JPH0139247B2 - - Google Patents

Info

Publication number
JPH0139247B2
JPH0139247B2 JP8462181A JP8462181A JPH0139247B2 JP H0139247 B2 JPH0139247 B2 JP H0139247B2 JP 8462181 A JP8462181 A JP 8462181A JP 8462181 A JP8462181 A JP 8462181A JP H0139247 B2 JPH0139247 B2 JP H0139247B2
Authority
JP
Japan
Prior art keywords
circuit
current
oscillation
transistor
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8462181A
Other languages
Japanese (ja)
Other versions
JPS57199332A (en
Inventor
Masahei Akasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8462181A priority Critical patent/JPS57199332A/en
Publication of JPS57199332A publication Critical patent/JPS57199332A/en
Publication of JPH0139247B2 publication Critical patent/JPH0139247B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • H03K17/952Proximity switches using a magnetic detector using inductive coils
    • H03K17/9537Proximity switches using a magnetic detector using inductive coils in a resonant circuit
    • H03K17/9542Proximity switches using a magnetic detector using inductive coils in a resonant circuit forming part of an oscillator
    • H03K17/9547Proximity switches using a magnetic detector using inductive coils in a resonant circuit forming part of an oscillator with variable amplitude

Landscapes

  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 本発明は金属の近接の有無を検出する高周波発
振型の近接スイツチに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high frequency oscillation type proximity switch that detects the presence or absence of metal.

回転体の回転数検出や回転角度位置の検出を回
転体に金属突片を設け回転体の回転に伴い近接ス
イツチ前面をよぎる金属突片を高周波発振形の近
接スイツチで検出しon―off信号を出力する方法
は公知である。そして、高周波発振形近接スイツ
チ回路の特性は例えば金属(被検出体)の非接近
時の定常発振状態から被検出体の近接により発振
停止に到る減衰振動波形の振動振幅を所定のレベ
ル比較設定値と比較し上記振動振幅がレベル比較
設定値を下まわつた時に出力を反転させることに
より被検出体の近接を検出する。逆に被検出体が
近接状態から離間する時は発振開始から定常発振
状態に到る過渡的発振振幅を上記レベル比較設定
値と比較し上記振幅がレベル比較設定値より大と
なつた時に出力を反転させ近接スイツチから被検
出体が離間したことを検出するものである。従つ
て、実際例として近接、あるいは離間の瞬間から
出力反転が生ずるまでには発振回路の発振出力の
減衰や成長の時定数、更に初期条件に依存した時
間遅れが生ずるのを是認せざるを得なかつた。そ
して振幅の大小を判別するレベル比較設定値は
S/N、あるいは回路の安定性に伴う信頼性等から
定常発振振幅の略1/2程度に選び被検出体の近接
を検出するときには回路の減衰振動の時定数にほ
ぼ等しい時間遅れとなるが、この時定数は近接ス
イツチの検出コイルに被検出体を十分近接させれ
ば非常に小さくでき、通常数μs程度にされ得るの
で実用上は無視できるものであつた。しかし、被
検出体の離間時には発振開始の振幅が外来雑音
や、素子自体が発生する雑音により決まるので発
振開始後レベル比較設定値にまで振幅が達するに
は発振回路の振幅成長の時定数の10倍ないし、37
倍程度の時間を要する。被検出体の非近接時の振
幅成長の時定数は被検出体が完全に離間した時に
最小となり、その値は被検出体の検出感度を設定
した時に決まり、被検出体の近接時のように小さ
な値にすることは出来ず、普通数10マイクロ・セ
カンド程度である。従つて、被検出体が離間して
出力が反転するまでには数100マイクロ・セカン
ドから数ミリ・セカンドの非常に長い時間遅れが
出る。更に上述の発振開始電圧を決定する雑音は
統計量であり、その波高は広く分布するので離間
を検出する時の時間遅れもその時の条件で異な
る。この様に従来の近接スイツチ回路は動作の時
間遅れや、時間遅れのゆらぎがあるため回転体の
回転数検出等に使用する場合には検出可能な回転
数はその時間遅れによつて制限され、また、回転
体の角度位置の検出に使用する場合には近接時の
情報のみが有効で離間時の出力反転信号は上記時
間遅れのばらつきや、ゆらぎのために角度位置信
号が得られないという欠点があつた。
A metal protrusion is installed on the rotating body to detect the rotational speed and rotation angle position of the rotating body, and a high-frequency oscillation type proximity switch detects the metal protrusion that crosses the front surface of the proximity switch as the rotating body rotates, and generates an on-off signal. The method of outputting is well known. The characteristics of the high-frequency oscillation type proximity switch circuit are, for example, the vibration amplitude of the damped vibration waveform that goes from a steady oscillation state when the metal (object to be detected) does not approach to stopping oscillation due to the proximity of the object to be detected is set to a predetermined level comparison. When the vibration amplitude is compared with the level comparison set value, the output is inverted, thereby detecting the proximity of the object to be detected. Conversely, when the object to be detected moves away from the close state, the transient oscillation amplitude from the start of oscillation to the steady oscillation state is compared with the level comparison set value, and when the above amplitude becomes larger than the level comparison set value, the output is output. This is to detect when the object to be detected has moved away from the proximity switch. Therefore, as a practical example, it must be acknowledged that from the moment of proximity or separation until output reversal occurs, there is a time delay depending on the time constant of the oscillation output decay and growth of the oscillation circuit, as well as the initial conditions. Nakatsuta. The level comparison setting value for determining the magnitude of the amplitude is selected to be approximately 1/2 of the steady oscillation amplitude due to S/N or reliability associated with circuit stability, etc. When detecting the proximity of the detected object, the circuit attenuation The time delay is approximately equal to the vibration time constant, but this time constant can be made very small by bringing the object to be detected sufficiently close to the detection coil of the proximity switch, and can usually be reduced to a few μs, so it can be ignored in practice. It was hot. However, when the object to be detected is separated, the amplitude at which oscillation starts is determined by external noise and noise generated by the element itself. Double or 37
It takes about twice as long. The time constant of amplitude growth when the detected object is not close is the minimum when the detected object is completely separated, and its value is determined when the detection sensitivity of the detected object is set. It cannot be reduced to a small value; it is usually around 10 microseconds. Therefore, there is a very long time delay of several hundred microseconds to several milliseconds until the object to be detected moves away and the output is reversed. Furthermore, the noise that determines the oscillation start voltage described above is a statistical quantity, and its wave height is widely distributed, so the time delay when detecting separation also differs depending on the conditions at that time. In this way, conventional proximity switch circuits have a time delay in operation and fluctuations due to the time delay, so when used to detect the rotation speed of a rotating body, the detectable rotation speed is limited by the time delay. In addition, when used to detect the angular position of a rotating body, only the information when approaching is valid, and the output inverted signal when separating is disadvantageous in that the angular position signal cannot be obtained due to the above-mentioned time delay variations and fluctuations. It was hot.

従つて、本発明は上記の欠点を除去するために
成されたもので、予め所定の周波数、及び振幅を
有する交流成分の電流を近接スイツチの発振回路
に供給しておき、被検出体離間後の発振開始をラ
ンダムな雑音成分に依存することなく上記交流成
分の電流により近接スイツチの発振回路に生ずる
起電力で近接スイツチの発振条件を規制し、以つ
て時間遅れを小さくし遅れ時間のゆらぎを排除す
ることによつて離間時の出力信号の安定性を図つ
た近接スイツチ回路を提供することを目的とす
る。
Therefore, the present invention has been made to eliminate the above-mentioned drawbacks, by supplying an alternating current component current having a predetermined frequency and amplitude to the oscillation circuit of the proximity switch in advance, and after separating the object to be detected. The oscillation conditions of the proximity switch are regulated by the electromotive force generated in the oscillation circuit of the proximity switch by the above-mentioned AC component current, without depending on random noise components for the start of oscillation, thereby reducing the time delay and fluctuation of the delay time. It is an object of the present invention to provide a proximity switch circuit which improves the stability of the output signal when separated by eliminating the proximity switch circuit.

以下、本発明の一実施例を第1図について説明
する。図において1は発振回路、2は所定のレベ
ル比較設定値と上記発振回路1の発振振幅を比較
しその大小に応じた出力信号を発生する比較回
路、3は予め定められた所定周波数、所定振幅の
交流成分をもつ電流を重畳させる交流電流供給回
路である。
An embodiment of the present invention will be described below with reference to FIG. In the figure, 1 is an oscillation circuit, 2 is a comparison circuit that compares a predetermined level comparison set value and the oscillation amplitude of the oscillation circuit 1 and generates an output signal according to the magnitude thereof, and 3 is a predetermined frequency and a predetermined amplitude. This is an alternating current supply circuit that superimposes currents with alternating current components.

上記発振回路1、及び交流電流供給回路の構成
を以下に説明する。すなわち、4は検出コイル、
5は前記検出コイル4と共に並列共振回路を形成
するコンデンサ、6はエミツタホロワ接続のトラ
ンジスタ、7はそのエミツタ抵抗、8,9はトラ
ンジスタ6のコレクタ出力電流に相当する電流を
出力するカレントミラー接続のトランジスタ、1
0はトランジスタ6に一定の直流ベースバイアス
を与える第1バイアス回路である。また、15は
所定の周波数で所定の振幅を有する交流電圧源、
13は前記交流電圧源15の交流電圧を交流電流
としてコレクタより出力するトランジスタ、16
は上記トランジスタ13に一定の直流ベースバイ
アスを与える第2バイアス回路、14はトランジ
スタ13のエミツタ抵抗である。
The configurations of the oscillation circuit 1 and the alternating current supply circuit will be explained below. That is, 4 is a detection coil,
5 is a capacitor forming a parallel resonant circuit together with the detection coil 4; 6 is a transistor with an emitter follower connection; 7 is an emitter resistor thereof; 8 and 9 are transistors with a current mirror connection that output a current corresponding to the collector output current of the transistor 6. ,1
0 is a first bias circuit that applies a constant DC base bias to the transistor 6. Further, 15 is an AC voltage source having a predetermined frequency and a predetermined amplitude;
13 is a transistor that outputs the AC voltage of the AC voltage source 15 as an AC current from its collector; 16;
is a second bias circuit that applies a constant DC base bias to the transistor 13, and 14 is an emitter resistor of the transistor 13.

この様な構成から成る本発明の近接スイツチ回
路について以下その動作を説明する。今、トラン
ジスタ6のベース点(A)の電位が上昇したとする
と、そのトランジスタ6のエミツタ電位も上昇し
エミツタ抵抗7を流れる電流は増加する。これに
伴いトランジスタ6のコレクタ電流はそのエミツ
タ電流と略等しい分増加しトランジスタ8,9よ
り成るカレントミラー回路を駆動する。すると、
トランジスタ9からはトランジスタ6のコレクタ
電流に相当する電流が出力されトランジスタ6の
ベース点(A)の電位を上昇させる。つまり、(A)点の
電位に対応した電流がトランジスタ9より流れ
る。従つて、第1バイアス回路10のインピーダ
ンスが零であれば検出コイル4、コンデンサ5よ
り成る並列共振回路側から発振回路1のトランジ
スタ6のベースとトランジスタ9のコレクタとの
接続点側を見込んだアドミタンスは負性コンダク
タンス性となり、その負性コンダクタンス値はほ
ぼトランジスタ6のエミツタ抵抗7の抵抗値の逆
数に等しい。一方、トランジスタ13はエミツタ
抵抗14と共にエミツタホロワを構成している。
よつてトランジスタ13のベース点(B)の電位の変
化はこの変化電圧をエミツタ抵抗14の抵抗値で
除した値の電流としてトランジスタ13のコレク
に出力される。したがつて、トランジスタ13の
ベース点(B)を交流電圧源15で駆動することによ
り、トランジスタ13のコレクタからは第2バイ
アス回路16による直流動作点電流と、交流電流
が出力される。トランジスタ13のコレクタは上
記発振回路1においてカレントミラー回路を構成
するトランジスタ8のベースコレクタ接続点に接
続されるのでトランジスタ9のコレクタからトラ
ンジスタ13のコレクタ電流と対応する電流が検
出コイル4とコンデンサ5より成る並列共振回路
に供給される。すなわち、上記並列共振回路には
前記(A)点電位に対応した電流に、上記(B)点電位に
対応した重畳電流が供給されることになり交流動
作的に回路を見れば検出コイル4とコンデンサ5
より成る並列共振回路に並列に負性コンダクタン
ス、及び交流電流源が接続されていることにな
る。ここで、並列共振回路は周知の如く損失を有
するため振幅電圧が発生しても必ず減衰する。し
かし、上記発振回路1は前記した如く並列共振回
路に並列に負性コンダクタンスが接続されるので
並列共振回路の損失、つまりコンダクタンス成分
により消費される電力が回路の負性コンダクタン
ス成分により供給される電力によつて賄われるた
め、実質的には損失が負の並列共振回路が構成さ
れ、交流電流供給回路3の交流電流成分により共
振回路の端子間に発生する振動電圧は増幅され発
振が成長する。この発振は回路の飽和等による非
線形性である一定値にまで成長し定常発振を行
う。回路が発振状態の時に検出コイル4の近傍に
被検出体が近接するとその近接効果により発振回
路1の電力が消費される。すなわち、検出コイル
に並列に近接効果によるコンダクタンスが接続さ
れたことと等価になる。このため近接効果による
検出コイル4のコンダクタンスの増加による発振
回路の全コンダクタンス、すなわち、能動回路の
負性コンダクタンスと、並列共振回路の損失、及
び近接効果によるコンダクタンスとの和が正にな
る場合、損失が正になるので発振回路は減衰振動
を行い発振停止に至る。また、被検出体が離間す
れば近接効果によるコンダクタンスは消失するの
で発振回路1は全コンダクタンスが負となり再び
発振を開始する。
The operation of the proximity switch circuit of the present invention having such a configuration will be explained below. Now, if the potential at the base point (A) of the transistor 6 rises, the emitter potential of the transistor 6 also rises, and the current flowing through the emitter resistor 7 increases. Correspondingly, the collector current of transistor 6 increases by an amount approximately equal to its emitter current, thereby driving a current mirror circuit consisting of transistors 8 and 9. Then,
A current corresponding to the collector current of transistor 6 is output from transistor 9, and the potential at the base point (A) of transistor 6 is increased. In other words, a current corresponding to the potential at point (A) flows from transistor 9. Therefore, if the impedance of the first bias circuit 10 is zero, the admittance looking from the side of the parallel resonant circuit consisting of the detection coil 4 and the capacitor 5 to the connection point between the base of the transistor 6 and the collector of the transistor 9 of the oscillation circuit 1 is has negative conductance, and its negative conductance value is approximately equal to the reciprocal of the resistance value of the emitter resistor 7 of the transistor 6. On the other hand, the transistor 13 and the emitter resistor 14 constitute an emitter follower.
Therefore, a change in the potential at the base point (B) of the transistor 13 is outputted to the collector of the transistor 13 as a current equal to this changed voltage divided by the resistance value of the emitter resistor 14. Therefore, by driving the base point (B) of the transistor 13 with the AC voltage source 15, the collector of the transistor 13 outputs a DC operating point current from the second bias circuit 16 and an AC current. Since the collector of the transistor 13 is connected to the base-collector connection point of the transistor 8 constituting the current mirror circuit in the oscillation circuit 1, a current corresponding to the collector current of the transistor 13 flows from the collector of the transistor 9 to the detection coil 4 and the capacitor 5. is supplied to a parallel resonant circuit consisting of: In other words, the parallel resonant circuit is supplied with a superimposed current corresponding to the potential at point (B) on the current corresponding to the potential at point (A), so that when looking at the circuit from an AC operation point of view, the detection coil 4 and capacitor 5
A negative conductance and an alternating current source are connected in parallel to the parallel resonant circuit consisting of the following. Here, since the parallel resonant circuit has a loss as is well known, even if an amplitude voltage is generated, it is always attenuated. However, in the above-mentioned oscillation circuit 1, since the negative conductance is connected in parallel to the parallel resonant circuit as described above, the loss of the parallel resonant circuit, that is, the power consumed by the conductance component is replaced by the power supplied by the negative conductance component of the circuit. Therefore, a parallel resonant circuit with a negative loss is substantially constructed, and the oscillating voltage generated between the terminals of the resonant circuit is amplified by the alternating current component of the alternating current supply circuit 3, and oscillation grows. This oscillation grows to a constant value due to nonlinearity due to circuit saturation, etc., and performs steady oscillation. When a detected object comes close to the detection coil 4 when the circuit is in an oscillation state, the power of the oscillation circuit 1 is consumed due to the proximity effect. In other words, this is equivalent to connecting a conductance due to the proximity effect in parallel to the detection coil. Therefore, if the total conductance of the oscillation circuit due to the increase in the conductance of the detection coil 4 due to the proximity effect, that is, the sum of the negative conductance of the active circuit, the loss of the parallel resonant circuit, and the conductance due to the proximity effect becomes positive, the loss Since becomes positive, the oscillation circuit performs damped oscillation and stops oscillating. Furthermore, if the object to be detected moves away, the conductance due to the proximity effect disappears, so the total conductance of the oscillation circuit 1 becomes negative and it starts oscillating again.

上記、発振回路1の発振振幅は比較回路2に予
め設定されているレベル比較設定値(第3図の
Vref)と比較される。ここでレベル比較設定値
は発振振幅が回路の飽和等による影響を受けない
範囲で選ばれるが、通常はS/Nなどから約1V程
度に設定される。従つて振幅が比較レベルに達し
ない場合は被検出体の近接がある状態として例え
ば、ハイ(以下“H”と記す)レベルの出力信号
を出し、振幅が上記比較レベルを越えれば被検出
体は近接していないと判断し例えば、ロウ(以下
“L”と記す)レベルの信号を出力する。ここで、
本発明になる近接スイツチ回路の被検出体に対す
る応答性を第2図の交流等価回路を用いて説明す
る。
Above, the oscillation amplitude of the oscillation circuit 1 is the level comparison setting value (see Fig. 3) that is preset in the comparison circuit 2.
Vref). Here, the level comparison setting value is selected within a range where the oscillation amplitude is not affected by circuit saturation, etc., but it is usually set to about 1V based on S/N. Therefore, if the amplitude does not reach the comparison level, a high (hereinafter referred to as "H") level output signal is output, assuming that the detected object is close, and if the amplitude exceeds the comparison level, the detected object is detected. It is determined that they are not close, and outputs, for example, a low (hereinafter referred to as "L") level signal. here,
The responsiveness of the proximity switch circuit according to the present invention to a detected object will be explained using the AC equivalent circuit shown in FIG.

第2図において、Lは検出コイル4のインダク
タンス、Cはコンデンサ5の容量、GTは検出コ
イル4、およびコンデンサ5よりなるLC並列共
振回路の損失、―GOは能動回路の負性コンダク
タンス、GHは被検出体の近接により生ずるコン
ダクタンス、ISは交流電流供給回路3の交流電流
源、INは雑音電流源である。
In Figure 2, L is the inductance of the detection coil 4, C is the capacitance of the capacitor 5, G T is the loss of the L C parallel resonant circuit consisting of the detection coil 4 and the capacitor 5, and -G O is the negative conductance of the active circuit. , G H is the conductance caused by the proximity of the object to be detected, IS is the AC current source of the AC current supply circuit 3, and IN is the noise current source.

今、近接状態にあつた被検出体が瞬間的に離間
した状態を考える。この時をt=0とすると時間
t後の振動振幅Vは雑音電流源N、および交流
電流源Sの発振回路帯域幅内の成分の振幅をN
、およびSO、周波数をωN、及びωSとそれぞれ
おけば(1)式で示される。
Now, consider a situation where the object to be detected, which was in close proximity, momentarily separates. If this time is t = 0, the vibration amplitude V after time t is the amplitude of the component within the oscillation circuit bandwidth of the noise current source N and the AC current source S.
If O 2 , SO 2 , and the frequencies are respectively set as ω N and ω S , the equation (1) is obtained.

ここでΨN、ΨS、は定位相項でありωOは発振
周波数で、おおよそ1/√に等しい。(1)式の
第1項は雑音電流源Nによる起電力、第2項は
交流電流源Sによる起電力、第3項は成長振動
成分である。この振動振幅が振幅の比較レベル
(第3図のVref)に達するのに要する時間、すな
わち、被検出体離間後、振幅比較回路2の出力が
反転するまでの遅れ時間TはVref≫NO/GO
GTSO/GO―GTとすると、(1)式より で求められる。
Here, Ψ N and Ψ S are constant phase terms, and ω O is the oscillation frequency, which is approximately equal to 1/√. The first term in equation (1) is the electromotive force due to the noise current source N , the second term is the electromotive force due to the alternating current source S , and the third term is the growth oscillation component. The time required for this vibration amplitude to reach the amplitude comparison level (Vref in Figure 3), that is, the delay time T until the output of the amplitude comparison circuit 2 is inverted after the object to be detected is separated, is Vref≫ NO /G O--
If G T , SO /G O −G T , then from equation (1), is required.

さて、ここで従来の一般的な近接スイツチの交
流等価回路は第2図に図示した本発明の一実施例
の交流等価回路から交流電流源を取り除いたもの
となる。そこで、従来の近接スイツチ回路(図示
していない)と本発明の一実施例の回路とを比較
すると、従来回路では(2)式中の交流電流源の成分
SO 2がないため時間遅れT1は(3)式で示される。
Now, here, the AC equivalent circuit of a conventional general proximity switch is obtained by removing the AC current source from the AC equivalent circuit of the embodiment of the present invention shown in FIG. Therefore, when comparing a conventional proximity switch circuit (not shown) and a circuit according to an embodiment of the present invention, it is found that in the conventional circuit, the component of the AC current source in equation (2) is
Since there is no SO 2 , the time delay T 1 is expressed by equation (3).

T1=2c/GO−GTlnVref/NO/(GO−GT) ……(3) NOは電流雑音によるもので、NO/(GO
GT)は通常10-6〜10-9V程度であり(3)式のVrefを
1VとすればT1はLc並列共振回路の振幅成長の時
定数2c/(GO−GT)の15ないし20倍の時間とな
る。次に本発明ではSONOとなるように電流
Sの交流振幅を設定したのでその遅れ時間T2
は T2=2c/GO−GTlnVref/SO/(GO−GT) …(4) で表わされる、例えばISO/(GO−GT)を10mV
になるように電流源Sの交流電流成分を設定す
れば対数部の値は4.6となり遅れ時間T2は発振回
路の振幅成長の時定数2c/(GO−GT)の4.6倍と
なり遅れ時間T2は従来回路の遅れT1に比べ略1/3
ないし1/4に短縮されたことになる。
T 1 = 2c/G O −G T lnVref/ NO / (G O − G T ) ...(3) NO is due to current noise, NO / (G O
G T ) is usually about 10 -6 to 10 -9 V, and Vref in equation (3) is
If the voltage is 1V, T 1 will be 15 to 20 times the time constant 2c/(G O −G T ) of the amplitude growth of the Lc parallel resonant circuit. Next, in the present invention, since the AC amplitude of the current source S is set so that SONO , the delay time T 2
is expressed as T 2 = 2c/G O −G T lnVref/ SO /(G O − G T )…(4). For example, if I SO /(G O − G T ) is 10 mV
If the alternating current component of the current source S is set so that T 2 is approximately 1/3 of the delay T 1 of the conventional circuit.
This means that it has been shortened to 1/4.

さらに従来回路では発振開始の振幅は電流雑音
Nの振幅で決まりその電流雑音はランダムな雑
音で波高はガウス分布的特性を有するので(3)式の
対数部はある値を中心として分布をする、つま
り、遅れ時間T2は一定値ではなく、ゆらぎを持
つので、確率的には発振回路の振幅成長の時定数
の30倍ないし40倍という大きな時間遅れとなる場
合も存在する。従つて、従来回路で回転数検出を
行う場合には、この遅れ時間の幅を見込んで最高
使用可能な検出回転数を決めることが必要とな
る。これに対し本発明の場合には交流電流源の振
SOは交流電圧源15やエミツタ抵抗14で決
められるため常に一定値とすることが可能であり
遅れ時間も一定でゆらぎは全く生じない。
Furthermore, in conventional circuits, the amplitude at the start of oscillation is due to current noise.
The current noise is determined by the amplitude of N. Since the current noise is random noise and the wave height has Gaussian distribution characteristics, the logarithmic part of equation (3) is distributed around a certain value. In other words, the delay time T 2 is not a constant value. , has fluctuations, so there are cases where the time delay is as large as 30 to 40 times the time constant of the amplitude growth of the oscillation circuit. Therefore, when detecting the rotational speed using the conventional circuit, it is necessary to determine the maximum usable detected rotational speed in consideration of the width of this delay time. On the other hand, in the case of the present invention, the amplitude SO of the AC current source is determined by the AC voltage source 15 and the emitter resistor 14, so it can always be kept at a constant value, the delay time is also constant, and no fluctuation occurs at all.

ここで従来回路と本発明の発振波形の様子を第
3図に示す。図中、tは時間軸、aは被検出体の
近接区間pあるいは離間区間Lを示しbは従来方
式の近接スイツチ回路の発振波形、cは同じく従
来回路での出力波形、d,eは本発明の発振波
形、及び出力波形を示す。同図より明らかな如く
従来の近接スイツチ回路に比し時間遅れはT1
らT2へ大幅に改善されていることが判る。
FIG. 3 shows the oscillation waveforms of the conventional circuit and the present invention. In the figure, t is the time axis, a is the close section P or distant section L of the detected object, b is the oscillation waveform of the conventional proximity switch circuit, c is the output waveform of the conventional circuit, and d and e are the main The oscillation waveform and output waveform of the invention are shown. As is clear from the figure, the time delay has been significantly improved from T1 to T2 compared to the conventional proximity switch circuit.

以上の様に本発明によれば、並列共振回路の端
子電圧に対応した電流を発生する手段の出力電流
により駆動されるカレントミラー回路の駆動電流
に所定の周波数と振幅を有する交流成分を含む電
流を重畳させ、上記カレントミラー回路により合
成電流を上記並列共振回路に供給することによつ
て被検出体離間後の発振開始を雑音に依存されず
常に一定の振幅から発振させるようにしたもので
あるから被検出体離間後に出力が反転するまでの
時間遅れは大幅に短縮され、また遅れ時間も一定
でゆらぎがなくなり、高回転で回転する回転体の
回転検出を可能とし、更に回転角度位置検出に際
しては被検出体離間時の出力信号も有効に活用で
きるなど高速高安定動作の近接スイツチが得られ
る効果がある。
As described above, according to the present invention, the drive current of the current mirror circuit driven by the output current of the means for generating a current corresponding to the terminal voltage of the parallel resonant circuit includes an alternating current component having a predetermined frequency and amplitude. By superimposing the current mirror circuit and supplying the combined current to the parallel resonant circuit by the current mirror circuit, the oscillation starts after separation from the object to be detected, and is not dependent on noise and always starts oscillating from a constant amplitude. The time delay from when the output is reversed after separation from the object to be detected is significantly shortened, and the delay time is also constant and there is no fluctuation, making it possible to detect the rotation of rotating objects that rotate at high speeds, and furthermore, when detecting the rotational angle position. This has the effect of providing a proximity switch with high speed and highly stable operation, such as the ability to effectively utilize the output signal when the object to be detected is separated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す近接スイツチ
の回路図、第2図はその交流等価回路、第3図は
従来回路例による場合と本発明との作用効果を説
明する波形図である。 1…発振回路、2…比較回路、3…重畳回路。
FIG. 1 is a circuit diagram of a proximity switch showing an embodiment of the present invention, FIG. 2 is an AC equivalent circuit thereof, and FIG. 3 is a waveform diagram illustrating the effects of the present invention and a conventional circuit example. . 1...Oscillation circuit, 2...Comparison circuit, 3...Superimposition circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 第1及び第2のトランジスタを有し、上記第
1のトランジスタの駆動電流によつて決定される
出力電流を上記第2のトランジスタから発生する
カレントミラー回路と、コイル及びコンデンサよ
りなる並列共振回路と、この並列共振回路の端子
電圧に応じて上記第1のトランジスタの駆動電流
を発生する電圧電流変換手段と、この電圧電流変
換手段と上記カレントミラー回路と並列共振回路
とよりなる発振回路の発振電圧を別途設けた比較
用電圧と比較する比較回路と、上記第1のトラン
ジスタを駆動する電圧電流変換手段の出力電流に
所定の振幅及び周波数の交流電流成分を重畳させ
る交流電流供給回路とを備えた近接スイツチ回
路。
1 A current mirror circuit having a first and a second transistor and generating an output current from the second transistor determined by the drive current of the first transistor, and a parallel resonant circuit consisting of a coil and a capacitor. oscillation of an oscillation circuit comprising this voltage-current converting means, the current mirror circuit, and the parallel resonant circuit; A comparison circuit that compares the voltage with a separately provided comparison voltage, and an alternating current supply circuit that superimposes an alternating current component with a predetermined amplitude and frequency on the output current of the voltage-current conversion means that drives the first transistor. Proximity switch circuit.
JP8462181A 1981-06-02 1981-06-02 Proximity switch circuit Granted JPS57199332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8462181A JPS57199332A (en) 1981-06-02 1981-06-02 Proximity switch circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8462181A JPS57199332A (en) 1981-06-02 1981-06-02 Proximity switch circuit

Publications (2)

Publication Number Publication Date
JPS57199332A JPS57199332A (en) 1982-12-07
JPH0139247B2 true JPH0139247B2 (en) 1989-08-18

Family

ID=13835749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8462181A Granted JPS57199332A (en) 1981-06-02 1981-06-02 Proximity switch circuit

Country Status (1)

Country Link
JP (1) JPS57199332A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135620A (en) * 1984-07-27 1986-02-20 Omron Tateisi Electronics Co Proximity switch
JP2508623B2 (en) * 1985-02-28 1996-06-19 オムロン株式会社 Proximity switch
DE3519714A1 (en) * 1985-06-01 1986-12-04 Ifm Electronic Gmbh, 4300 Essen Electronic switching device operating contactlessly

Also Published As

Publication number Publication date
JPS57199332A (en) 1982-12-07

Similar Documents

Publication Publication Date Title
JP2999421B2 (en) Capacitive switch device
EP0363169A2 (en) System for driving a brushless motor
US4603299A (en) Constant duty cycle peak detector
JPH0510847B2 (en)
JPH09260974A (en) Amplifier circuit
JP3178212B2 (en) Oscillation circuit
JPH0139247B2 (en)
JP2540923B2 (en) Proximity switch and its oscillation circuit
US4153864A (en) Motor speed regulator
US6483356B2 (en) Sinusoidal signal generating circuit providing small phase difference with respect to reference signal and apparatus for driving oscillating element with circuit
JPH0139246B2 (en)
JPS645767B2 (en)
JP2001308641A (en) Piezoelectric oscillator
JPH0548646B2 (en)
JPS6147447B2 (en)
US4499436A (en) Motion amplitude regulator with breaking pulse regulation
JPH039650B2 (en)
JPH0511444B2 (en)
JP2532229Y2 (en) Frequency detector
JP2508623B2 (en) Proximity switch
KR950008419B1 (en) Self-induced inverter circuit
JPH0888546A (en) Comparator and proximity sensor
JPS6374205A (en) Frequency control circuit
JPH0216042B2 (en)
SU1262715A1 (en) Amplitude r.f.pulse flip-flop