JPH039650B2 - - Google Patents

Info

Publication number
JPH039650B2
JPH039650B2 JP15371983A JP15371983A JPH039650B2 JP H039650 B2 JPH039650 B2 JP H039650B2 JP 15371983 A JP15371983 A JP 15371983A JP 15371983 A JP15371983 A JP 15371983A JP H039650 B2 JPH039650 B2 JP H039650B2
Authority
JP
Japan
Prior art keywords
circuit
current
oscillation
resonant
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15371983A
Other languages
Japanese (ja)
Other versions
JPS6046124A (en
Inventor
Shigeru Aoshima
Shinichi Kuno
Ikuo Nishimoto
Giichi Kawashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP15371983A priority Critical patent/JPS6046124A/en
Publication of JPS6046124A publication Critical patent/JPS6046124A/en
Publication of JPH039650B2 publication Critical patent/JPH039650B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches

Landscapes

  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 この発明は高周波発振形の近接スイツチの改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a high frequency oscillation type proximity switch.

一般にこの種の近接スイツチは第1図に示すよ
うに構成されている。この図において近接スイツ
チ10は近接センサ回路をなすIC回路1と、こ
のIC回路のみでは出力電流容量が不足するので
追加されたトランジスタ20とにより構成されて
いる。このIC回路は内部に発振回路2、コンパ
レータ3、積分回路4、コンパレータ5、出力回
路6、定電圧回路7および電源リセツト回路8を
有しており、検出コイル、共振コイル16、感度
調整用可変抵抗12、側路コンデンサ14、電源
リセツト用コンデンサ15などが外付けされる。
Generally, this type of proximity switch is constructed as shown in FIG. In this figure, a proximity switch 10 is composed of an IC circuit 1 forming a proximity sensor circuit, and a transistor 20 added because the output current capacity is insufficient with only this IC circuit. This IC circuit has an oscillation circuit 2, a comparator 3, an integration circuit 4, a comparator 5, an output circuit 6, a constant voltage circuit 7, and a power supply reset circuit 8, and includes a detection coil, a resonance coil 16, and a variable sensitivity adjustment circuit. A resistor 12, a bypass capacitor 14, a power supply reset capacitor 15, etc. are attached externally.

発振回路2は検出コイル11を含んで形成され
て発振しており、物体がこの検出コイル11に近
づくと発振振幅が減衰し、または発振を停止す
る。そしてこの発振振幅の変化はコンパレータ3
により電圧比較され、さらにこの検波出力を積分
回路4により積分されて、この積分出力はコンパ
レータ5に設けたレベル比較電圧と比較され、そ
のコンパレータの出力により出力回路6の出力状
態を制御する。
The oscillation circuit 2 includes a detection coil 11 and oscillates, and when an object approaches the detection coil 11, the oscillation amplitude is attenuated or the oscillation is stopped. And this change in oscillation amplitude is caused by comparator 3.
The detected output is further integrated by an integrating circuit 4, and this integrated output is compared with a level comparison voltage provided in a comparator 5, and the output state of the output circuit 6 is controlled by the output of the comparator.

そして従来の発振回路2は第2図に示すように
構成されていた。この図において21はLC共振
回路、22は外付けの可変抵抗、31は定電流
源、32はレベルシフト回路、33〜35はトラ
ンジスタである。
The conventional oscillation circuit 2 was constructed as shown in FIG. In this figure, 21 is an LC resonant circuit, 22 is an external variable resistor, 31 is a constant current source, 32 is a level shift circuit, and 33 to 35 are transistors.

そしてLC共振回路21の上端にあらわれた電
圧はレベルシフト回路32によつてトランジスタ
33の能動領域である動作点にシフトされ、トラ
ンジスタ33は抵抗22をエミツタ抵抗とするエ
ミツタフオロワー回路に構成されている。また、
LC共振回路21の上端にあらわれる交流電圧を
VLCとするとトランジスタ33のコレクタ電流の
交流成分ICは IC=VLC/R22 …(1) となる。この電流をトランジスタ34と35から
なるカレントミラー回路によつてLC共振回路2
1に帰還させて発振されている。すなわち、LC
共振回路への帰還電流は(1)式で表わせ、R22が
たとえば1%変化すれば、帰還電流も1%変化す
ることになる。言うまでもなく、近接スイツチは
被検出体がLC共振回路21のコイルに接近した
ときにコイルの損失が増加して発振振幅が小さく
なつたこと、あるいは発振が停止したことを検知
してスイツチング動作を行つている。しかも近接
スイツチの機能として被検出体がコイルに対して
ある一定の距離に接近したときにスイツチをオ
ン、オフ動作させる必要がある。ところがLC共
振回路に用いられるコイルはばらつきが大きいの
で、動作距離を調整するために回路側のゲインを
調整する方法が一般に用いられる。そのために抵
抗R22はICの内部には設けられず外付け部品
とし、LC共振回路とICとを接続した後、被検出
体を所定の距離に近づけてスイツチング動作をす
るように抵停R22をトリミングしている。その
後組付けのためにポツテイングおよび充填剤で充
填をするが、抵抗R22の両端にはLC共振回路
で発振した高周波の電圧があらわれているため
に、ポツテイングあるいは充填による浮遊容量に
よるインピーダンスZiが抵抗R22に比して無視
できないものとなり、スイツチの動作距離が所定
の距離からずれる欠点があつた。またこの浮遊容
量はポツテイングあるいは充填の材料およびその
方法によつて予測できるものではなく、また温度
による共振コンデンサの容量の挙動も不安定であ
り、近接スイツチの動作を不安定なものにしてい
た。
The voltage appearing at the upper end of the LC resonant circuit 21 is shifted by the level shift circuit 32 to the operating point which is the active region of the transistor 33, and the transistor 33 is configured as an emitter follower circuit with the resistor 22 as an emitter resistor. ing. Also,
The AC voltage appearing at the upper end of the LC resonant circuit 21
When V LC is assumed, the alternating current component I C of the collector current of the transistor 33 becomes I C =V LC /R22 (1). This current is transferred to the LC resonant circuit 2 by a current mirror circuit consisting of transistors 34 and 35.
The signal is returned to 1 and oscillated. That is, L.C.
The feedback current to the resonant circuit is expressed by equation (1), and if R22 changes by, for example, 1%, the feedback current also changes by 1%. Needless to say, the proximity switch performs a switching operation by detecting that when the detected object approaches the coil of the LC resonant circuit 21, the loss of the coil increases and the oscillation amplitude becomes smaller, or that the oscillation stops. It's on. Moreover, as a function of the proximity switch, it is necessary to turn the switch on and off when the object to be detected approaches the coil at a certain distance. However, since the coils used in LC resonant circuits vary widely, a method is generally used to adjust the gain on the circuit side in order to adjust the operating distance. Therefore, the resistor R22 is not installed inside the IC, but is an external component. After connecting the LC resonant circuit and the IC, the resistor R22 is trimmed so that the object to be detected is brought close to a predetermined distance and the switching operation is performed. are doing. After that, potting and filling with a filler are performed for assembly, but since the high frequency voltage oscillated by the LC resonant circuit appears at both ends of the resistor R22, the impedance Zi due to stray capacitance due to potting or filling increases. This is not negligible compared to the above, and there is a drawback that the operating distance of the switch deviates from a predetermined distance. Furthermore, this stray capacitance cannot be predicted depending on the material and method of potting or filling, and the behavior of the capacitance of the resonant capacitor due to temperature is also unstable, making the operation of the proximity switch unstable.

この発明はこのような従来の欠点を解消しよう
とするもので、以下図面を参照してこの発明の一
実施例について説明する。
The present invention aims to eliminate such conventional drawbacks, and one embodiment of the present invention will be described below with reference to the drawings.

すなわち第3図はカレントミラーを構成するト
ランジスタ35,36の中、ダイオード接続され
るトランジスタ36をトランジスタ35に比して
n個並列に接続したトランジスタ群あるいはn倍
の面積比を有するトランジスタで構成したもので
その他の構成については第2図に示すものと同様
であるのでその説明を省略する。
In other words, in FIG. 3, among the transistors 35 and 36 constituting the current mirror, the diode-connected transistor 36 is constructed from a group of n transistors connected in parallel or a transistor having an area ratio n times larger than the transistor 35. The rest of the structure is the same as that shown in FIG. 2, so a description thereof will be omitted.

したがつて第3図における帰還電流の交流成分
IRは、 IR=VLC/nR′22 …(2) となり、(1)式と同じ帰還電流を得るため、すなわ
ち同じゲインを得るためにはR′22=R22/
nとなり、このため外付け抵抗R22の値は小さ
くて済む。
Therefore, the AC component of the feedback current in Fig. 3
I R is I R = V LC /nR'22 ...(2), and in order to obtain the same feedback current as in equation (1), that is, to obtain the same gain, R'22 = R22 /
Therefore, the value of the external resistor R22 can be small.

ここで、従来例、本発明において、浮遊容量に
よるインピーダンスZiがR22,R′22に付加さ
れたとする。
Here, in the conventional example and the present invention, it is assumed that impedance Zi due to stray capacitance is added to R22 and R'22.

従来例(第2図)では、R22=RX IR=IC=VLC/(1/Rx+1/Zi)-1 =VLC/RX・(1+RX/Zi) となり、RX/ZiだけICが変る。 In the conventional example (Figure 2), R22 = R X I R = I C = V LC / (1/ Rx + 1 /Zi) -1 = V LC / R Only I C changes.

一方、本発明(第3図)では、R22=1/nRX IR=1/n・VLC/(1/1/nRx+1/Zi)-1 =VLC/RX・(1+RX/nZi) となり、1/n・RX/ZiだけICが変る。 On the other hand, in the present invention ( Fig . 3 ) , R22 =1/ nR ), and I C changes by 1/n・R X /Zi.

このようにZiによるIRの変化が1/nとなる。In this way, the change in I R due to Zi becomes 1/n.

第4図はPNPトランジスタの電流増幅率βが
低いために、温度によるβの変化の影響が大きく
あらわれることを防ぐためにトランジスタ37を
付加し、ウイルソン型のカレントミラーを採用し
た回路である。このようにPNPトランジスタの
βが小さいという欠点を補うために工夫された公
知の回路があるが、これらと本発明は容易に組合
せることが可能なことがわかる。
Figure 4 shows a circuit in which a Wilson type current mirror is added and a transistor 37 is added to prevent the large effect of changes in β due to temperature due to the low current amplification factor β of the PNP transistor. There are known circuits that have been devised to compensate for the shortcoming of the small β of the PNP transistor, and it can be seen that the present invention can be easily combined with these circuits.

この発明は上述のようにカレントミラー回路の
ミラーする方のトランジスタの電流容量をミラー
される方のトランジスタの電流容量に比し大にし
たので、感度調整用の抵抗R22の値を小さくす
ることができるのでその両端に付随する浮遊容量
がもつインピーダンスの影響を相対的に小さくす
ることができ、したがつてスイツチ感応距離を調
整した後ポツテイングおよび充填を行つても感応
距離が変化せず、しかも温度変化による浮遊容量
変化の影響が大きく減少し、温度に対して安定な
スイツチング動作をする利点がある。
As described above, in this invention, the current capacity of the mirrored transistor of the current mirror circuit is made larger than the current capacity of the mirrored transistor, so the value of the sensitivity adjustment resistor R22 can be reduced. Therefore, the influence of the impedance of the stray capacitance attached to both ends can be made relatively small. Therefore, even if potting and filling are performed after adjusting the switch sensitive distance, the sensitive distance does not change, and the temperature This has the advantage that the influence of stray capacitance changes due to changes is greatly reduced, and switching operation is stable over temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般の近接スイツチのブロツク回路
図、第2図は従来の発振回路の回路図、第3図は
この発明における近接スイツチの発振回路の回路
図、第4図はこの発明の他の実施例を示す回路図
である。 2…発振回路、21…LC共振回路、22…感
度調整用抵抗、31,33,34,35…トラン
ジスタ。
Fig. 1 is a block circuit diagram of a general proximity switch, Fig. 2 is a circuit diagram of a conventional oscillation circuit, Fig. 3 is a circuit diagram of an oscillation circuit of a proximity switch according to the present invention, and Fig. 4 is a circuit diagram of a conventional oscillation circuit. FIG. 2 is a circuit diagram showing an example. 2...Oscillation circuit, 21...LC resonance circuit, 22...Resistance for sensitivity adjustment, 31, 33, 34, 35...Transistor.

Claims (1)

【特許請求の範囲】[Claims] 1 発振コイルと共振コンデンサの共振回路を含
んで発振回路を形成し、この発振回路の発振振幅
の変化を積分回路を介して出力回路に導くものに
おいて、上記発振回路は上記発振コイルと共振コ
ンデンサとを有する共振回路と、上記共振回路の
電圧をレベルシフトするレベルシフト回路と、レ
ベルシフト回路より得られた電圧を電流に変換す
る電圧電流変換回路と、上記電流に応じた帰還電
流を発生し上記共振回路に供給するカレントミラ
ー回路とを有し、上記電圧電流変換回路は、電圧
を電流に変換する変換係数を定める抵抗を有し、
上記電流は上記帰還電流より大きいことを特徴と
する近接スイツチ。
1. An oscillation circuit including a resonant circuit including an oscillation coil and a resonant capacitor, and a change in the oscillation amplitude of the oscillation circuit being guided to an output circuit via an integrating circuit, wherein the oscillation circuit includes a resonant circuit including the oscillation coil and a resonant capacitor. a level shift circuit that level-shifts the voltage of the resonant circuit; a voltage-current conversion circuit that converts the voltage obtained from the level shift circuit into a current; and a current mirror circuit that supplies the resonant circuit, the voltage-current conversion circuit having a resistor that determines a conversion coefficient for converting voltage to current,
A proximity switch characterized in that the current is greater than the feedback current.
JP15371983A 1983-08-23 1983-08-23 Proximity switch Granted JPS6046124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15371983A JPS6046124A (en) 1983-08-23 1983-08-23 Proximity switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15371983A JPS6046124A (en) 1983-08-23 1983-08-23 Proximity switch

Publications (2)

Publication Number Publication Date
JPS6046124A JPS6046124A (en) 1985-03-12
JPH039650B2 true JPH039650B2 (en) 1991-02-08

Family

ID=15568602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15371983A Granted JPS6046124A (en) 1983-08-23 1983-08-23 Proximity switch

Country Status (1)

Country Link
JP (1) JPS6046124A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173830U (en) * 1986-04-22 1987-11-05
DE3722336C1 (en) * 1987-07-07 1989-03-23 Ifm Electronic Gmbh Electronic, preferably non-contact switching device
DE102015212412B4 (en) * 2015-07-02 2019-05-29 Ifm Electronic Gmbh Electronically adjustable inductive proximity switch
CN112859174B (en) * 2021-01-07 2023-09-01 国网江苏省电力有限公司滨海县供电分公司 Method for preventing proximity switch from vibrating and unstably

Also Published As

Publication number Publication date
JPS6046124A (en) 1985-03-12

Similar Documents

Publication Publication Date Title
US5757196A (en) Capacitive switch actuated by changes in a sensor capacitance
US4068189A (en) Linear oscillator for proximity sensor
US5012206A (en) Inductive proximity switch
US4509023A (en) Oscillator with a temperature compensated oscillating coil
US5504425A (en) Inductive sensor responsive to the distance to a conductive or magnetizable object
KR960016733B1 (en) Oscillation circuit
US3503007A (en) Controllable oscillator
JP3720963B2 (en) Time constant automatic correction circuit for filter circuit and filter circuit device using the same
JPH039650B2 (en)
US4994764A (en) Single-pin oscillator
JPH0511444B2 (en)
JPS6238322Y2 (en)
JP3826694B2 (en) Proximity sensor
JPS5841505Y2 (en) Detector used in magnetic sensor
JPH0548646B2 (en)
JPH0563559A (en) Oscillation circuit
JP4698441B2 (en) Oscillation type proximity sensor and control method of gate current in oscillation type proximity sensor using field effect transistor
JPS59929B2 (en) proximity switch circuit
JPS63198414A (en) Proximity switch
JPH0139246B2 (en)
JPH0888546A (en) Comparator and proximity sensor
JPH06164358A (en) Proximity sensor
JPS6374205A (en) Frequency control circuit
JPS5931168B2 (en) proximity switch circuit
JPS6112105A (en) Lc oscillation circuit