JPS6245110Y2 - - Google Patents

Info

Publication number
JPS6245110Y2
JPS6245110Y2 JP10840682U JP10840682U JPS6245110Y2 JP S6245110 Y2 JPS6245110 Y2 JP S6245110Y2 JP 10840682 U JP10840682 U JP 10840682U JP 10840682 U JP10840682 U JP 10840682U JP S6245110 Y2 JPS6245110 Y2 JP S6245110Y2
Authority
JP
Japan
Prior art keywords
oil
refrigerant compressor
refrigerant
compressor
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10840682U
Other languages
Japanese (ja)
Other versions
JPS5913687U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10840682U priority Critical patent/JPS5913687U/en
Publication of JPS5913687U publication Critical patent/JPS5913687U/en
Application granted granted Critical
Publication of JPS6245110Y2 publication Critical patent/JPS6245110Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、互いに並列に配管接続された複数
の冷媒圧縮機のうち第1の圧縮機の回転方向に関
係なく、同時並列運転時、またはいずれか一方の
冷媒圧縮機の片側運転時の何れの場合においても
圧縮機の油面を正常に保持するようにした並列圧
縮機冷凍装置に関する。
[Detailed description of the invention] This invention is applicable to simultaneous parallel operation, regardless of the rotational direction of the first compressor among a plurality of refrigerant compressors pipe-connected in parallel to each other, or when one of the refrigerant compressors The present invention relates to a parallel compressor refrigeration system that maintains the oil level of the compressor at a normal level in either case during one-sided operation.

従来、この種の装置として第1図に示すものが
知られている。この第1図において、1,2は半
密閉形の第1と第2の冷媒圧縮機で、101,2
01は第1と第2の冷媒圧縮機1,2を構成する
クランクケースで、この両クランクケース10
1,201内は隔壁102,202によつてモー
タAを収納する吸入室103,203と圧縮要素
Bを収納する油溜室104,204とに仕切られ
ている。
Conventionally, the device shown in FIG. 1 has been known as this type of device. In FIG. 1, 1 and 2 are semi-hermetic first and second refrigerant compressors;
01 is a crankcase that constitutes the first and second refrigerant compressors 1 and 2, and both crankcases 10
1, 201 is partitioned by partition walls 102, 202 into suction chambers 103, 203 that accommodate motor A, and oil reservoir chambers 104, 204 that accommodate compression element B.

上記隔壁102,202の所定位置に均圧孔1
05,205が設けられており、また、隔壁10
2,202の所定位置に設けられた油面均等化孔
に均油逆止弁106,206が装置されている。
この均油逆止弁106,206は吸入室103,
203から油溜室104,204に向つてのみ潤
滑油の流通を許容するようになされている。
A pressure equalizing hole 1 is located at a predetermined position in the partition wall 102, 202.
05, 205 are provided, and the partition wall 10
An oil level equalizing check valve 106, 206 is installed in an oil level equalizing hole provided at a predetermined position of 2, 202.
These oil equalizing check valves 106, 206 are connected to the suction chamber 103,
The lubricating oil is allowed to flow only from 203 to the oil reservoir chambers 104, 204.

107,207は摺動部を潤滑するためのオイ
ルスプラツシヤ、3は上記第1の冷媒圧縮機1の
吸入室103に接続された第1のガス吸入管で、
冷凍サイクルの蒸発器(図示せず)につながる吸
入管5につながつている。
107, 207 are oil splashers for lubricating sliding parts; 3 is a first gas suction pipe connected to the suction chamber 103 of the first refrigerant compressor 1;
It is connected to a suction pipe 5 that connects to an evaporator (not shown) of the refrigeration cycle.

第2の冷媒圧縮機2の吸入室203に第2のガ
ス吸入管4が接続されている。この第2のガス吸
入管4は吸入管5の上部より分岐している。
A second gas suction pipe 4 is connected to a suction chamber 203 of the second refrigerant compressor 2 . This second gas suction pipe 4 branches from the upper part of the suction pipe 5.

上記第1の冷媒圧縮機1のガス吐出管6と、第
2の冷媒圧縮機2のガス吐出管7は、冷凍サイク
ルの凝縮器(図示せず)につながる高圧管8に並
列接続されている。
The gas discharge pipe 6 of the first refrigerant compressor 1 and the gas discharge pipe 7 of the second refrigerant compressor 2 are connected in parallel to a high-pressure pipe 8 connected to a condenser (not shown) of the refrigeration cycle. .

また、第1の冷媒圧縮機1の油溜室104の均
油孔108と第2の冷媒圧縮機2の油溜室204
の均油孔208との間は均油管9により互いに連
結されている。この均油管9の途上に均油逆止弁
10が設けられ、第1の圧縮機1から第2の圧縮
機2へのみ流通を許容するようになつている。
In addition, the oil equalizing hole 108 of the oil reservoir chamber 104 of the first refrigerant compressor 1 and the oil reservoir chamber 204 of the second refrigerant compressor 2
and the oil equalizing hole 208 are connected to each other by an oil equalizing pipe 9. An oil equalizing check valve 10 is provided in the middle of this oil equalizing pipe 9 to allow flow only from the first compressor 1 to the second compressor 2.

次に動作について説明する。第1および第2の
冷媒圧縮機1,2が運転されているときは、第1
および第2の冷媒圧縮機1,2の吸入管3,4の
配管抵抗の差により、第1の冷媒圧縮機1と第2
の冷媒圧縮機2の運転圧力の関係は、(第1の冷
媒圧縮機1の吸入室103の圧力)−(第2の冷媒
圧縮機2の吸入室203の圧力)=約100〜400mm
Aqとなつている。
Next, the operation will be described. When the first and second refrigerant compressors 1 and 2 are in operation,
Due to the difference in piping resistance between the suction pipes 3 and 4 of the second refrigerant compressors 1 and 2,
The relationship of the operating pressures of the refrigerant compressors 2 is (pressure in the suction chamber 103 of the first refrigerant compressor 1) - (pressure in the suction chamber 203 of the second refrigerant compressor 2) = about 100 to 400 mm
It is now Aq.

また通常、冷媒循環量の0.5%程度含まれた油
は冷凍サイクルの吸入管5内を蒸発した冷媒ガス
とともに第1および第2の冷媒圧縮機1,2側へ
戻つてくる。
Normally, the oil containing about 0.5% of the refrigerant circulation amount returns to the first and second refrigerant compressors 1 and 2 together with the refrigerant gas that has evaporated inside the suction pipe 5 of the refrigeration cycle.

このとき、分離手段によつて冷媒ガスは潤滑油
とガスとに分離され、この油の大部分は重力の影
響で第1の冷媒圧縮機1の第1の冷媒ガス吸入管
3へ流入し、第1の冷媒圧縮機1の吸入室10
3、均油逆止弁106を通り、油溜室104へ供
給される。
At this time, the refrigerant gas is separated into lubricating oil and gas by the separation means, and most of this oil flows into the first refrigerant gas suction pipe 3 of the first refrigerant compressor 1 under the influence of gravity. Suction chamber 10 of first refrigerant compressor 1
3. The oil passes through the oil equalizing check valve 106 and is supplied to the oil reservoir chamber 104.

油は、第1および第2の冷媒圧縮機1,2の油
溜室104,204が均圧均油管9により均圧さ
れ、かつ、第1および第2の冷媒圧縮機1,2の
吸入室103,203間は前述のごとく、差圧が
あるので、第1の冷媒圧縮機1の油溜室104よ
り、第2の冷媒圧縮機2の油溜室204へ流れた
ガスとともに流れるため、均圧油管9および均油
逆止弁10を通り、第2の冷媒圧縮機2の油溜室
204へ供給され正常に潤滑機能をはたすことが
できる。
The oil is supplied to the oil reservoir chambers 104, 204 of the first and second refrigerant compressors 1, 2 whose pressure is equalized by the pressure equalizing oil pipe 9, and to the suction chambers of the first and second refrigerant compressors 1, 2. As mentioned above, there is a pressure difference between 103 and 203, so the gas flows from the oil sump chamber 104 of the first refrigerant compressor 1 to the oil sump chamber 204 of the second refrigerant compressor 2. The oil is supplied to the oil reservoir chamber 204 of the second refrigerant compressor 2 through the pressure oil pipe 9 and the oil equalizing check valve 10, and can perform its lubrication function normally.

次に、第1の冷媒圧縮機1だけが運転した場
合、冷媒ガスと油は吸入管5より第1の冷媒圧縮
機1の吸入管3を経て吸入室103へ流入する。
この間に配管の圧力損失により第1の冷媒圧縮機
1の吸入室103の圧力は約40mmAq程度圧力低
下する。
Next, when only the first refrigerant compressor 1 is operated, the refrigerant gas and oil flow into the suction chamber 103 from the suction pipe 5 through the suction pipe 3 of the first refrigerant compressor 1.
During this time, the pressure in the suction chamber 103 of the first refrigerant compressor 1 decreases by about 40 mmAq due to pressure loss in the piping.

一方、均油管9には、100mmAq程度で作用する
均油逆止弁10を設けているため、第2の冷媒圧
縮機2から第1の冷媒圧縮機1の油溜室104へ
のガスの流入が阻止され、油溜室104の圧力は
均圧差弁105の作用でほぼ吸入室103と同一
レベルに維持される。
On the other hand, since the oil equalizing pipe 9 is provided with an oil equalizing check valve 10 that operates at approximately 100 mmAq, gas flows from the second refrigerant compressor 2 to the oil reservoir chamber 104 of the first refrigerant compressor 1. The pressure in the oil reservoir chamber 104 is maintained at approximately the same level as that in the suction chamber 103 by the action of the pressure equalizing differential valve 105.

したがつて、吸入室103へ戻つた油を油溜室
104へ送り込むことが可能となり、第1の冷媒
圧縮機1の連続運転を行つても、油面を比較的安
定させた運転を行うことができる。
Therefore, the oil returned to the suction chamber 103 can be sent to the oil reservoir chamber 104, and even if the first refrigerant compressor 1 is operated continuously, the oil level can be kept relatively stable. Can be done.

次に、第2の冷媒圧縮機2だけが運転する場
合、吸入管5より冷媒ガスは第2の冷媒圧縮機2
の吸入管4を経て吸入室203へ流入する。この
間の配管の圧力損失により約600mmAq程度圧力低
下する。また、油溜室204の圧力も均圧差弁2
05の作用で低下する。
Next, when only the second refrigerant compressor 2 is operated, the refrigerant gas is transferred from the suction pipe 5 to the second refrigerant compressor 2.
It flows into the suction chamber 203 through the suction pipe 4 . During this time, the pressure will drop by approximately 600mmAq due to pressure loss in the piping. In addition, the pressure in the oil reservoir chamber 204 is also
It decreases due to the action of 05.

一方、油は吸入管5より、第1の冷媒圧縮機1
の吸入管3、吸入室103、均油逆止弁106を
介して油溜室104へ流入するが、第1の冷媒圧
縮機1は運転していないため、吸入管3の圧力損
失は極めて少ないため、第1の冷媒圧縮機1の油
溜室104の圧力P104と第2の冷媒圧縮機2
の油溜室204の圧力P204はP104>P2
04となり、第1の冷媒圧縮機1の油溜室104
に溜つた油の一部は圧力差により、第2の冷媒圧
縮機2の油溜室204へ供給され、正常に運転を
行うことができる。
On the other hand, oil is supplied from the suction pipe 5 to the first refrigerant compressor 1
The oil flows into the oil reservoir chamber 104 through the suction pipe 3, the suction chamber 103, and the oil equalization check valve 106, but since the first refrigerant compressor 1 is not operating, the pressure loss in the suction pipe 3 is extremely small. Therefore, the pressure P104 of the oil reservoir chamber 104 of the first refrigerant compressor 1 and the second refrigerant compressor 2
The pressure P204 in the oil reservoir chamber 204 is P104>P2
04, and the oil reservoir chamber 104 of the first refrigerant compressor 1
Due to the pressure difference, a part of the oil accumulated in the second refrigerant compressor 2 is supplied to the oil sump chamber 204 of the second refrigerant compressor 2, allowing normal operation.

ところが、均油孔108,208は通常第2図
に示す圧縮機モータの正転時および第3図に示す
圧縮機モータの逆転時のように、第1および第2
の冷媒圧縮機1,2のクランク軸受け支え部より
見て側面にあり第1の冷媒圧縮機1の潤滑をオイ
ルスプラツシヤ107で行う冷凍装置において、
オイルスプラツシヤ107の回転により、油面が
上昇する側の第1の冷凍圧縮機1の側面に均油孔
108がある場合、第1の冷媒圧縮機1のオイル
スプラツシヤ107の回転により、第1の冷媒圧
縮機1の油溜室104に戻つた油が、均油孔10
8、均油管9、均油逆止弁10、第2の冷媒圧縮
機2の均油孔208を通り、第2の冷媒圧縮機2
の油溜室204に多量に移動し、運転中の冷媒圧
縮機の油面がアンバランスとなりやすい傾向があ
り、保守に当り油窓から油面位置の確認が難しく
保守業務がやり難いなどの欠点があつた。
However, the oil equalizing holes 108 and 208 are normally located in the first and second holes as shown in FIG. 2 when the compressor motor rotates in the normal direction and as shown in FIG.
In a refrigeration system in which the first refrigerant compressor 1 is lubricated by an oil splasher 107, which is located on the side when viewed from the crank bearing support portion of the refrigerant compressors 1 and 2,
If there is an oil equalizing hole 108 on the side of the first refrigeration compressor 1 on which the oil level rises due to the rotation of the oil splasher 107, the oil level rises due to the rotation of the oil splasher 107 of the first refrigerant compressor 1. , the oil returned to the oil reservoir chamber 104 of the first refrigerant compressor 1 flows through the oil equalizing hole 10.
8, through the oil equalizing pipe 9, the oil equalizing check valve 10, and the oil equalizing hole 208 of the second refrigerant compressor 2, and then passing through the oil equalizing hole 208 of the second refrigerant compressor 2.
A large amount of oil moves into the oil sump chamber 204 of the refrigerant compressor during operation, and the oil level of the refrigerant compressor tends to become unbalanced during operation, making it difficult to check the oil level position from the oil window during maintenance, making maintenance work difficult. It was hot.

また、第1の冷媒圧縮機1の油面が低下するこ
とにより、冷媒圧縮機の摺動部への潤滑油の供給
不良が生じ、第1の冷媒圧縮機1が焼付いたり、
第2の冷媒圧縮機2の油面が異常に上昇し、運転
中の冷媒圧縮機の油上り量過大による冷凍能力の
低下、および油圧縮による弁部分の損傷のおそれ
があつた。
In addition, as the oil level of the first refrigerant compressor 1 decreases, lubricant oil may not be supplied to the sliding parts of the refrigerant compressor, and the first refrigerant compressor 1 may seize or
The oil level in the second refrigerant compressor 2 rose abnormally, and there was a risk that the refrigerating capacity would be reduced due to an excessive amount of oil coming up in the refrigerant compressor during operation, and that the valve portion would be damaged due to oil compression.

この考案は、上記従来の欠点を除去するために
なされたもので、両冷媒圧縮機の油溜室を接続す
る途中に第1の冷媒圧縮機から第2の冷媒圧縮機
へのみ流通を許容する逆止弁を設けた均油管の第
1の冷媒圧縮機側に、第1の冷媒圧縮機のクラン
ク軸回転中心の下に均油孔が位置するように均油
孔の位置を設定した接続管を取り付けることによ
り、オイルスプラツシヤの回転方向に関係なく、
冷媒圧縮機の油面が正常に維持できる並列圧縮機
冷凍装置を提供することを目的とする。
This invention was made in order to eliminate the above-mentioned conventional drawbacks, and allows flow only from the first refrigerant compressor to the second refrigerant compressor while connecting the oil reservoir chambers of both refrigerant compressors. A connecting pipe in which the oil equalizing hole is located on the first refrigerant compressor side of the oil equalizing pipe provided with a check valve so that the oil equalizing hole is located below the rotation center of the crankshaft of the first refrigerant compressor. By installing the oil sprayer, regardless of the direction of rotation,
An object of the present invention is to provide a parallel compressor refrigeration system that can maintain a normal oil level in a refrigerant compressor.

以下、この考案の並列圧縮機冷凍装置の一実施
例を第4図によつて説明する。第4図は均圧均油
管9の近傍の拡大断面図である。この第4図にお
いて、第1の冷媒圧縮機1の均油孔108′は接
続管9′上のオイルスプラツシヤ107の回転方
向の影響を受けない、クランク軸回転中心の下に
設けられる。
An embodiment of the parallel compressor refrigeration system of this invention will be described below with reference to FIG. FIG. 4 is an enlarged sectional view of the vicinity of the pressure equalizing oil pipe 9. In FIG. 4, the oil equalizing hole 108' of the first refrigerant compressor 1 is provided below the center of rotation of the crankshaft, which is not affected by the rotational direction of the oil splasher 107 on the connecting pipe 9'.

また、この接続管9′は均油管9とボルト11
を用いてフランジ12で接続されている。この均
油管9は上記従来の場合と同様に、第1の冷媒圧
縮機1から第2の冷媒圧縮機2へのみ流通を許容
する均油逆止弁10を有している。
In addition, this connecting pipe 9' is connected to the oil equalizing pipe 9 and the bolt 11.
They are connected by a flange 12 using a flange 12. This oil equalizing pipe 9 has an oil equalizing check valve 10 that allows flow only from the first refrigerant compressor 1 to the second refrigerant compressor 2, as in the conventional case.

その他の構造は従来例と同一である。ただし、
接続管9′上にある均油孔108′の位置を接続管
9′の先端にあけると、オイルスプラツシヤ10
7の回転によつて生じる油の流れの影響を強く受
けるため、接続管9′の先端を封じ、第4図に示
すように、接続管9′の側面に均油孔108′をあ
けなければならない。
The rest of the structure is the same as the conventional example. however,
When the oil equalizing hole 108' on the connecting pipe 9' is located at the tip of the connecting pipe 9', the oil splasher 10
Since it is strongly affected by the flow of oil caused by the rotation of the connecting pipe 9', the tip of the connecting pipe 9' must be sealed and an oil equalizing hole 108' must be made in the side of the connecting pipe 9' as shown in Fig. 4. No.

次に、動作について第5図および第6図を参照
して説明する。第5図は圧縮機モータの正転時で
あり、第6図は圧縮機モータの逆転時を示す。第
1の冷媒圧縮機1の均油孔108′はクランク軸
回転中心の下に設けられておりオイルスプラツシ
ユ107の回転方向に関係なく均油孔108′の
油面位置は常に一定であり、しかも油面位置は全
油面のほぼ平均であり、第1の冷媒圧縮機1の油
溜室104に戻つた油が必要以上に均油孔10
8、接続管9′、均油管9、均油逆止弁10、第
2の冷媒圧縮機2の均油孔208を通り、第2の
冷媒圧縮機2の油溜室204へ移動することな
く、運転中の冷媒圧縮機の油面バランスがよくな
る。
Next, the operation will be explained with reference to FIGS. 5 and 6. FIG. 5 shows the compressor motor in normal rotation, and FIG. 6 shows the compressor motor in reverse rotation. The oil equalizing hole 108' of the first refrigerant compressor 1 is provided below the rotation center of the crankshaft, and the oil level position of the oil equalizing hole 108' is always constant regardless of the rotational direction of the oil splash 107. Moreover, the oil level position is approximately the average of all oil levels, and the oil returned to the oil reservoir chamber 104 of the first refrigerant compressor 1 is more than necessary in the oil equalizing hole 10.
8. The oil passes through the connecting pipe 9', the oil equalizing pipe 9, the oil equalizing check valve 10, and the oil equalizing hole 208 of the second refrigerant compressor 2, without moving to the oil reservoir chamber 204 of the second refrigerant compressor 2. This improves the oil level balance of the refrigerant compressor during operation.

これにより、保守に当たり、油窓が油面位置を
正確に把握でき、保守業務がやり易くなる。
This allows the oil window to accurately determine the oil level position during maintenance, making maintenance work easier.

また、冷媒圧縮機の油面の異常な低下により、
圧縮機の摺動部への潤滑油の供給不良が生じ、冷
媒圧縮機の焼付のおそれや冷媒圧縮機の油面の異
常な上昇により運転中の圧縮機の油上り量過大に
よる冷凍能力の低下および油圧縮による弁部分の
損傷のおそれがなくなる。
In addition, due to an abnormal drop in the oil level of the refrigerant compressor,
Failure to supply lubricating oil to the sliding parts of the compressor may cause the refrigerant compressor to seize, or the oil level in the refrigerant compressor may rise abnormally, resulting in a decrease in refrigeration capacity due to an excessive amount of oil coming up from the compressor during operation. Also, there is no risk of damage to the valve part due to oil compression.

以上のように、この考案の並列圧縮式冷凍装置
によれば、両冷媒圧縮機を結ぶ均油管の容量の大
きい冷媒圧縮機側の先をクランク軸中心線上に均
油孔を設定するようにしたので、一方の圧縮機に
対し積極的に冷凍サイクル中の油を戻しながら両
冷媒圧縮機による全運転および何れかの圧縮機に
よる部分運転とすべての条件において両圧縮機の
油面を適正に維持することが可能であり、従来の
ように摺動部の焼付、油上り量過大による冷凍能
力の低下、弁部分損傷を防止することができると
ともに、圧縮モータの回転方向に関係せず、一定
の油量を確保できるものである。
As described above, according to the parallel compression type refrigeration system of this invention, the oil equalizing hole is set on the center line of the crankshaft at the end of the oil equalizing pipe connecting both refrigerant compressors on the side of the refrigerant compressor with a large capacity. Therefore, while actively returning oil from the refrigeration cycle to one compressor, the oil level in both compressors is maintained at an appropriate level under all conditions, including full operation of both refrigerant compressors and partial operation of either compressor. This makes it possible to prevent seizure of sliding parts, reduction in refrigeration capacity due to excessive oil flow, and damage to valve parts, unlike conventional methods, and it is possible to prevent damage to valve parts regardless of the rotation direction of the compression motor. It is possible to secure the amount of oil.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の並列圧縮式冷凍装置の均油配管
図、第2図および第3図はそれぞれ従来の並列圧
縮式冷凍装置の圧縮機モータの回転方向が正およ
び逆の場合を示す配管図、第4図は、この考案の
並列圧縮機冷凍装置の一実施例の均油配管図、第
5図および第6図はそれぞれこの考案の並列圧縮
式冷凍装置の圧縮機モータの回転方向が正および
逆の場合を示す配管図である。 1……第1の冷媒圧縮機、2……第2の冷媒圧
縮機、103,203……吸入室、104,20
4……油溜室、107,208……オイルスプラ
ツシヤ、108,108′,208……均油孔、
9……均油管、9′……接続管、10……均油逆
止弁。なお、図中同一符号は同一または相当部分
を示す。
Figure 1 is an oil equalization piping diagram of a conventional parallel compression type refrigeration system, and Figures 2 and 3 are piping diagrams showing cases where the rotation direction of the compressor motor is forward and reverse, respectively, in a conventional parallel compression type refrigeration system. , FIG. 4 is an oil equalization piping diagram of an embodiment of the parallel compressor refrigeration system of this invention, and FIGS. It is a piping diagram showing the reverse case. 1...First refrigerant compressor, 2...Second refrigerant compressor, 103,203...Suction chamber, 104,20
4... Oil reservoir chamber, 107, 208... Oil splasher, 108, 108', 208... Oil equalizing hole,
9... Oil equalizing pipe, 9'... Connection pipe, 10... Oil equalizing check valve. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] クランクケース内を吸入室側と油溜室側として
区画する隔壁の所定位置に上記吸入室側から油溜
室側へのみ油流通を許容する均油逆止弁を有する
とともにそれぞれオイルスプラツシヤで油の潤滑
を行うとともに配管により互いに並列に接続され
た第1および第2の冷媒圧縮機、上記第1の冷媒
圧縮機の吸入室に接続され冷凍サイクルの吸入管
の下部に接続された第1の冷媒ガス吸入管、上記
第2の冷媒圧縮機の吸入室に接続され上記冷媒サ
イクルの吸入管の上部に接続された第2の冷媒ガ
ス吸入管、上記第1および第2の冷媒圧縮機の油
溜室間を接続するとともに途中に上記第1の冷媒
圧縮機から第2の冷媒圧縮機へのみ油の流通を許
容する均油逆止弁を有する均油管、上記第1の冷
媒圧縮機1のクランク回転中心の下に均油孔を有
するとともに上記均油管に連結されて第1の冷媒
圧縮機の油溜室の油を吸入して第2の冷媒圧縮機
の方向へ送る接続管を備えてなる並列圧縮式冷凍
装置。
An oil equalizing check valve that allows oil to flow only from the suction chamber side to the oil sump chamber side is installed at a predetermined position on the partition wall that divides the inside of the crankcase into the suction chamber side and the oil sump chamber side. first and second refrigerant compressors that perform oil lubrication and are connected in parallel to each other by piping; a first refrigerant compressor that is connected to the suction chamber of the first refrigerant compressor and connected to the lower part of the suction pipe of the refrigeration cycle; a second refrigerant gas suction pipe connected to the suction chamber of the second refrigerant compressor and connected to the upper part of the suction pipe of the refrigerant cycle; a refrigerant gas suction pipe of the first and second refrigerant compressors; an oil equalizing pipe that connects the oil reservoir chambers and has an oil equalizing check valve in the middle that allows oil to flow only from the first refrigerant compressor to the second refrigerant compressor; the first refrigerant compressor 1; It has an oil equalizing hole under the center of rotation of the crank, and a connecting pipe connected to the oil equalizing pipe to suck oil in the oil reservoir chamber of the first refrigerant compressor and send it to the second refrigerant compressor. Parallel compression refrigeration equipment.
JP10840682U 1982-07-15 1982-07-15 Parallel compression refrigeration equipment Granted JPS5913687U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10840682U JPS5913687U (en) 1982-07-15 1982-07-15 Parallel compression refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10840682U JPS5913687U (en) 1982-07-15 1982-07-15 Parallel compression refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS5913687U JPS5913687U (en) 1984-01-27
JPS6245110Y2 true JPS6245110Y2 (en) 1987-12-01

Family

ID=30252925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10840682U Granted JPS5913687U (en) 1982-07-15 1982-07-15 Parallel compression refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS5913687U (en)

Also Published As

Publication number Publication date
JPS5913687U (en) 1984-01-27

Similar Documents

Publication Publication Date Title
JPS6219593B2 (en)
US5236311A (en) Compressor device for controlling oil level in two-stage high dome compressor
US20110239667A1 (en) Air conditioner and method of controlling the same
CA1277501C (en) Suction line flow stream separator for parallel compressor arrangements
EP0852324B1 (en) Refrigerant circulating apparatus
US4236876A (en) Multiple compressor system
JP2000080983A (en) Compressor
EP0921362A2 (en) Suction accumulator with oil reservoir
US2274942A (en) Lubricated refrigerant compressor
JPS6245110Y2 (en)
US2844305A (en) Refrigerating apparatus
JPH0217190Y2 (en)
JPH0138197B2 (en)
US3123287A (en) figure
JP2018004220A (en) Refrigerator
US2918210A (en) Compressor with crankcase oil surge tank
JPH021994B2 (en)
JP3632448B2 (en) Compressor
JPS6151156B2 (en)
JPS5920585A (en) Parallel compression type refrigerator
JPH0139913Y2 (en)
JPH02230985A (en) Parallel compression type refrigerator
JPS5838360Y2 (en) Reitou Sochi
JPS6245095Y2 (en)
JPS6246874Y2 (en)