JPS5915686A - Parallel compression type refrigerating device - Google Patents

Parallel compression type refrigerating device

Info

Publication number
JPS5915686A
JPS5915686A JP12473082A JP12473082A JPS5915686A JP S5915686 A JPS5915686 A JP S5915686A JP 12473082 A JP12473082 A JP 12473082A JP 12473082 A JP12473082 A JP 12473082A JP S5915686 A JPS5915686 A JP S5915686A
Authority
JP
Japan
Prior art keywords
compressor
oil
motor
phase
suction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12473082A
Other languages
Japanese (ja)
Other versions
JPH0140233B2 (en
Inventor
Osamu Kawai
治 川井
Masao Kimura
木村 誠夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12473082A priority Critical patent/JPS5915686A/en
Publication of JPS5915686A publication Critical patent/JPS5915686A/en
Publication of JPH0140233B2 publication Critical patent/JPH0140233B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0207Lubrication with lubrication control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To make it possible to sustain a satisfactory lubrication surface, by incorporating, in a refrigerating device, a circuit for rotating a motor in such a way that the direction of oil splash by one of oil splashers is made in opposite to the connection side of an equalizer pipe even if the connection of oposite phase is made upon installation or the like. CONSTITUTION:Upon, for example, the installation of a refrigerating device, in case of the connection of opposite phase in which any two of R, S and T phases of a three-phase power source and connected, conversely, a normal/opposite phase detector 25 detects this condition, and therefore, does not energize a relay 26 so that an (a) contact 31 is opened and a (b) contact 32 is closed. Accordingly, a coil 30 is energized so that the contact 28 thereof is closed, and the primary R and S phases of the three phase power source R, S, T are replaced into the secondary S and R phases thereof, respectively. Therefore, the connection of normal phase is established for motors A1, A2 of both compressors 1, 2, so that a splasher 107 is rotated by the motor A1 to splash oil in the direction opposite to an equalizer pipe 108 connecting between both compressors 1, 2. As a result, the lubrication oil surfaces of the compressors 1, 2 may be satisfactorily sustained always.

Description

【発明の詳細な説明】 この発明は、互いに並列に配管接続さり、た冷媒圧m機
の同時並列運転時、またほいずれか一方の冷媒圧縮機の
片側運転時の何れの場合においても圧縮機の油面會正常
に保持′f/)工うにした並列n=縮式冷凍装置の改良
に関するものである0従来、この種の装置として第1図
に示?ものがめった。図において、(1)(2)ぼ半密
閉形の纂lと駆2の冷媒圧m機で、(101)(201
) ld上記F1と第2の冷媒圧縮機+11 +21を
欄成するクランクケースで−Cc7) 両クラy り’
r −、((101)(201)内に隔壁(102)(
202)に工ってモータ(AI)(A、2)全収納する
吸入室(103)(203)と圧縮要素(Bl)(B2
)全収納する油溜室(104)(204)とに仕切らり
、でいる。(105) (205)汀上記隔壁(102
)(202)の所足位tjlVC設けらh−念均圧孔、
(106)(206) fJ上記隔壁(102)(20
2)の所定値#VC設けられた油面均等化孔に装着さね
、た均油逆止弁で、この均油逆止弁(106)(206
) U上記吸入室(103)(203)から油溜室(1
04)(204)に向ってのみ潤滑油の流通全許容する
よう[,7Zされ、でいる。(107)(207)はモ
ータ(Al)(Bl)に工って圧縮要素(Bl)(B2
)全駆動するクランク軸(10g)(208)Vc装涜
σね1、圧縮要素(Bl)(B2)σ)軸受等の摺動部
に油溜室(,104)(204)内底部グ〕潤滑油ヶに
ねかけるオイルスプラッシャ、(3)は上記第1の冷媒
圧縮機(1)の吸入室(103)に接続式り、た男lび
)ガス吸入管で冷凍サイクルの蒸発器い81示ぜず)v
cつながる吸入管(5)のT部に接続芒ノ1.でいろ0
(41に上記$2の冷媒圧縮機(21の吸入室(203
) K接続てれた第2のガス吸入管で、上記吸入管(5
1の上部より分岐し、第1のガス吸入管(4)とによっ
て測圧縮機+11(21vr−並列接続している。また
、これらの駆1と第2のガス吸入管+31+41および
吸入管(5)の接続関係により吸入管(5)内の冷媒ガ
ス孕ガスと潤滑油とに分離する分離手段(501)ゲ構
成している。(61に上記第lの冷媒圧縮機(11のガ
ス吐出管、(71に上記第2の冷媒圧縮機(21のガス
吐出管で、この両ガス吐出管+61 +71に冷凍サイ
クルの凝縮器(図示せず)につながる高圧管(8)に直
列接続されている。(9)は上記第1の冷媒圧縮機il
+の油溜室(104)の均油孔(109)と第2の冷媒
圧縮機(2)の油溜室(204)の均油孔(209)と
の間?互いに連結する均油管で、+1olri上記均油
雪(91途上に設けらfl、繁1の圧縮機+11から纂
2の圧縮様(2)′\のみ流通全許容する逆止弁でめる
○ 次に動作にりAて説明′t/−)。測圧縮機tlN21
が運転されていると@は、測圧縮機+I+(21の吸入
管+31+41の配管抵抗の差によ、リフilの圧縮機
(11と第20圧縮機(2)の運転圧力の関係に、(第
1の圧縮機(11の吸入室(103)圧力)−(纂2の
圧縮機(2101吸入呈(203)圧力)=約100〜
400 mmAgと1つている。
DETAILED DESCRIPTION OF THE INVENTION This invention provides a method for compressors that are connected in parallel with each other and that can be used in simultaneous parallel operation of m refrigerant compressors, or in one-sided operation of one of the refrigerant compressors. This relates to an improvement of a parallel compression type refrigeration system designed to maintain a normal oil level (f/). Something happened. In the figure, (1) (2) almost semi-hermetic type 1 and 2 refrigerant pressure m machines, (101) (201
) ld In the crankcase that forms the above F1 and the second refrigerant compressor +11 +21 -Cc7) Both cryo'
r −, ((101) Partition wall (102) ( in (201)
202) and the suction chamber (103) (203) that houses the motor (AI) (A, 2) and the compression element (Bl) (B2).
) It is partitioned into an oil sump chamber (104) and (204) for storing all of the oil. (105) (205) Partition wall above the shore (102
) (202), the required position tjlVC is provided,
(106) (206) fJ Above partition wall (102) (20
2) This oil equalizing check valve (106) (206) is installed in the oil level equalizing hole provided with the specified value #VC.
) U From the suction chamber (103) (203) to the oil sump chamber (1
04) (204) is set so that the lubricating oil is completely allowed to flow only toward (204). (107) (207) is built into the motor (Al) (Bl) and the compression element (Bl) (B2
) Fully driven crankshaft (10g) (208) Vc equipped σne 1, compression element (Bl) (B2) σ) Oil sump chamber (,104) (204) Inner bottom part in sliding parts of bearings, etc.] The oil splasher (3) that splashes on the lubricating oil is connected to the suction chamber (103) of the first refrigerant compressor (1), and the oil splasher (3) is connected to the suction chamber (103) of the first refrigerant compressor (1). 81 not shown)v
c) Connect to the T part of the suction pipe (5) connected to the awn 1. Color 0
(41 is the above $2 refrigerant compressor (21 suction chamber (203
) K is the second gas suction pipe connected to the above suction pipe (5
It branches from the upper part of the gas suction pipe (4) and is connected in parallel with the measuring compressor +11 (21vr-). ), the separation means (501) separates the refrigerant gas in the suction pipe (5) into lubricating oil and the refrigerant gas in the suction pipe (5). , (71 is the second refrigerant compressor (21 is a gas discharge pipe, and both gas discharge pipes +61 and +71 are connected in series to a high-pressure pipe (8) connected to a condenser (not shown) of the refrigeration cycle. (9) is the first refrigerant compressor il
Between the oil equalizing hole (109) of the + oil reservoir chamber (104) and the oil equalizing hole (209) of the oil reservoir chamber (204) of the second refrigerant compressor (2)? The oil leveling pipes connected to each other are used to equalize the oil and snow (91 is installed on the way, and the check valve that allows only the compression mode (2)'\ from the compressor 11 to the line 2) is installed ○Next Please explain the operation in detail. Measurement compressor tlN21
When is being operated, @ is due to the difference in the pipe resistance of the measuring compressor + I + (21 suction pipe + 31 + 41), and the relationship between the operating pressures of the refil compressor (11 and 20th compressor (2)) is ( 1st compressor (11 suction chamber (103) pressure) - (2nd compressor (2101 suction chamber (203) pressure) = about 100~
There is one with 400 mmAg.

まr、通常、冷媒循環量の0.5%程度含まf1斤油に
冷媒サイクルの吸入管(5)円?蒸発した冷媒ガスと共
に圧縮機Ill +21側へ戻ってぐる。この時、分離
手段(501)によって冷媒ガスに潤滑油セガスとに分
離され、この潤滑油の大部分U重力の影響で纂1の圧縮
機(1)の吸入管(31へ流入し、里1の圧a磯+11
の吸入室(103)、均油逆止弁(106)?うっ、油
溜室(104)へ供給される。潤滑油(、測圧縮機+1
1i2+の油溜室(104)(204)が均圧均油管!
91に:より均圧さハ1、かつ、測圧縮機il+F21
の吸入室(103)(203)間にMU述の如く差圧が
めるので、Wlの圧縮機(1)の油溜室(104)より
5組2の圧縮機(2)の油溜室(204)へガスと共に
流れるため均油管(9]及び逆市弁1101を通り第2
の圧縮機(2)の油溜室(204)へ供給さり、正常に
潤滑機能ケにたす。
Or, normally, the f1 oil contains about 0.5% of the refrigerant circulation amount and the refrigerant cycle suction pipe (5) yen? It returns to the compressor Ill +21 side together with the evaporated refrigerant gas. At this time, the separation means (501) separates the refrigerant gas and the lubricating oil Segas, and most of this lubricating oil flows into the suction pipe (31) of the compressor (1) of the compressor (1) of the coil 1 due to the influence of gravity. pressure a iso +11
suction chamber (103), oil equalizing check valve (106)? Ugh, it is supplied to the oil reservoir chamber (104). Lubricating oil (, measuring compressor +1
The oil reservoir chambers (104) (204) of 1i2+ are pressure equalizing oil pipes!
To 91: Equal pressure H1 and measuring compressor il+F21
Since a differential pressure is created between the suction chambers (103) and (203) of the Wl compressor (1) as described in MU, the oil reservoir chamber (204) of the compressor (2) of 5 sets 2 is ) to flow with the gas through the oil equalizing pipe (9) and the reverse market valve 1101.
The oil is supplied to the oil reservoir chamber (204) of the compressor (2) and performs the normal lubrication function.

次に、第1の圧縮機(1)だけが運転17だ場合、冷媒
ガスと潤滑油a吸入管(5)エリ第1の圧縮機(1)の
吸入管(3)?経て吸入室(103)へ流入する0この
間に配管の圧力損失により里1の圧縮機i11の吸入室
(103)の圧力に約400 mmAg 8に圧力低下
−t 60一方、均油管(9)にぼ100 mmAg程
度で作用する逆止弁1101 i設けているため、第2
の圧縮機(2)から第1の圧i機(11の油溜室(10
4)へのガスの流入が阻止され、油溜室(104)の圧
力は均圧孔(105)の作用でほぼ吸入室(103)と
同一レベルに維持される。
Next, if only the first compressor (1) is in operation 17, what is the refrigerant gas and lubricating oil a suction pipe (5) and the suction pipe (3) of the first compressor (1)? During this time, the pressure in the suction chamber (103) of compressor i11 in Sato 1 decreases to approximately 400 mmAg due to the pressure loss in the piping. Since a check valve 1101i that operates at about 100 mmAg is provided, the second
from the compressor (2) to the first pressure compressor (11 oil sump chambers (10
4), and the pressure in the oil reservoir chamber (104) is maintained at approximately the same level as the suction chamber (103) by the pressure equalization hole (105).

従って、吸入室(103)へ戻った潤滑油?油溜室(1
04)へ送り込むことが可能となり、単1の圧縮機+1
1の連続運転ケ行っても、油面?安定ざ一+!:た運転
4行う。
Therefore, the lubricant returned to the suction chamber (103)? Oil sump room (1
04), making it possible to feed into a single compressor + 1
Even after continuous operation in step 1, is the oil level still low? Stability Zaichi+! : Perform 4 driving steps.

次に、纂2の圧縮機+21だけが運転する場合、吸入管
(5)エフ冷評ガスは具2の圧縮機(2)の吸入管(4
)より吸入室(203)へ流入する0この間の配管の圧
力損失にエフ約600 mmAg程度圧力低下する。ま
た、油溜室(204)の圧力も均圧孔(205)σ)作
用で低下する。一方、潤滑油a吸入管tai+より、再
1の圧縮機+I+の吸入管(3)、吸入室(103) 
、均油逆止弁(106) Th介して油溜室(104)
へ流入するが、第1の圧縮機+11に運転していないた
め吸入管(3)の圧力損失に極めて少ないため第1の圧
縮機+I+の油溜室(104,)の圧力P104と纂2
の圧縮機(2)の油溜室<2O4;の圧力P2O4の関
係t4 P1O4) P2O4、!:な9、駆1の圧縮
機fi+の油′IM室(104) [榴った油の一邪に
圧力差により、第2の圧縮機+21の油溜室(204)
へ供給され、正常に運転全行う。
Next, when only compressor +21 of unit 2 is operated, the suction pipe (5) F cooling evaluation gas is transferred to the suction pipe (4) of compressor (2) of unit 2.
) to the suction chamber (203), the pressure drops by about 600 mmAg due to the pressure loss in the piping during this time. Moreover, the pressure in the oil reservoir chamber (204) is also reduced by the action of the pressure equalizing hole (205) σ). On the other hand, from the lubricating oil a suction pipe tai+, the suction pipe (3) of the second compressor +I+, the suction chamber (103)
, Oil equalizing check valve (106) Th through oil sump chamber (104)
However, since the first compressor +11 is not operating, the pressure loss in the suction pipe (3) is extremely small, so the pressure P104 in the oil sump chamber (104,) of the first compressor +I+ is reduced.
The relationship between the pressure P2O4 in the oil sump chamber <2O4; of the compressor (2) t4 P1O4) P2O4,! :9, Oil IM chamber (104) of compressor fi+ of drive 1 [Due to the pressure difference of the broken oil, the oil sump chamber (204) of second compressor +21
is supplied to the unit and operates normally.

ところが、均油孔(109)(209)ぼ、y良常、第
2図に示す工すに両出縮filll121のクランク軸
受は支え部エリ見て側面にあり、オイルスプラッシャ(
107)の回転にエリ、曲回が上昇する仰]の圧縮機i
l+の1111面に均油孔(109)がある場合、第1
の圧縮機11)のオイルスプラッシャ(107)の回転
にエリ、せっかく勇1の圧縮機il+の油溜室(104
)に戻った油が均油孔(109)、均油管(9)、逆止
弁tio+、第2の圧縮e& (21(1)均油孔(2
09) ’i通、r)、$2の圧縮機(2)の油溜室(
204)に多量に移動し、運転中の圧縮機の油面がアン
バランスとなりやすい傾向があり、保ζYに当9油窓か
ら油面位置の薙認≠;難しく保守業務がやり癒い等の欠
点かめった0また、第1の圧縮機fl+の前面が低下す
ることVCJニジ、圧m機の摺動部への潤滑油の供給不
良が生じ、駆1の圧縮機(1)が焼付いたり、ボ2の圧
縮機(2)の油面が異常に上昇し、運転中の圧縮機の油
上り量過大による冷凍能力の低下、及び前圧縮VC工ろ
弁部分の損傷の恐れがあった。
However, when the oil equalizing holes (109) and (209) are in good condition, the crank bearing of the double retraction fill 121 is located on the side when looking at the support area, and the oil splasher (
107) The compressor i
If there is an oil equalizing hole (109) on the 1111 side of l+, the first
Due to the rotation of the oil splasher (107) of the compressor 11), the oil sump chamber (104) of the compressor il+ of the Yu-1
) The oil returned to the oil equalizing hole (109), the oil equalizing pipe (9), the check valve tio+, the second compression e & (21 (1) the oil equalizing hole (2
09) 'i, r), $2 compressor (2) oil sump chamber (
204), the oil level of the compressor during operation tends to become unbalanced, and the oil level position can be checked from the oil window during maintenance. In addition, the front surface of the first compressor fl+ is lowered, leading to insufficient supply of lubricating oil to the sliding parts of the compressor, causing the compressor (1) of drive 1 to seize, The oil level in the compressor (2) of engine 2 rose abnormally, leading to a drop in refrigeration capacity due to an excessive amount of oil coming up from the compressor during operation, and there was a risk of damage to the pre-compression VC filter valve.

この発明に上記のようか従来の入点會除去するためKな
さ力、たもθ〉で、以下、この釦明の一笑流例につrて
説シ(?る0 なお、ン分子罠装M!の栃成は従来(/1%のと[司−
であるので、その説明を省略(、、g3図の電気回路図
にもとVC音、明する。
In order to eliminate the conventional entry point as described above, this invention will be explained below with regard to an example of this method of making a mockery of the button. M!'s Tochinari is conventionally (/1%'s [Shi-
Therefore, the explanation thereof will be omitted (...).

同図において、(Al)+C第1の圧縮機CI+のモー
タ、(A2) tl 第2 (1)圧縮i1121 ノ
モ−タf、厚1のtのと共に三ね電源(R) (S) 
(T)に接続されている。Qηe22 r;: L’X
 1 % aL 2Q’)モータ(Al)(A2ンr運
転制御する第1.騨2の゛1P礎開11器の接点、■1
鉋1に同じくコイルで、操作回路中VC並列接続てれて
いる。(2)に三相亀、源(RJ (S) (T)の正
相、逆相に検知するように三相1.源(R) (s)’
(T)に挿入はれた正逆相検出器で、正相時のみR相に
挿入されたリレー@に應箪するものでろるo@@は5相
電源(R) (S) (′r坏)相?入すLカ)えるた
め第1.第2の’II磁接触器の接点で、接廣啼は三相
宵源の(R)(S)相に挿入され、n2点(ハ)に三重
す市原の(R)と(S)相との結線回路および(S)と
(R)相とび)結線回路中に挿入されてい/)。翰(叫
TtT ’Kg 1、桿2の′rl磁接触器のコイルで
、操作回路1コに1、止り1](妾続嘔itでいる。6
I>μリレー(ハ)のa接点で、第1σ)W磁接触器(
J)コイル(ト)に直列接αざすしている。0望にIJ
レー辺のb接点で、第2の電磁そ触器C)フィル(至)
に直列接続きれているoaiHは冷凍サイクルの保1←
置、負荷の大小に応動1−るサーモスタット等の制御器
で、第1、第20嘗磁接触器のコイル(至)t2IJv
c直列して接続されているo  (S〜■)(グ這転ス
イッチである0 次に動作について説明−′r心。
In the same figure, (Al)+C motor of the first compressor CI+, (A2) tl 2nd (1) compression i1121 no motor f, thickness 1 t and triple power source (R) (S)
(T). Qηe22 r;: L'X
1 % aL 2Q') Motor (Al) (A2-R operation control 1. Contact point of 1P base opening 11 of 2), ■1
The same coil as plane 1 is connected in parallel with VC in the operation circuit. (2) Three-phase turtle, source (RJ (S) (T) positive phase, three-phase 1. Source (R) (s)' to detect the negative phase
The positive and negative phase detector inserted in (T) connects the relay @ inserted in the R phase only when the phase is positive. o@@ is the 5-phase power supply (R) (S) ('r坏) phase? 1. At the contact point of the second 'II magnetic contactor, the contact is inserted into the (R) and (S) phases of the three-phase Yoigen, and the triple Ichihara's (R) and (S) phases are connected to the n2 point (C). and (S) and (R) phase jump) are inserted in the connection circuit.翰(TtT'Kg 1, 2'rl magnetic contactor coils, 1 for each operating circuit, 1 stop)
At the a contact of the I>μ relay (c), the 1st σ) W magnetic contactor (
J) It is connected in series to the coil (G). IJ at zero desire
At the b contact on the side of the wire, the second electromagnetic contactor C) fill (to)
The oaiH that is connected in series with the refrigeration cycle is
The coils (to) t2IJv of the 1st and 20th magnetic contactors are controlled by a controller such as a thermostat that responds to the position and magnitude of the load.
c Connected in series o (S~■) (0 which is a rotation switch) Next, the operation will be explained - 'r heart.

第1の圧縮機(1)が正相接続の場合、運転スイッチ(
SW) k投入すると、正逆相検出器cSによりこれを
検出してリレー(イ)が通五r励磁され +7レー(ホ
)(7) a 接点CI’lが閉となるので、第1σ)
宵ゲま接触器σ)コイル(ホ)が通電さh−1そのW磁
チ触器の里1接点(転)が閉状態になp%算1、興2の
圧縮機+ll+21のモータ(Al)(A2) K電源
を供給する状態になる。この時、第2の電磁接触器゛の
コイルel) trx IJシレー1)のb接点く脅が
開となるため、通電でれず、そのTa接触器の接点@α
開状態となっている。従って、駆11第2の圧縮機+l
+(21のモータ(Al)(A2)にエリオイルスブラ
ツシャ(107)(207) H第4図の火線矢印の方
向、すなわち、駆lの圧縮機Il+のオイルスプラッシ
ャ(108)においてに油にねかけ方向が均油管(91
の接続部である均油孔(109)と虹反対方回に回転し
、均油孔(109)側の油面が比較的低下fゐので、第
1の圧縮機111の油溜室(104)に戻った潤′a油
げ第2の圧縮機(2)側へ必要以上に移動することがな
い。
If the first compressor (1) is connected in normal phase, the operation switch (
When SW) k is turned on, this is detected by the forward/reverse phase detector cS, and the relay (A) is energized and the +7 relay (E) (7) a contact CI'l is closed, so the 1st σ)
The coil (E) of the contactor σ) is energized, and the 1 contact (rotation) of the W magnetic contactor is in the closed state. ) (A2) The state is set to supply K power. At this time, the b contact of the coil el) trx IJ relay 1) of the second electromagnetic contactor is opened, so current cannot be applied, and the contact of the Ta contactor @α
It is in the open state. Therefore, the drive 11 second compressor +l
+ (21 motor (Al) (A2) and Eli oil splasher (107) (207) The direction in which the oil is splashed is the oil equalizing pipe (91
The oil level on the side of the oil equalizing hole (109) is relatively low f, so the oil reservoir chamber (104) of the first compressor 111 rotates in the opposite direction. ) will not move more than necessary to the second compressor (2) side.

一万、装置据付あるいにサービスにおいて、三相市原の
(R) (S) (T)相のいずれか二相が入り、かわ
って接続された逆相接続の場合、正逆相検出器(ハ)が
これ?検出し、リレー(ホ)へは通1励母しlい○この
定め、リレー(至)a接点OBに開状態、b接点(2)
は閉状態となろ。工って、第1σ)電磁接触器のコイル
彌に励磁されず、その接点いIvx開、@2の電磁接/
′PI!器のコイルαhに励磁芒れ、その接点呟Iは閉
と19、三相′醒源ψバ5)(T)の1次側の(R)イ
・目と2次側の(S)相さ?(−、寸だ、1次側の(S
J相と2次側の(R)相とr入れかえ4)ことにか7,
6従って、肉圧縮機111(2+θ)モータ(八1)(
A2)にとってVユ止、出jeA元となり、モータ(A
l)にり、0オイルスグラツシヤ(10’7)は、上述
同様均油孔(108)と反対力向へ油の丁ねかけする1
つに回転する。
10,000, during equipment installation or service, if any two of the three-phase Ichihara (R), (S, and Ha) is this? Detected, relay (E) is energized through 1. ○This setting, relay (to) A contact OB is in open state, B contact (2)
be in a closed state. 1st σ) The coil of the electromagnetic contactor is not excited, and the contact Ivx is open, @2 electromagnetic contact/
'PI! The coil αh of the device is energized, and its contact point I is closed. difference? (-, size, primary side (S
Replace the J phase with the (R) phase on the secondary side 4) Particularly, 7.
6 Therefore, the meat compressor 111 (2+θ) motor (81) (
A2) becomes the source of V-stop and output jeA, and the motor (A
l) The 0 oil sludge (10'7) is the same as described above, where the oil flows in the direction opposite to the oil equalizing hole (108).
rotate to.

以上のエラにこの発明でに、承lの圧縮機を介して第2
のIf kl!i(幾へ返?+11 fる工つにしたも
のにおいて、据付特等VCンけゐ記lの圧縮機のモータ
の配線7瞑って運相従成しても−1の4−イルスプラッ
シャによる油はねかげ方間が両If緬機ケ接続する均f
lll ’f;? )ja Ai 1jlll (!:
 61 反”l’J 7i同&Cfx 6 、i: ’
i K a 1の圧縮機のモータト回転させ75回路−
01組込まり、 −Cいるので、紀lお工び第2の圧縮
機の同時運転ろるいほいツ;71.か−1の圧縮機の運
転のいツitの場合においでt圧縮機の詞滑油un k
良好に保持でさ、圧縮様の信頼性ヲ島めることが′rさ
ると共Vこ据付時等rおV)る圧に3機のモータ配線工
事孕答易にすることがで@る0
In this invention, the second compressor is passed through the first compressor.
If kl! i (how much return?+11f) In a product that takes a lot of work, even if the compressor motor wiring 7 of the installation special VC connection note 1 is connected and the phase follows, the 4-il splasher of -1 If the oil splashing way connects both sides
Ill'f;? )ja Ai 1jllll (!:
61 anti"l'J 7i same & Cfx 6, i: '
i Ka 1 compressor motor rotates 75 circuits-
01 installed, -C is required, so the second compressor should be operated at the same time; 71. In the case of the operation of the compressor in 1, the compressor's lubrication oil is
If maintained well, the reliability of the compression type can be improved, and the wiring work for the motors of three machines can be made easier during installation. 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ログ並列圧縮式冷凍装置の′!t4成図、肌2図
は従来装置の作動説明図、纂31寥1aこの発明の一実
施例に示すm気回路図、第4図汀この発明装置における
作動説明図であ心。 図中、+1lt2用11か工び箪2の圧縮機、(101
)(20]、 )ぽクランクケース、(102)(20
2)に隔壁〜(103)(203)は吸入室、(104
)(204Jぼ油溜室、(105)(205) U均圧
孔、(106)(206) l’[均油逆止弁、(10
7)(207)はオイルスプラッシャ、+31t41μ
第1および第2の吸入管、(5)は冷凍サイクルの吸入
管、(9)に均油管、(10]に逆止弁、(AI)(A
2)はモータ、(Bl)(B2)は圧縮要素、(ハ)は
正逆相検出器、@汀すレー、曽(3,I FJ:舅1お
よび第2の電磁接触器でろ/b0 11お、し1中、同一符号は同一また汀相当7(1i分
を示すO
Figure 1 Log parallel compression refrigeration equipment'! Figures 4 and 2 are diagrams explaining the operation of the conventional device, Figure 31 is a circuit diagram showing an embodiment of the present invention, and Figure 4 is a diagram explaining the operation of the device of the present invention. In the figure, the compressor for +1lt2 11 or machine 2, (101
)(20], )Po crankcase, (102)(20
2) is the partition ~ (103) (203) is the suction chamber, (104
) (204J oil sump chamber, (105) (205) U equalizing hole, (106) (206) l'[oil equalizing check valve, (10
7) (207) is oil splasher, +31t41μ
First and second suction pipes, (5) is the suction pipe of the refrigeration cycle, (9) is the oil equalizing pipe, (10] is the check valve, (AI) (A
2) is the motor, (Bl) (B2) is the compression element, (c) is the positive and negative phase detector, In 1, the same code is the same or corresponds to 7 (O indicates 1i).

Claims (1)

【特許請求の範囲】[Claims] クランクケース内を吸入室側と油溜室側とに区画する隔
壁に上記吸入室側から油溜室側へのみ油流路?許容する
逆止弁と上記吸入室内に設けられ三相電源に接続された
モータと上記油溜室内に設けられ、上記モータVCより
クランク軸?介して駆動される圧縮要素と上記クランク
軸と共に駆動し、上記油溜室内の潤滑油?上記圧縮要素
の摺動部に汀ねかけるオイルスプラッシャと全有する第
1お工び第2の圧縮機、上記第1の圧縮機の吸入室と冷
凍サイクルの吸入管と全接続する第1の吸入管、上記第
2の圧縮機の吸入室と上記冷凍サイクルの吸入管上部と
を接続し、第1の吸入管と共に上記両川縮機全並列接続
する第2の吸入管、上記両正縮機の油溜室間全接続し、
上記第1の圧縮機から第2の圧縮機へのみ流通全許容す
る逆止弁7有する均油管1r備え、上記冷凍サイクル中
の潤滑油7第1の圧縮機を介して第2の圧縮機へ返送す
るようにしたものにおいて、上記第1の圧縮機のオイル
ブラツシャによる油はねかけ方向が上記均油管の接続側
とは反対方向になるように上記第1の圧縮機のモータが
回転する正相接続お工ひその逆方向に回転する逆相接続
ケ検出する正逆相検出器と、この正逆相検出器が正相接
続全検出したとき、第1の圧縮機のモータ全そのま\運
転させると共に逆相接続?検出したとき、三相電源のう
ちの二相を入れかえ、上記第1の圧縮機のモータ紮正相
接続して運転させる制御回路とを設けてなる並列圧縮式
冷凍装置。
Is there an oil flow path only from the suction chamber side to the oil sump chamber side in the partition wall that divides the inside of the crankcase into the suction chamber side and the oil sump chamber side? A check valve that allows, a motor provided in the suction chamber and connected to a three-phase power supply, and a motor provided in the oil sump chamber, and connected to the crankshaft from the motor VC? The compression element driven through and the lubricating oil in the oil sump driven together with the crankshaft? A first compressor having an oil splasher that splashes on the sliding part of the compression element, and a first compressor fully connected to the suction chamber of the first compressor and the suction pipe of the refrigeration cycle. a suction pipe, a second suction pipe connecting the suction chamber of the second compressor and the upper part of the suction pipe of the refrigeration cycle, and connecting the two compressors in parallel together with the first suction pipe; a second suction pipe connecting the two compressors in parallel; All oil sump chambers are connected,
An oil equalizing pipe 1r having a check valve 7 that allows full flow only from the first compressor to the second compressor is provided, and the lubricating oil 7 in the refrigeration cycle is passed through the first compressor to the second compressor. The motor of the first compressor rotates in a positive phase such that the direction of oil splashing by the oil brush of the first compressor is opposite to the connection side of the oil equalizing pipe. A positive and negative phase detector detects a negative phase connection that rotates in the opposite direction of the connection, and when this positive and negative phase detector detects all positive phase connections, the motor of the first compressor continues to operate as it is. and reverse phase connection? A parallel compression type refrigeration system is provided with a control circuit which, when detected, switches two phases of the three-phase power supply, connects the motor of the first compressor to the positive phase, and operates the motor.
JP12473082A 1982-07-15 1982-07-15 Parallel compression type refrigerating device Granted JPS5915686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12473082A JPS5915686A (en) 1982-07-15 1982-07-15 Parallel compression type refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12473082A JPS5915686A (en) 1982-07-15 1982-07-15 Parallel compression type refrigerating device

Publications (2)

Publication Number Publication Date
JPS5915686A true JPS5915686A (en) 1984-01-26
JPH0140233B2 JPH0140233B2 (en) 1989-08-25

Family

ID=14892682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12473082A Granted JPS5915686A (en) 1982-07-15 1982-07-15 Parallel compression type refrigerating device

Country Status (1)

Country Link
JP (1) JPS5915686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106373A (en) * 2009-11-18 2011-06-02 Hitachi Industrial Equipment Systems Co Ltd Compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106373A (en) * 2009-11-18 2011-06-02 Hitachi Industrial Equipment Systems Co Ltd Compressor

Also Published As

Publication number Publication date
JPH0140233B2 (en) 1989-08-25

Similar Documents

Publication Publication Date Title
US5222885A (en) Horizontal rotary compressor oiling system
JPS6219593B2 (en)
US20110239667A1 (en) Air conditioner and method of controlling the same
WO2015025514A1 (en) Refrigeration device
JPS5915686A (en) Parallel compression type refrigerating device
US6418740B1 (en) External high pressure to low pressure valve for scroll compressor
CN112166253B (en) Refrigerating device
JPH0138195B2 (en)
US11773838B2 (en) Compressor, refrigerant compressing apparatus, and refrigerating apparatus
WO2010122812A1 (en) Refrigeration cycle device
JPH0138197B2 (en)
JPS6245110Y2 (en)
JPS5877183A (en) Parallel compression system refrigerating device
JPS5920586A (en) Parallel compression type refrigerator
JPH021994B2 (en)
JPS6336433B2 (en)
JPS6151156B2 (en)
US2405042A (en) Refrigerating apparatus
JPH0138196B2 (en)
JP2002147358A (en) Gas compressor
JPH0814446B2 (en) Refrigerant compressor
JPS5920585A (en) Parallel compression type refrigerator
JPS58210380A (en) Parallel compression system refrigerator
JPH02230985A (en) Parallel compression type refrigerator
JPH02178579A (en) Lubrication device for turbo freezer