JPS6112105A - Lc oscillation circuit - Google Patents

Lc oscillation circuit

Info

Publication number
JPS6112105A
JPS6112105A JP59132316A JP13231684A JPS6112105A JP S6112105 A JPS6112105 A JP S6112105A JP 59132316 A JP59132316 A JP 59132316A JP 13231684 A JP13231684 A JP 13231684A JP S6112105 A JPS6112105 A JP S6112105A
Authority
JP
Japan
Prior art keywords
diode
transistor
current
oscillation circuit
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59132316A
Other languages
Japanese (ja)
Other versions
JPH0462484B2 (en
Inventor
Hisao Kuwabara
桑原 久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59132316A priority Critical patent/JPS6112105A/en
Publication of JPS6112105A publication Critical patent/JPS6112105A/en
Publication of JPH0462484B2 publication Critical patent/JPH0462484B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1231Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1212Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
    • H03B5/1215Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair the current source or degeneration circuit being in common to both transistors of the pair, e.g. a cross-coupled long-tailed pair
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/1293Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator having means for achieving a desired tuning characteristic, e.g. linearising the frequency characteristic across the tuning voltage range

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

PURPOSE:To decrease the characteristic change in an oscillating frequency against variance in Q of an LC resonance load by adding a diode to a transistor (TR) forming a differential circuit. CONSTITUTION:A diode 19 is added between a reference potential point of a positive pole of a power supply 11 and a collector of a TR15. That is, the LC oscillating circuit uses the diode 19 to bring the TR15 to a saturated region in the control range of a control current I. In this case, a voltage capacity VF of the diode 19 is set smaller than a base-emitter voltage VBE of the TR15. This is because the degree of the saturation of the TR15 is larger as the VF approaches more the VBE and the change in the oscillating frequency is increased. Through the forming above, the characteristic change in the oscillating frequency is reduced against variance in the Q of the LC resonance load.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、発振周波数を電流または電圧により制御し
得るLC発振回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an LC oscillation circuit whose oscillation frequency can be controlled by current or voltage.

[発明の技術的背景とその問題点] 一般に、例えばPLL (位相同期制御)回路や受信機
の局部発振回路等の電子回路に集積回路(以下ICと略
す)化して用いられるLC発振回路は、第5図に示すよ
うに差動型で構成されている。すなわち、このLC発振
回路では、電源11を投入して電流源12に電流を供給
すると、この電流はトランジスタ13.14よりなるカ
レントミラー回路へ入力され、トランジスター4のコレ
クタ電流に変換されてトランジスタ15.16、コンデ
ンサー7及びコイル18よりなる差動発振回路の共通エ
ミッタ部へ出力される。
[Technical background of the invention and its problems] In general, an LC oscillation circuit is used as an integrated circuit (hereinafter abbreviated as IC) in an electronic circuit such as a PLL (phase synchronization control) circuit or a local oscillation circuit of a receiver. As shown in FIG. 5, it is constructed of a differential type. That is, in this LC oscillation circuit, when the power supply 11 is turned on and a current is supplied to the current source 12, this current is input to the current mirror circuit consisting of transistors 13 and 14, converted to the collector current of transistor 4, and then supplied to transistor 15. .16, is output to the common emitter section of the differential oscillation circuit consisting of the capacitor 7 and the coil 18.

つまり、上記差動発振回路では、トランジスタ15、1
6が飽和領域に入らない状態で動作しているとぎ、発振
周波数f oscは、トランジスタ15.16の寄生容
量及び帰還容量を無視できるとすれば、(C;コンデン
サー7の容■、L;フィル18のインダクタンス) で表わせる。
In other words, in the above differential oscillation circuit, the transistors 15, 1
6 is operating without entering the saturation region, the oscillation frequency f osc is determined by (C: the capacitance of the capacitor 7, L: the filter 18 inductance).

ところが、トランジスタ16が飽和領域に入って動作す
ると、トランジスタ16のベース・コレクタ間が順方向
にバイアスされ、ベース・コレクタ間の等測的な(帰還
)容量が逆方向バイアス時よりも極端に増大し、発振周
波数f oscが上記計算値よりも低くなってくる。例
えば、上記電源11の電圧を5LVl、コンデンサ17
の容量Cを190[PF]、コイル18のインダクタン
スLを560[μH]とし、電流源12の電流量を変化
させてトランジスタ14のコレクタ電流(制御電流I)
を変化させたときの発振周波数f oscを測定すると
、第6図に示すようになる。
However, when the transistor 16 operates in the saturation region, the base-collector of the transistor 16 is biased in the forward direction, and the isometric (feedback) capacitance between the base and collector increases significantly compared to when it is reverse-biased. However, the oscillation frequency f osc becomes lower than the above calculated value. For example, if the voltage of the power supply 11 is 5LVl, the capacitor 17
The capacitance C of the coil 18 is set to 190 [PF], the inductance L of the coil 18 is set to 560 [μH], and the collector current of the transistor 14 (control current I) is changed by changing the current amount of the current source 12.
When the oscillation frequency f osc is measured when changing the oscillation frequency f osc , the result is as shown in FIG.

つまり、この第6図から、コンデンサ17及びコイル1
8よりなるLC並列共振負荷のQが低いときには、トラ
ンジスタ16が飽和領域に入らないため発振周波数f 
oscは40〜140[μA]までほとんど変化しない
が、上記並列共振負荷のQが高い場合には、制御電流I
の増加に応じて上記並列共振負荷の両端に現われる信号
振幅が増加し、これによってトランジスタ1Gが飽和領
域に入るため発振周波数f O20が低下することがわ
かる。つまり、上記LC並列共振負荷のQを高く設定す
ることにより電流制御型のLC発振回路を構成すること
ができる。
In other words, from this FIG. 6, the capacitor 17 and the coil 1
When the Q of the LC parallel resonant load consisting of 8 is low, the transistor 16 does not enter the saturation region, so the oscillation frequency
osc hardly changes from 40 to 140 [μA], but if the Q of the parallel resonant load is high, the control current I
It can be seen that the signal amplitude appearing across the parallel resonant load increases in accordance with an increase in , and as a result, the transistor 1G enters the saturation region and the oscillation frequency f O20 decreases. That is, by setting the Q of the LC parallel resonant load to be high, a current control type LC oscillation circuit can be constructed.

しかしながら、上記のような従来のLC発振回路では、
LC並列共振負荷をIC化した場合にそのQがばらつき
やすいため、上述したようにQのばらつきに応じて発振
周波数f oscの特性もばらついてしまっていた。
However, in the conventional LC oscillation circuit as described above,
When an LC parallel resonant load is integrated into an IC, its Q tends to vary, and as described above, the characteristics of the oscillation frequency f osc also vary in accordance with the variation in Q.

[発明の目的] この発明は上記のような問題を改善する!こめになされ
たもので、しC共振負荷のQのばらつきに対し、発振周
波数の特性変化を少なくし得るLC発振回路を提供する
ことを目的とする。
[Object of the invention] This invention improves the above problems! The object of the present invention is to provide an LC oscillation circuit that can reduce changes in oscillation frequency characteristics due to variations in Q of a C resonant load.

[発明の概要コ すなわち、この発明に係るLC発振回路は、一対のトラ
ンジスタよりなる差動回路と、この差動回路に流れる電
流量を制御する電流源と、前記一対のトランジスタの一
方のトランジスタの電流供給路に介在されコンデンサ及
びコイルよりなるLC共振負荷と、前記一対のトランジ
スタの他方のトランジスタの電流供給路に介在され該他
方のトランジスタを制御範囲で飽和状態で動作させるダ
イオードとを具備してなることを特徴とするものである
[Summary of the Invention] In other words, an LC oscillation circuit according to the present invention includes a differential circuit including a pair of transistors, a current source that controls the amount of current flowing through the differential circuit, and one transistor of the pair of transistors. An LC resonant load consisting of a capacitor and a coil is interposed in the current supply path, and a diode is interposed in the current supply path of the other transistor of the pair of transistors and operates the other transistor in a saturated state within a control range. It is characterized by:

[発明の実施例] 以下、第1図乃至第2図を参照してこの発明の一実施例
を説明する。但し、第1図において第5図と同一部分に
は同一符号を付して示し、ここでは異なる部分について
のみ述べる。
[Embodiment of the Invention] An embodiment of the invention will be described below with reference to FIGS. 1 and 2. However, in FIG. 1, the same parts as in FIG. 5 are designated by the same reference numerals, and only the different parts will be described here.

第1図はその構成を示すもので、前記電源11の正電極
側の基準電位点及びトランジスタ15のコレクタ間にダ
イオード19を介在させたものである。
FIG. 1 shows its configuration, in which a diode 19 is interposed between the reference potential point on the positive electrode side of the power source 11 and the collector of the transistor 15.

つまり、このLC発振回路は、ダイオード19によりト
ランジスタ15を制御電流Iの制御範囲で飽和領域に入
るようにしたもので、この場合、上記ダイオード19の
電圧容IMFは、トランジスタ15のベース・エミッタ
間電圧VBEより小さく設定する。これは、VFがVB
Hに近づくほどトランジスタ15の飽和の度合いが大き
くなり、これによって発振周波数f oscの変化を大
きくすることができるからである。但し、あまり近づき
すぎるとトランジスタ15が完全に飽和してしまい、発
振停止状態に至ることになる。
In other words, in this LC oscillation circuit, the diode 19 causes the transistor 15 to enter the saturation region within the control range of the control current I. In this case, the voltage capacity IMF of the diode 19 is the voltage between the base and emitter of the transistor 15. Set smaller than voltage VBE. This means that VF is VB
This is because the closer to H, the greater the degree of saturation of the transistor 15 becomes, thereby making it possible to increase the change in the oscillation frequency fosc. However, if it gets too close, the transistor 15 will be completely saturated and the oscillation will stop.

第2図は、第6図に示した場合と同様に、上記電源11
の電圧を5[V]、コンデンサ17の容量Cを190[
PF]、コイル18のインダクタンスLを560[μH
]とし、電流源12の電流量を変化させてトランジスタ
14のコレクタ電流(制御電流I)を変化させたときの
発振周波数f oscを測定した結果を示すものである
。この第2図から、このLC発振回路は、従来のものに
比してLC並列共振負荷のQのばらつきに対する発振周
波数fの特性変化が少ないことがわかる。また、制御電
流Iの変化に対して、LC並列共振負荷のQが変わって
も、発振周波数f oscが直線的に変化していること
がわかる。
In FIG. 2, the power supply 11 is similar to the case shown in FIG.
The voltage is 5 [V], and the capacitance C of the capacitor 17 is 190 [V].
PF], the inductance L of the coil 18 is 560 [μH
] and shows the results of measuring the oscillation frequency f osc when the collector current (control current I) of the transistor 14 was changed by changing the amount of current of the current source 12. It can be seen from FIG. 2 that this LC oscillation circuit exhibits less characteristic change in the oscillation frequency f with respect to variations in the Q of the LC parallel resonant load than the conventional one. Furthermore, it can be seen that the oscillation frequency f osc changes linearly even if the Q of the LC parallel resonant load changes with respect to the change in the control current I.

したがって、上記のように構成したしC発振回路は、L
C共振負荷のQのばらつきに対して発振周波数の特性変
化を少なくすることができるものである。
Therefore, the C oscillation circuit configured as above is L
This makes it possible to reduce changes in the oscillation frequency characteristics due to variations in the Q of the C resonant load.

第3図はこの発明に係る他の実施例を示すもので、差動
発振回路のトランジスタ20.[1が第1図に示した実
施例のトランジスタ15.16に対して逆極性の場合を
示している。尚、電流源22は前記電流源12及びトラ
ンジスタ13.14よりなる電流源と等価である。この
LC発振回路の動作は前記実施例と同様であるのでその
説明は省略する。
FIG. 3 shows another embodiment of the present invention, in which transistors 20. [1 shows the case where the polarity is opposite to that of the transistors 15 and 16 of the embodiment shown in FIG. Note that the current source 22 is equivalent to the current source made up of the current source 12 and transistors 13 and 14. The operation of this LC oscillation circuit is the same as that of the previous embodiment, so its explanation will be omitted.

第4図は第1図に示したLC発振回路23をPLLマル
チプレクサ回路に応用した場合の構成を示すもので、前
記トランジスタ16のコレクタから発J辰信号を取出し
、抵抗R1〜R3、トランジスタ01〜Q4、ダイオー
ドDI 、D2及び電流源■1よりなる増幅回路24よ
り上記発振信号を増幅し、出力端子25を介して12L
分周回路26に供給するようになされている。つまり、
このPLLマルチプレクサ回路はIC化が容易であり、
LC発振回路の発振周波数f oscの特性変化が少な
いため、極めて精度の良いものとなる。
FIG. 4 shows a configuration in which the LC oscillation circuit 23 shown in FIG. The oscillation signal is amplified by an amplifier circuit 24 consisting of Q4, diodes DI, D2, and current source 1, and output to 12L via an output terminal 25.
The signal is supplied to the frequency dividing circuit 26. In other words,
This PLL multiplexer circuit is easy to integrate into an IC,
Since there is little change in the characteristics of the oscillation frequency f osc of the LC oscillation circuit, the accuracy is extremely high.

このように、この発明に係るLC発振回路は、種々の電
子回路に応用可能なものである。
In this way, the LC oscillation circuit according to the present invention is applicable to various electronic circuits.

[発明の効果] 以上のようにこの発明によれば、LC共振負荷のQのば
らつきに対し、発振周波数の特性変化を少なくし得るL
C発振回路を提供することができる。
[Effects of the Invention] As described above, according to the present invention, the L
A C oscillation circuit can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るLC発振回路の一実施例を示す
回路図、第2図は同実施例の制御電流に対する発振周波
数の特性を示す特性図、第3図及び第4図はそれぞれこ
の発明に係る他の実施例を示す回路図、第5図は従来の
LC発振回路の構成を示す回路図、第6図は上記LC発
振回路の周波数特性を示す特性図である。 11・・・電源、12.・・・電流源、13〜16・・
・トランジスタ、17・・・コンデンサ、18・・・コ
イル、19・・・ダイオード、■・・・制御電流。 出願人代理人 弁理士 鈴江武彦 第3図 第4図
Fig. 1 is a circuit diagram showing an embodiment of the LC oscillation circuit according to the present invention, Fig. 2 is a characteristic diagram showing the characteristics of the oscillation frequency with respect to the control current of the same embodiment, and Figs. FIG. 5 is a circuit diagram showing the configuration of a conventional LC oscillation circuit, and FIG. 6 is a characteristic diagram showing the frequency characteristics of the LC oscillation circuit. 11...Power supply, 12. ...Current source, 13-16...
- Transistor, 17... Capacitor, 18... Coil, 19... Diode, ■... Control current. Applicant's agent Patent attorney Takehiko Suzue Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 一対のトランジスタよりなる差動回路と、この差動回路
に流れる電流量を制御する電流源と、前記一対のトラン
ジスタの一方のトランジスタの電流供給路に介在されコ
ンデンサ及びコイルよりなるLC共振負荷と、前記一対
のトランジスタの他方のトランジスタの電流供給路に介
在され該他方のトランジスタを制御範囲で飽和状態で動
作させるダイオードとを具備してなることを特徴とする
LC発振回路。
a differential circuit made up of a pair of transistors, a current source that controls the amount of current flowing through the differential circuit, and an LC resonant load made of a capacitor and a coil interposed in the current supply path of one of the pair of transistors; An LC oscillation circuit comprising: a diode that is interposed in a current supply path of the other transistor of the pair of transistors and causes the other transistor to operate in a saturated state within a control range.
JP59132316A 1984-06-27 1984-06-27 Lc oscillation circuit Granted JPS6112105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132316A JPS6112105A (en) 1984-06-27 1984-06-27 Lc oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132316A JPS6112105A (en) 1984-06-27 1984-06-27 Lc oscillation circuit

Publications (2)

Publication Number Publication Date
JPS6112105A true JPS6112105A (en) 1986-01-20
JPH0462484B2 JPH0462484B2 (en) 1992-10-06

Family

ID=15078461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132316A Granted JPS6112105A (en) 1984-06-27 1984-06-27 Lc oscillation circuit

Country Status (1)

Country Link
JP (1) JPS6112105A (en)

Also Published As

Publication number Publication date
JPH0462484B2 (en) 1992-10-06

Similar Documents

Publication Publication Date Title
US4581593A (en) Variable frequency oscillating circuit
KR960016733B1 (en) Oscillation circuit
EP0535883B1 (en) Voltage controlled oscillator employing negative resistance
US4871985A (en) Low noise relaxation oscillator
US3116466A (en) Transistorized tuning fork oscillator
KR970004620B1 (en) Reactance circuit
US4565978A (en) Integrable oscillator circuit
US3855552A (en) Oscillator utilizing complementary transistors in a push-pull circuit
JPS6112105A (en) Lc oscillation circuit
US5444422A (en) Low phase noise high frequency integrated oscillator with minimum pins
US5130674A (en) Voltage controlled oscilator having controlled bias voltage, AGC and output amplifier
EP0665638B1 (en) Voltage controlled oscillator with low operating supply voltage
US4071832A (en) Current controlled oscillator
KR930002035B1 (en) Oscillator
US5012205A (en) Balanced spurious free oscillator
US4763086A (en) Automatic gain control for tank type voltage controlled oscillator
JPS5921528Y2 (en) variable frequency oscillator
JPH039650B2 (en)
JPS6238322Y2 (en)
JPS6114684B2 (en)
JPS5921228B2 (en) oscillation circuit
JP2576193B2 (en) Oscillation circuit
JP2602327B2 (en) Oscillation circuit
JPH0722896Y2 (en) Oscillator circuit
JPS587684Y2 (en) piezoelectric oscillator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term