPH0140233 B2 JP H0140233B2 JP 12473082 A JP12473082 A JP 12473082A JP 12473082 A JP12473082 A JP 12473082A JP H0140233 B2 JPH0140233 B2 JP H0140233B2
Authority
JP
Japan
Prior art keywords
compressor
oil
suction
suction pipe
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12473082A
Other languages
Japanese (ja)
Other versions
JPS5915686A (en
Inventor
Osamu Kawai
Masao Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12473082A priority Critical patent/JPS5915686A/en
Publication of JPS5915686A publication Critical patent/JPS5915686A/en
Publication of JPH0140233B2 publication Critical patent/JPH0140233B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0207Lubrication with lubrication control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 この発明は、互いに並列に配管接続された冷媒
圧縮機の同時並列運転時、またはいずれか一方の
冷媒圧縮機の片側運転時の何れの場合においても
圧縮機の油面を正常に保持するようにした並列圧
縮式冷凍装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for controlling the oil level of a compressor, either when refrigerant compressors connected in parallel with each other are operated in parallel, or when one of the refrigerant compressors is operated on one side. This invention relates to an improvement of a parallel compression type refrigeration system that maintains normal conditions.

従来、この種の装置として第1図に示すものが
あつた。図において、1,2は半密閉形の第1と
第2の冷媒圧縮機で、101,201は上記第1
と第2の冷媒圧縮機1,2を構成するクランクケ
ースで、両クランクケース101,201内は隔
壁102,202によつてモータA1,A2を収
納する吸入室103,203と圧縮要素B1,B
2を収納する油溜室104,204とに仕切られ
ている。105,205は上記隔壁102,20
2の所定位置に設けられた均圧孔、106,20
6は上記隔壁102,202の所定位置に設けら
れた油面均等化孔に装着された均油逆止弁で、こ
の均油逆止弁106,206は上記吸入室10
3,203から油溜室104,204に向つての
み潤滑油の流通をを許容するようになされてい
る。107,207はモータA1,B1によつて
圧縮要素B1,B2を駆動するクランク軸10
8,208に装着され、圧縮要素B1,B2の軸
受等の摺動部に油溜室104,204内底部の潤
滑油をはねかけるオイルスプラツシヤ、3は上記
第1の冷媒圧縮機1の吸入室103に接続された
第1のガス吸入管で冷凍サイクルの蒸発器(図示
せず)につながる吸入管5の下部に接続されてい
る。4は上記第2の冷媒圧縮機2の吸入室203
に接続された第2のガス吸入管で、上記吸入管5
の上部より分岐し、第1のガス吸入管4とによつ
て両圧縮機1,2を並列接続している。また、こ
れらの第1と第2のガス吸入管3,4および吸入
管5の接続関係により吸入管5内の冷媒ガスをガ
スと潤滑油とに分離する分離手段501を構成し
ている。6は上記第1の冷媒圧縮機1のガス吐出
管、7は上記第2の冷媒圧縮機2のガス吐出管
で、この両ガス吐出管6,7は冷凍サイクルの凝
縮器(図示せず)につながる高圧管8に直列接続
されている。9は上記第1の冷媒圧縮機1の油溜
室104の均油孔109と第2の冷媒圧縮機2の
圧溜室204の均油孔209との間を互いに連結
する均油管で、10は上記均油管9途上に設けら
れ、第1の圧縮機1から第2の圧縮機2へのみ流
通を許容する逆止弁である。
Conventionally, there has been a device of this type as shown in FIG. In the figure, 1 and 2 are semi-hermetic first and second refrigerant compressors, and 101 and 201 are the first and second refrigerant compressors.
and a crankcase that constitutes the second refrigerant compressor 1, 2. Inside both crankcases 101, 201 are suction chambers 103, 203 that house motors A1, A2 by partition walls 102, 202, and compression elements B1, B.
It is partitioned into oil reservoir chambers 104 and 204 for storing oil. 105, 205 are the partition walls 102, 20
2 pressure equalization holes provided at predetermined positions, 106, 20
Reference numeral 6 denotes an oil equalizing check valve installed in an oil level equalizing hole provided at a predetermined position in the partition walls 102, 202, and the oil equalizing check valve 106, 206 is connected to the suction chamber 10.
The lubricating oil is allowed to flow only from the oil reservoir chambers 104, 204 to the oil reservoir chambers 104, 204. 107, 207 is a crankshaft 10 that drives compression elements B1, B2 by motors A1, B1.
8, 208, and splashes the lubricating oil at the inner bottom of the oil reservoir chambers 104, 204 onto the sliding parts such as bearings of the compression elements B1, B2; 3 is the first refrigerant compressor 1; The first gas suction pipe is connected to the suction chamber 103 of the refrigeration cycle, and is connected to the lower part of the suction pipe 5 connected to the evaporator (not shown) of the refrigeration cycle. 4 is a suction chamber 203 of the second refrigerant compressor 2;
a second gas suction pipe connected to the suction pipe 5;
The compressors 1 and 2 are connected in parallel through a first gas suction pipe 4 which branches out from the upper part of the gas suction pipe 4 . Further, the connection relationship between the first and second gas suction pipes 3 and 4 and the suction pipe 5 constitutes a separation means 501 that separates the refrigerant gas in the suction pipe 5 into gas and lubricating oil. 6 is a gas discharge pipe of the first refrigerant compressor 1, 7 is a gas discharge pipe of the second refrigerant compressor 2, and both gas discharge pipes 6 and 7 are connected to a condenser (not shown) of the refrigeration cycle. The high pressure pipe 8 is connected in series to the high pressure pipe 8. Reference numeral 9 denotes an oil equalizing pipe that interconnects the oil equalizing hole 109 of the oil reservoir chamber 104 of the first refrigerant compressor 1 and the oil equalizing hole 209 of the pressure reservoir chamber 204 of the second refrigerant compressor 2; is a check valve that is provided in the middle of the oil equalizing pipe 9 and allows flow only from the first compressor 1 to the second compressor 2.

次に動作について説明する。両圧縮機1,2が
運転されているときは、両圧縮機1,2の吸入管
3,4の配管抵抗の差により第1の圧縮機1と第
2の圧縮機2の運転圧力の関係は、(第1の圧縮
機1の吸入室103圧力)−(第2の圧縮機2の吸
入室203圧力)=約100〜400mmAgとなつてい
る。また、通常、冷媒循環量の0.5%程度含まれ
た油は冷媒サイクルの吸入管5内を蒸発した冷媒
ガスと共に圧縮機1,2側へ戻つてくる。この
時、分離手段501によつて冷媒ガスは潤滑油と
ガスとに分離され、この潤滑油の大部分は重力の
影響で第1の圧縮機1の吸入管3へ流入し、第1
圧縮機1の吸入室103、均油逆止弁106を通
り、油溜室104へ供給される。潤滑油は、両圧
縮機1,2の油溜室104,204が均圧均油管
9により均圧され、かつ、両圧縮機1,2の吸入
室103,203間は前述の如く差圧があるの
で、第1の圧縮機1の油溜室104より、第2の
圧縮機2の油溜室204へガスと共に流れるため
均油管9及び逆止弁10を通り第2の圧縮機2の
油溜室204へ供給され正常に潤滑機能をはた
す。
Next, the operation will be explained. When both compressors 1 and 2 are in operation, the relationship between the operating pressures of the first compressor 1 and the second compressor 2 is determined by the difference in piping resistance between the suction pipes 3 and 4 of both compressors 1 and 2. is (suction chamber 103 pressure of first compressor 1)-(suction chamber 203 pressure of second compressor 2)=approximately 100 to 400 mmAg. Further, normally, oil containing about 0.5% of the refrigerant circulation amount returns to the compressors 1 and 2 together with the refrigerant gas that has evaporated inside the suction pipe 5 of the refrigerant cycle. At this time, the refrigerant gas is separated into lubricating oil and gas by the separating means 501, and most of this lubricating oil flows into the suction pipe 3 of the first compressor 1 under the influence of gravity, and the lubricating oil flows into the suction pipe 3 of the first compressor 1.
It passes through the suction chamber 103 of the compressor 1 and the oil equalizing check valve 106, and is supplied to the oil reservoir chamber 104. The pressure of the lubricating oil is equalized in the oil reservoir chambers 104, 204 of both compressors 1, 2 by the pressure equalizing oil pipe 9, and there is a differential pressure between the suction chambers 103, 203 of both compressors 1, 2 as described above. Therefore, in order to flow together with gas from the oil reservoir chamber 104 of the first compressor 1 to the oil reservoir chamber 204 of the second compressor 2, the oil of the second compressor 2 passes through the oil equalizing pipe 9 and the check valve 10. It is supplied to the reservoir chamber 204 and normally performs the lubricating function.

次に、第1の圧縮機1だけが運転した場合、冷
媒ガスと潤滑油は吸入管5より第1の圧縮機1の
吸入管3を経て吸入室103へ流入する。この間
に配管の圧力損失により第1の圧縮機1の吸入管
103の圧力は約400mmAg程度圧力低下する。一
方、均油管9には100mmAg程度で作用する逆止弁
10を設けているため、第2の圧縮機2から第1
の圧縮機1の油溜室104へのガスの流入が阻止
され、油溜室104の圧力は均圧孔105の作用
でほぼ吸入室103と同一レベルに維持される。
従つて、吸入室103へ戻つた潤滑油を油溜室1
04へ送り込むことが可能となり、第1の圧縮機
1の連続運転を行つても、油面を安定させた運転
を行う。
Next, when only the first compressor 1 is operated, the refrigerant gas and lubricating oil flow from the suction pipe 5 into the suction chamber 103 via the suction pipe 3 of the first compressor 1. During this time, the pressure in the suction pipe 103 of the first compressor 1 decreases by about 400 mmAg due to pressure loss in the pipe. On the other hand, since the oil equalizing pipe 9 is provided with a check valve 10 that operates at approximately 100 mmAg,
Gas is prevented from flowing into the oil reservoir chamber 104 of the compressor 1, and the pressure in the oil reservoir chamber 104 is maintained at approximately the same level as the suction chamber 103 by the action of the pressure equalization hole 105.
Therefore, the lubricating oil returned to the suction chamber 103 is transferred to the oil reservoir chamber 1.
04, and even if the first compressor 1 is operated continuously, the oil level can be stabilized.

次に、第2の圧縮機2だけが運転する場合、吸
入管5より冷媒ガスは第2の圧縮機2の吸入管4
より吸入室203へ流入する。この間の配管の圧
力損失により約600mmAg程度圧力低下する。ま
た、油溜室204の圧力も均圧孔205の作用で
低下する。一方、潤滑油は吸入管5より、第1の
圧縮機1の吸入管3、吸入室103、均油逆止弁
106を介して油溜室104へ流入するが、第1
の圧縮機1は運転していないため吸入管3の圧力
損失は極めて少ないため第1の圧縮機1の油溜室
104の圧力P104と第2の圧縮機2の油溜室20
4の圧力P204の関係はP104>P204となり、第1の
圧縮機1の油溜室104に溜つた油の一部は圧力
差により、第2の圧縮機2の溜溜室204へ供給
され、正常に運転を行う。
Next, when only the second compressor 2 is operated, the refrigerant gas is transferred from the suction pipe 5 to the suction pipe 4 of the second compressor 2.
It flows into the suction chamber 203. During this time, the pressure decreases by approximately 600mmAg due to pressure loss in the piping. Further, the pressure in the oil reservoir chamber 204 is also reduced by the action of the pressure equalizing hole 205. On the other hand, lubricating oil flows from the suction pipe 5 into the oil reservoir chamber 104 via the suction pipe 3 of the first compressor 1, the suction chamber 103, and the oil equalizing check valve 106.
Because the compressor 1 is not operating, the pressure loss in the suction pipe 3 is extremely small, so the pressure P 104 in the oil reservoir chamber 104 of the first compressor 1 and the oil reservoir chamber 20 of the second compressor 2 are the same.
The relationship between pressure P 204 of No. 4 is P 104 > P 204 , and a part of the oil accumulated in the oil reservoir chamber 104 of the first compressor 1 is supplied to the reservoir chamber 204 of the second compressor 2 due to the pressure difference. and operate normally.

ところが、均油孔109,209は、通常、第
2図に示すように両圧縮機1,2のクランク軸受
け支え部より見て側面にあり、オイルスプラツシ
ヤ107の回転により、油面が上昇する側の圧縮
機1の側面に均油孔109がある場合、第1の圧
縮機1のオイルスプラツシヤ107の回転によ
り、せつかく第1の圧縮機1の油溜室104に戻
つた油が均油孔109、均油管9、逆止弁10、
第2の圧縮機2の均油孔209を通り、第2の圧
縮機2の油溜室204に多量に移動し、運転中の
圧縮機の油面がアンバランスとなりやすい傾向が
あり、保守に当り油窓から油面位置の確認が難し
く保守業務がやり難い等の欠点があつた。また、
第1の圧縮機1の油面が低下することにより、圧
縮機の摺動部への潤滑油の供給不良が生じ、第1
の圧縮機1が焼付いたり、第2の圧縮機2の油面
が異常に上昇し、運転中の圧縮機の油上り量過大
による冷凍能力の低下、及び油圧縮による弁部分
の損傷の恐れがあつた。
However, as shown in FIG. 2, the oil equalizing holes 109 and 209 are normally located on the side of the crank bearing support of both compressors 1 and 2, and as the oil splasher 107 rotates, the oil level rises. If there is an oil equalizing hole 109 on the side of the compressor 1 on the side where the compressor 1 are oil equalizing hole 109, oil equalizing pipe 9, check valve 10,
A large amount of oil passes through the oil equalization hole 209 of the second compressor 2 and moves to the oil reservoir chamber 204 of the second compressor 2, which tends to cause the oil level of the compressor during operation to become unbalanced, making maintenance difficult. There were drawbacks such as difficulty in checking the oil level position through the oil window and maintenance work. Also,
As the oil level of the first compressor 1 decreases, lubricating oil is not supplied to the sliding parts of the compressor, and the first
The second compressor 1 may seize up, the oil level in the second compressor 2 may rise abnormally, the refrigeration capacity may decrease due to excessive oil coming up from the compressor during operation, and there is a risk of damage to the valve part due to oil compression. It was hot.

この発明は上記のような従来の欠点を除去する
ためになされたもので、以下、この発明の一実施
例について説明する。
This invention was made in order to eliminate the above-mentioned conventional drawbacks, and one embodiment of the invention will be described below.

なお、冷凍装置の構成は従来のものと同一であ
るので、その説明を省略し、第3図の電気回路図
をもとに説明する。
The configuration of the refrigeration system is the same as that of the conventional one, so the explanation thereof will be omitted and will be explained based on the electric circuit diagram shown in FIG. 3.

同図において、A1は第1の圧縮機1のモー
タ、A2は第2の圧縮機2のモータで、第1のも
のと共に三相電源R,S,Tに接続されている。
21,22は第1、第2のモータA1,A2を運
転制御する第1、第2の電磁開閉器の接点、2
3,24は同じくコイルで、操作回路中に並列接
続されている。25は三相電源R,S,Tの正
相、逆相を検知するように三相電源R,S,Tに
挿入された正逆相検出器で、正相時のみR相に挿
入されたリレー26に通電するものである。2
7,28は三相電源R,S,Tの相を入れかえる
ため第1、第2の電磁接触器の接点で、接点27
は三相電源のR,S相に挿入され、接点28は三
相電源のRとS相との結線回路およびSとR相と
の結線回路中に挿入されている。29,30は第
1、第2の電磁接触器のコイルで、操作回路中に
並列接続されている。31はリレー26のa接点
で、第1の電磁接触器のコイル29に直列接続さ
れている。32はリレー26のb接点で、第2の
電磁接触器のコイル30に直列接続されている。
33,34は冷凍サイクルの保護装置、負荷の大
小に応動するサーモスタツト等の制御器で、第
1、第2の電磁接触器のコイル23,24に直列
して接続されている。SWは運転スイツチであ
る。
In the figure, A1 is the motor of the first compressor 1, and A2 is the motor of the second compressor 2, which are connected to the three-phase power supply R, S, T together with the first one.
21 and 22 are contacts of the first and second electromagnetic switches that control the operation of the first and second motors A1 and A2;
3 and 24 are coils, which are connected in parallel in the operating circuit. 25 is a positive and negative phase detector inserted into the three-phase power supplies R, S, and T to detect the positive and negative phases of the three-phase power supplies R, S, and T. It is inserted into the R phase only when the phase is positive. This energizes the relay 26. 2
7 and 28 are the contacts of the first and second electromagnetic contactors for switching the phases of the three-phase power supply R, S, and T, and contact 27
is inserted into the R and S phases of the three-phase power supply, and the contact 28 is inserted into the connection circuit between the R and S phases and the connection circuit between the S and R phases of the three-phase power supply. 29 and 30 are coils of the first and second electromagnetic contactors, which are connected in parallel in the operating circuit. 31 is an a contact of the relay 26, which is connected in series to the coil 29 of the first electromagnetic contactor. 32 is a b contact of the relay 26, which is connected in series to the coil 30 of the second electromagnetic contactor.
Reference numerals 33 and 34 designate controllers such as a protection device for the refrigeration cycle and a thermostat that responds to the magnitude of the load, which are connected in series to the coils 23 and 24 of the first and second electromagnetic contactors. SW is the operation switch.

次に動作について説明する。 Next, the operation will be explained.

第1の圧縮機1が正相接続の場合、運転スイツ
チSWを投入すると、正逆相検出器25によりこ
れを検出してリレー26が通電励磁され、リレー
26のa接点31が閉となるので、第1の電磁接
触器のコイル29が通電され、その電磁接触器の
第1接点27が閉状態になり、第1、第2の圧縮
機1,2のモータA1,A2に電源を供給する状
態になる。この時、第2の電磁接触器のコイル3
0はリレー26のb接点32が開となるため、通
電されず、その電磁接触器の接点28は開状態と
なつている。従つて、第1、第2の圧縮機1,2
のモータA1,A2によりオイルスプラツシヤ1
07,207は第4図の実線矢印の方向、すなわ
ち、第1の圧縮機1のオイルスプラツシヤ108
においては油はねかけ方向が均油管9の接続部で
ある均油孔109とは反対方向に回転させ、均油
孔109側の油面が比較的低下するので、第1の
圧縮機1の油溜室104に戻つた潤滑油は第2の
圧縮機2側へ必要以上に移動することがない。
When the first compressor 1 is connected in the normal phase, when the operation switch SW is turned on, the positive and negative phase detector 25 detects this and the relay 26 is energized and the a contact 31 of the relay 26 is closed. , the coil 29 of the first electromagnetic contactor is energized, the first contact 27 of the electromagnetic contactor is closed, and power is supplied to the motors A1 and A2 of the first and second compressors 1 and 2. become a state. At this time, the coil 3 of the second electromagnetic contactor
0, since the b contact 32 of the relay 26 is open, no current is applied, and the contact 28 of the electromagnetic contactor is in an open state. Therefore, the first and second compressors 1 and 2
Oil splasher 1 is driven by motors A1 and A2.
07,207 is in the direction of the solid arrow in FIG. 4, that is, the oil splasher 108 of the first compressor 1.
In the first compressor 1, the oil splashing direction is rotated in the opposite direction to the oil equalizing hole 109, which is the connection part of the oil equalizing pipe 9, and the oil level on the oil equalizing hole 109 side is relatively lowered. The lubricating oil returned to the oil reservoir chamber 104 does not move to the second compressor 2 side more than necessary.

一方、装置据付あるいはサービスにおいて、三
相電源のR,S,T相のいずれか二相が入れかわ
つて接続された逆相接続の場合、正逆相検出器2
5がこれを検出し、リレー26へは通電励磁しな
い。このため、リレー26a接点31は開状態、
b接点32は閉状態となる。よつて、第1の電磁
接触器のコイル29は励磁されず、その接点27
は開、第2の電磁接触器のコイル30は励磁さ
れ、その接点28は閉となり、三相電源R,S,
Tの1次側のR相と2次側のS相とを、また、1
次側のS相と2次側のR相とを入れかえることに
なる。従つて、両圧縮機1,2のモータA1,A
2にとつては正相接続となり、モータA1により
オイルスプラツシヤ107は、上述同様均油孔1
08と反対方向へ油かねかけするように回転す
る。
On the other hand, in the case of a reverse phase connection in which any two of the R, S, and T phases of a three-phase power supply are connected interchangeably during equipment installation or service, the positive and negative phase detector 2
5 detects this and does not energize the relay 26. Therefore, the relay 26a contact 31 is in an open state,
The b contact 32 is in a closed state. Therefore, the coil 29 of the first electromagnetic contactor is not energized and its contact 27
is open, the coil 30 of the second magnetic contactor is energized, and its contact 28 is closed, and the three-phase power supply R, S,
The R phase on the primary side and the S phase on the secondary side of T are also 1
The S phase on the next side and the R phase on the secondary side are exchanged. Therefore, motors A1 and A of both compressors 1 and 2
2 is a positive phase connection, and the oil splasher 107 is moved by the motor A1 to the oil equalizing hole 1 as described above.
Rotate in the opposite direction to 08 so as to spray oil.

以上のようにこの発明では、第1の圧縮機を介
して第2の圧縮機へ返油するようにしたものにお
いて、据付時等における第1の圧縮機のモータの
配線を誤つて逆相接続しても第1のオイルスプラ
ツシヤによる油はねかけ方向が両圧縮機を接続す
る均油管の接続側とは反対方向になるように第1
の圧縮機のモータを回転させる回路が組込まれて
いるので、第1および第2の圧縮機の同時運転あ
るいはいづれか一方の圧縮機の運転のいづれの場
合においても圧縮機の潤滑油面を良好に保持で
き、圧縮機の信頼性を高めることができると共に
据付時等における圧縮機のモータ配線工事を容易
にすることができる。
As described above, in the present invention, in which oil is returned to the second compressor via the first compressor, when the wiring of the motor of the first compressor is incorrectly connected during installation etc., the reverse phase connection is caused. However, the direction of oil splashing by the first oil splasher is opposite to the connection side of the oil equalizing pipe that connects both compressors.
Since the circuit that rotates the motor of the compressor is built in, the lubricating oil level of the compressor can be maintained at a good level whether the first and second compressors are operated simultaneously or only one compressor is operated. This makes it possible to improve the reliability of the compressor and to facilitate the compressor motor wiring work during installation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は並列圧縮式冷凍装置の構成図、第2図
は従来装置の作動説明図、第3図はこの発明の一
実施例を示す電気回路図、第4図はこの発明装置
における作動説明図である。 図中、1,2は第1および第2の圧縮機、10
1,201はクランクケース、102,202は
隔壁、103,203は吸入室、、104,20
4は油溜室、105,205は均圧孔、106,
206は均油逆止弁、107,207はオイルス
プラツシヤ、3,4は第1および第2の吸入管、
5は冷凍サイクルの吸入管、9は均油管、10は
逆止弁、A1,A2はモータ、B1,B2は圧縮
要素、25は正逆相検出器、26はリレー、2
9,30は第1および第2の電磁接触器である。
なお、図中、同一符号は同一または相当部分を示
す。
Fig. 1 is a block diagram of a parallel compression refrigeration system, Fig. 2 is an explanatory diagram of the operation of the conventional apparatus, Fig. 3 is an electric circuit diagram showing an embodiment of the present invention, and Fig. 4 is an explanation of the operation of the inventive apparatus. It is a diagram. In the figure, 1 and 2 are the first and second compressors, 10
1,201 is a crankcase, 102,202 is a partition wall, 103,203 is a suction chamber, 104,20
4 is an oil reservoir chamber, 105, 205 is a pressure equalization hole, 106,
206 is an oil equalizing check valve, 107 and 207 are oil splashers, 3 and 4 are first and second suction pipes,
5 is a suction pipe of the refrigeration cycle, 9 is an oil equalizing pipe, 10 is a check valve, A1, A2 are motors, B1, B2 are compression elements, 25 is a forward/reverse phase detector, 26 is a relay, 2
9 and 30 are first and second electromagnetic contactors.
In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 クランクケース内を吸入室側と油溜室側とに
区画する隔壁に上記吸入室側から油溜室側へのみ
油流路を許容する逆止弁と上記吸入室内に設けら
れ三相電源に接続されたモータと上記油溜室内に
設けられ、上記モータによりクランク軸を介して
駆動される圧縮要素と上記クランク軸と共に駆動
し、上記油溜室内の潤滑油を上記圧縮要素の摺動
部にはねかけるオイルスプラツシヤとを有する第
1および第2の圧縮機、上記第1の圧縮機の吸入
室と冷凍サイクルの吸入管とを接続する第1の吸
入管、上記第2の圧縮機の吸入室と上記冷凍サイ
クルの吸入管上部とを接続し、第1の吸入管と共
に上記両圧縮機を並列接続する第2の吸入管、上
記両圧縮機の油溜室間を接続し、上記第1の圧縮
機から第2の圧縮機へのみ流通を許容する逆止弁
を有する均油管を備え、上記冷凍サイクル中の潤
滑油を第1の圧縮機を介して第2の圧縮機へ返送
するようにしたものにおいて、上記第1の圧縮機
のオイルプラツシヤによる油はねかけ方向が上記
均油管の接続側とは反対方向になるように上記第
1の圧縮機のモータが回転する正相接続およびそ
の逆方向に回転する逆相接続を検出する正逆相検
出器と、この正逆相検出器が正相接続を検出した
とき、第1の圧縮機のモータをそのまゝ運転させ
ると共に逆相接続を検出したとき、三相電源のう
ちの二相を入れかえ、上記第1の圧縮機のモータ
を正相接続して運転させる制御回路とを設けてな
る並列圧縮式冷凍装置。
1. A check valve that allows an oil flow path only from the suction chamber side to the oil reservoir chamber side is installed in the partition wall that divides the inside of the crankcase into the suction chamber side and the oil reservoir chamber side, and a check valve is installed in the suction chamber and connected to a three-phase power source. A connected motor and a compression element provided in the oil sump chamber and driven by the motor via a crankshaft are driven together with the crankshaft to supply lubricating oil in the oil sump chamber to the sliding parts of the compression element. a first and second compressor having a splashing oil splasher, a first suction pipe connecting the suction chamber of the first compressor and a suction pipe of a refrigeration cycle, and the second compressor; A second suction pipe connects the suction chamber of the refrigeration cycle to the upper part of the suction pipe of the refrigeration cycle, connects both the compressors in parallel together with the first suction pipe, and connects the oil sump chambers of the two compressors. An oil equalizing pipe with a check valve that allows flow only from the first compressor to the second compressor is provided, and the lubricating oil in the refrigeration cycle is returned to the second compressor via the first compressor. A positive phase connection in which the motor of the first compressor rotates such that the direction of oil splashing by the oil pressure of the first compressor is opposite to the connection side of the oil equalizing pipe. and a forward/reverse phase detector that detects a reverse phase connection that rotates in the opposite direction. When this forward/reverse phase detector detects a positive phase connection, the motor of the first compressor is operated as it is and the reverse phase is turned on. A parallel compression type refrigeration system comprising: a control circuit that switches two phases of the three-phase power supply when phase connection is detected, and operates the motor of the first compressor in positive phase connection.
JP12473082A 1982-07-15 1982-07-15 Parallel compression type refrigerating device Granted JPS5915686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12473082A JPS5915686A (en) 1982-07-15 1982-07-15 Parallel compression type refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12473082A JPS5915686A (en) 1982-07-15 1982-07-15 Parallel compression type refrigerating device

Publications (2)

Publication Number Publication Date
JPS5915686A JPS5915686A (en) 1984-01-26
JPH0140233B2 true JPH0140233B2 (en) 1989-08-25

Family

ID=14892682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12473082A Granted JPS5915686A (en) 1982-07-15 1982-07-15 Parallel compression type refrigerating device

Country Status (1)

Country Link
JP (1) JPS5915686A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5412248B2 (en) * 2009-11-18 2014-02-12 株式会社日立産機システム Compressor

Also Published As

Publication number Publication date
JPS5915686A (en) 1984-01-26

Similar Documents

Publication Publication Date Title
KR890006727Y1 (en) Heat pump with multiple compressors
JPS6219593B2 (en)
US3487656A (en) Refrigeration system with refrigerant return means
JP2003279175A5 (en)
US2724240A (en) Refrigeration system
JPH0140233B2 (en)
JPH0138195B2 (en)
JP3197768B2 (en) Refrigeration equipment
JPH01196462A (en) Heat pump device
US11391496B2 (en) Refrigerating cycle apparatus
JPH038469B2 (en)
WO2010122812A1 (en) Refrigeration cycle device
JPS5877183A (en) Parallel compression system refrigerating device
JPH03122460A (en) Operating controller for refrigerating machine
JPH0222874B2 (en)
US1899341A (en) Magnetic unloader
JPS5920586A (en) Parallel compression type refrigerator
JPS6240134Y2 (en)
JP2001263837A (en) Refrigerating circuit
JPS6373054A (en) Refrigerator
USRE19893E (en) Magnetic un loader
JPH05766Y2 (en)
JPS6245110Y2 (en)
JPH021994B2 (en)
JPS6336433B2 (en)