JPH0138370B2 - - Google Patents

Info

Publication number
JPH0138370B2
JPH0138370B2 JP57141367A JP14136782A JPH0138370B2 JP H0138370 B2 JPH0138370 B2 JP H0138370B2 JP 57141367 A JP57141367 A JP 57141367A JP 14136782 A JP14136782 A JP 14136782A JP H0138370 B2 JPH0138370 B2 JP H0138370B2
Authority
JP
Japan
Prior art keywords
insulating film
polyimide resin
film
etching
photoresist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57141367A
Other languages
Japanese (ja)
Other versions
JPS5931028A (en
Inventor
Tomoyuki Hikita
Nobuo Asama
Shinichi Tanaka
Nobuhiro Nishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP14136782A priority Critical patent/JPS5931028A/en
Publication of JPS5931028A publication Critical patent/JPS5931028A/en
Publication of JPH0138370B2 publication Critical patent/JPH0138370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、特に多
層配線構造を有する半導体装置の層間絶縁膜とし
て少なくとも高分子樹脂膜と無機絶縁膜からなる
多層絶縁膜を用いた際のスルーホール形成方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, particularly when a multilayer insulating film consisting of at least a polymer resin film and an inorganic insulating film is used as an interlayer insulating film of a semiconductor device having a multilayer wiring structure. The present invention relates to a hole forming method.

一般に、半導体装置が高密度化されるのに伴つ
て、電極配線の多層化、パターン幅の微少化が要
求される。その為、例えばMOS−ICに於いて、
第1図に横断面図で示すように、シリコン基板1
上に設けられたMOSトランジスタ2の電極に接
続される1層目メタル3と、その上層部の2層目
メタル4との間にポリイミド樹脂5を介在させ層
間絶縁膜を形成し、多層配線構造にすることによ
つて高密度化を計ることが考えられる。なお、こ
こで6はSiO2である。このポリイミド樹脂等の
高分子樹脂を、多層配線の層間絶縁膜として使用
することは従来から知られており、ポリイミド樹
脂等の樹脂は、無機絶縁膜、例えばSiO2膜、
PSG膜、SiN膜等のガラス系絶縁膜に比べ、ステ
ツプカバリツジが良い、クラツクが起こりにくい
等の長所がある反面、ガラス系の絶縁膜に比して
吸湿性が大きく、樹脂材料でるが故に不純物を含
有しており、更に分極率が大きい為2層目メタル
の電位関係によつては、シリコン基板の表面反転
を引き起こしMOSトランジスタのスレツシユホ
ールド電圧を変化させる等、ICとしての信頼性
が悪くなるという欠点があつて、特にMOS−IC
に使用することはできないとされている。
Generally, as semiconductor devices become more densely packed, there is a demand for multi-layered electrode wiring and smaller pattern widths. Therefore, for example, in MOS-IC,
As shown in the cross-sectional view in FIG.
A polyimide resin 5 is interposed between the first layer metal 3 connected to the electrode of the MOS transistor 2 provided above and the second layer metal 4 on the upper layer to form an interlayer insulating film, thereby creating a multilayer wiring structure. It is conceivable to increase the density by increasing the density. Note that 6 is SiO 2 here. It has been known for a long time to use polymer resins such as polyimide resins as interlayer insulating films for multilayer interconnections.
Compared to glass-based insulating films such as PSG films and SiN films, it has advantages such as better step coverage and less chance of cracking. Contains impurities and has a high polarizability, so depending on the potential relationship of the second layer metal, it may cause surface inversion of the silicon substrate and change the threshold voltage of the MOS transistor, reducing the reliability of the IC. It has the disadvantage that it deteriorates, especially in MOS-IC.
It is said that it cannot be used for.

また、最近、パツケージが低価格の樹脂封止型
となつて、なおその形状が小型化するにつれて、
この本質的に水を透過するパツケージでも、耐湿
性のある多層配線構造であることが強く要望され
るに至つている。
In addition, recently, as packages have become low-cost resin-sealed types and their shapes have become smaller,
Even in this essentially water-permeable package, there is a strong demand for a moisture-resistant multilayer wiring structure.

そこで、層間絶縁膜を、第2図にその横断面図
を示す如く、ガラス系絶縁膜7とポリイミド樹脂
5を重ねて2層構造にすれば、上述の欠点を克服
しまたニーズに応えることができる。すなわち、
ガラス系絶縁膜を下層に使用することによつ
て、ポリイミド樹脂の吸湿による水分および樹脂
に含まれている不純物がシリコン基板に到達する
ことを防ぐことができる。ポリイミド樹脂の分
極による影響を、下層のガラス系絶縁膜によつて
半減することができる。ガラス系絶縁膜のステ
ツプカバリツジの悪さおよびクラツク等は上層の
ポリイミド樹脂によつて平坦化し、又、クラツク
を埋めることにより、層間絶縁膜の完全性を飛躍
的に向上することができる。又、一般に絶縁膜の
欠陥率の減少には、多層構造が有効であることが
知られており、従つて、この第2図に示す如く構
成すれば、LSIの歩留の向上に対して有効であ
る。
Therefore, if the interlayer insulating film is made into a two-layer structure by stacking the glass-based insulating film 7 and the polyimide resin 5, as shown in the cross-sectional view of FIG. 2, the above-mentioned drawbacks can be overcome and the needs can be met. can. That is,
By using a glass-based insulating film as the lower layer, it is possible to prevent moisture due to moisture absorption of the polyimide resin and impurities contained in the resin from reaching the silicon substrate. The influence of polarization of polyimide resin can be halved by the lower glass-based insulating film. Poor step coverage and cracks in the glass-based insulating film are flattened by the upper layer of polyimide resin, and by filling the cracks, the integrity of the interlayer insulating film can be dramatically improved. In addition, it is generally known that a multilayer structure is effective in reducing the defect rate of insulating films. Therefore, if the structure is as shown in Figure 2, it is effective in improving the yield of LSI. It is.

しかるに、この様な構造、特に1層目メタル3
と2層目メタル4とを接合する為のスルーホール
10を形成する方法としては、従来、下記に示す
2つの方法が採られており、それぞれ問題点を有
している。すなわち、第1の方法は、第3図にそ
の完成品の断面側面図を示す如く、まず1層目メ
タル3を形成した後ガラス系絶縁膜7を塗布し、
ガラス系絶縁膜7にフオトエツチング法で孔8を
形成した後、ポリイミド樹脂5を塗布し、次いで
ポリイミド樹脂5にフオトエツチング法で孔9を
形成して上述の孔8とともにスルーホール10を
形成し、2層目メタル4を形成する方法である。
しかし、この様な方法によつては、下層のガラス
系絶縁膜7と上層のポリイミド樹脂5を全く別個
にフオトエツチング法で穿孔する為、第3図の如
く必然的にミスアラインメントが生じ、従つてス
ルーホール10の径を小さくすることができな
い。これに対し、第2の方法は、1層目メタル3
を形成後ガラス系絶縁膜7およびポリイミド樹脂
5を塗布した後、フオトエツチング法により上層
のポリイミド樹脂5を蝕刻するエツチングで孔9
を形成し、位置をずらさずに、ポリイミド樹脂5
をマスクとしてガラス系絶縁膜7を蝕刻するエツ
チングを施して孔8を形成してスルーホール10
とし、最後に2層目メタル4を形成する。この第
2の方法によれば、孔8と孔9との間にミスアラ
インメントが生じず、従つて、スルーホール10
の径を小さくすることができ、高密度の半導体装
置を製作することができるが、第4図にこの第2
の方法によつて形成した半導体装置の断面側面図
を示す如く、1層目メタル3と2層目メタル4が
良好に接続されにくい。すなわち、ガラス系絶縁
膜7をエツチングする際、ポリイミド樹脂5をマ
スクする為、どうしてもポリイミド樹脂5に第4
図の如きオーバーハング部5aが形成され、この
状態で2層目メタルを形成するので、1層目メタ
ル3と2層目メタル4がオーバーハング部5a
よつて分断され、いわゆる段切れ状態となつてし
まう。この段切れは半導体装置の歩留を著しく低
下させる原因となつている。
However, such a structure, especially the first layer metal 3
Conventionally, the following two methods have been adopted as a method for forming the through hole 10 for joining the second layer metal 4 and the second layer metal 4, and each method has its own problems. That is, in the first method, as shown in a cross-sectional side view of the finished product, first, the first layer metal 3 is formed, and then a glass-based insulating film 7 is applied.
After forming holes 8 in the glass-based insulating film 7 by photo-etching, polyimide resin 5 is applied, and then holes 9 are formed in the polyimide resin 5 by photo-etching to form through-holes 10 together with the holes 8 described above. This is a method of forming the second layer metal 4.
However, in this method, since the lower glass insulating film 7 and the upper polyimide resin 5 are perforated completely separately by photo-etching, misalignment inevitably occurs as shown in FIG. Therefore, the diameter of the through hole 10 cannot be reduced. On the other hand, the second method uses the first layer metal 3
After forming the glass-based insulating film 7 and the polyimide resin 5, the holes 9 are formed by etching the upper layer of the polyimide resin 5 using a photo-etching method.
without shifting the position of the polyimide resin 5.
Using the mask as a mask, etching is performed on the glass insulating film 7 to form a hole 8 and a through hole 10.
Finally, the second layer metal 4 is formed. According to this second method, no misalignment occurs between the holes 8 and 9, and therefore the through hole 10
It is possible to reduce the diameter of the
As shown in the cross-sectional side view of a semiconductor device formed by the method described above, it is difficult to connect the first layer metal 3 and the second layer metal 4 well. That is, when etching the glass-based insulating film 7, in order to mask the polyimide resin 5, it is necessary to add a fourth layer to the polyimide resin 5.
An overhang portion 5 a as shown in the figure is formed, and since the second layer metal is formed in this state, the first layer metal 3 and the second layer metal 4 are separated by the overhang portion 5 a , so-called step separation. It becomes a state. This disconnection is a cause of a significant decrease in the yield of semiconductor devices.

本発明は上記に鑑みなされたもので、スルーホ
ールの径が小さく、かつ、2層目メタルの段切れ
を生じない半導体装置の製造方法を提供すること
を目的とする。
The present invention has been made in view of the above, and it is an object of the present invention to provide a method for manufacturing a semiconductor device in which the diameter of a through hole is small and no breakage occurs in the second layer metal.

本発明の特徴とするところは、多層配線構造を
有する半導体装置の層間絶縁膜にスルーホールを
形成する方法において、少なくとも上層が高分子
樹脂膜、下層が無機絶縁膜からなる層間絶縁膜を
形成し、この層間絶縁膜の上方に形成したフオト
レジストをマスクとして上層の高分子樹脂膜をエ
ツチングにより孔を穿ち、上記フオトレジストお
よび上層の高分子樹脂膜をマスクとして下層の無
機絶縁膜をエツチングした後、上層の高分子樹脂
膜を再度上記フオトレジストをマスクとしてエツ
チングし、高分子樹脂膜の孔の側面部を所定量除
去することにある。
The present invention is characterized in that a method for forming through holes in an interlayer insulating film of a semiconductor device having a multilayer wiring structure includes forming an interlayer insulating film consisting of at least an upper layer of a polymer resin film and a lower layer of an inorganic insulating film. Using the photoresist formed above the interlayer insulating film as a mask, a hole is formed in the upper polymer resin film by etching, and the lower inorganic insulating film is etched using the photoresist and the upper polymer resin film as a mask. First, the upper polymer resin film is etched again using the photoresist as a mask, and a predetermined amount of the side surface of the hole in the polymer resin film is removed.

以下、図面に基づいて本発明実施例を説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第5図a〜fは、本発明実施例を経時的に説明
する為の断面図である。
FIGS. 5a to 5f are cross-sectional views for explaining the embodiments of the present invention over time.

第5図aは一層目メタル3が完成した段階を示
す。次に、CVD法によつてガラス系絶縁膜7
(例えばSiO2膜、SiN膜、PSG膜、その他)を1μ
mの膜厚にデポジシヨンする。次にポリイミド樹
脂5等の高分子樹脂を同じく1μmの膜厚で形成
する。この状態を第5図bに示す。なお、膜の形
成法はプラズマ法、スパツタ法、その他によつて
も行なうことができ、膜厚も上記以任意に選択す
ることができる。次に、ポリイミド樹脂5の穿孔
用フオトレジスト膜11を4μmの厚さで形成し、
そのフオトレジスト膜11をマスクとしてポリイ
ミド樹脂をO2プラズマでエツチングして孔9を
穿つ。このO2プラズマではガラス系絶縁膜7は
エツチングされず、又、ポリイミド樹脂5とフオ
トレジスト11のエツチング速度はほぼ等しく、
従つてフオトレジスト11も同時にエツチングさ
れて、ポリイミド樹脂5に穿たれた孔9は約45゜
の傾斜が付く。この状態を第5図cに示す。な
お、この様なエツチングはO2プラズマの他に、
リアクテイブスパツタエツチングあるいはウエツ
トエツチングでも同様である。次に、ポリイミド
樹脂5とその上方に形成されたフオトレジスト1
1をマスクとして、下層のSiO2等ガラス系絶縁
膜7をフツ酸系のエツチヤートでエツチングして
孔8を形成する。このとき、ポリイミド樹脂5に
は前述した如くオーバーハング部5aが形成され
る。この状態を第5図dに示す。次いで、フオト
レジスト11をマスクとして、再度ポリイミド樹
脂5をO2プラズマで約1μmエツチングする。そ
うすれば、孔9は側壁部からエツチングされて径
が大きな孔9′となり、ポリイミド樹脂5のオー
バーハング部5aが除去される。この状態を第5
図eに示す。次に、フオトレジスト11を除去し
た後、2層目メタル4を約1μm形成してその2
層目メタル4をフオトエツチングすれば、第5図
fに示す如く、多層配線構造が完成する。
FIG. 5a shows the stage when the first layer of metal 3 has been completed. Next, a glass-based insulating film 7 is formed using the CVD method.
(e.g. SiO 2 film, SiN film, PSG film, etc.) at 1μ
Deposit to a film thickness of m. Next, a polymer resin such as polyimide resin 5 is formed with a film thickness of 1 μm. This state is shown in FIG. 5b. Note that the film can be formed by a plasma method, a sputtering method, or other methods, and the film thickness can also be arbitrarily selected from those mentioned above. Next, a perforation photoresist film 11 of polyimide resin 5 is formed with a thickness of 4 μm,
Using the photoresist film 11 as a mask, the polyimide resin is etched with O2 plasma to form holes 9. The glass-based insulating film 7 is not etched by this O 2 plasma, and the etching speeds of the polyimide resin 5 and the photoresist 11 are almost equal.
Therefore, the photoresist 11 is also etched at the same time, and the holes 9 made in the polyimide resin 5 are inclined at about 45 degrees. This state is shown in FIG. 5c. In addition to O 2 plasma, this kind of etching can be done using
The same applies to reactive sputter etching or wet etching. Next, polyimide resin 5 and photoresist 1 formed above it
1 as a mask, the lower glass-based insulating film 7 such as SiO 2 is etched with a hydrofluoric acid-based etchant to form holes 8. At this time, the overhang portion 5 a is formed in the polyimide resin 5 as described above. This state is shown in FIG. 5d. Next, using the photoresist 11 as a mask, the polyimide resin 5 is etched again by about 1 μm using O 2 plasma. Then, the hole 9 is etched from the side wall to become a hole 9' with a large diameter, and the overhang portion 5a of the polyimide resin 5 is removed. This state is the fifth
Shown in Figure e. Next, after removing the photoresist 11, a second layer metal 4 with a thickness of about 1 μm is formed.
By photoetching the metal layer 4, a multilayer wiring structure is completed as shown in FIG. 5f.

なお、1層目および2層目メタルは、一般には
アルムニウムが用いられるが、多結晶Si、Mo等
の金属又はそれらの化合物であつてもよいことは
言うまでもない。
Although aluminum is generally used as the first and second layer metals, it goes without saying that metals such as polycrystalline Si and Mo or compounds thereof may also be used.

以上説明したように、本発明によれば、ポリイ
ミド樹脂等の高分子樹脂のステツプカバリツジの
良好な性質およびクラツクが起りにくい等の長所
と、ガラス系絶縁膜等の無機絶縁膜の耐湿性およ
び不純物が少いという長所とを兼ねそなえた信頼
性の高い半導体装置を、メタル配線の段切れ等の
不良品を生ずることなく高い歩留のもとに製造す
ることができる。
As explained above, according to the present invention, the advantages of polymer resins such as polyimide resins such as good step coverage and less cracking, and the moisture resistance and resistance of inorganic insulating films such as glass-based insulating films A highly reliable semiconductor device having the advantage of having a small amount of impurities can be manufactured at a high yield without producing defective products such as broken metal wiring.

なお、本発明による多層配線構造は、実施例の
如く2層でなく、3層またはそれ以上のものであ
つても同様なる手法によつて形成し得ることは勿
論である。
It goes without saying that the multilayer wiring structure according to the present invention can be formed by the same method even if it has three or more layers instead of two layers as in the embodiment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はポリイミド樹脂を層間絶縁膜とした多
層配線構造の半導体装置の断面図、第2図はポリ
イミド樹脂およびガラス系絶縁膜を重ねて層間絶
縁膜を形成した多層配線構造の半導体装置の断面
図、第3図および第4図は従来法によつて第2図
の構造を形成した場合のスルーホール部形状を示
す断面図、第5図a,b,c,d,e,fはそれ
ぞれ本発明実施例を経時的に説明する為の断面図
である。 1……シリコン基板、2……MoSトランジス
タ、3……1層目メタル、4……2層目メタル、
5……ポリイミド樹脂、5a……オーバーハング
部、7……ガラス系絶縁膜、10……スルーホー
ル部、11……フオトレジスト。
Figure 1 is a cross-sectional view of a semiconductor device with a multilayer wiring structure using polyimide resin as an interlayer insulating film, and Figure 2 is a cross-sectional view of a semiconductor device with a multilayer wiring structure in which polyimide resin and glass-based insulating films are stacked to form an interlayer insulation film. Figures 3 and 4 are cross-sectional views showing the shape of the through hole when the structure shown in Figure 2 is formed by the conventional method, and Figures a, b, c, d, e, and f are respectively FIG. 3 is a cross-sectional view for explaining an embodiment of the present invention over time. 1...Silicon substrate, 2...MoS transistor, 3...1st layer metal, 4...2nd layer metal,
5...Polyimide resin, 5a ...Overhang part, 7...Glass-based insulating film, 10...Through hole part, 11...Photoresist.

Claims (1)

【特許請求の範囲】[Claims] 1 多層配線構造を有する半導体装置の製造方法
であつて層間絶縁膜にスルーホールを形成する方
法において、少なくとも上層が高分子樹脂膜、下
層が無機絶縁膜からなる層間絶縁膜を形成し、上
記層間絶縁膜の上方に形成したフオトレジストを
マスクとして上記上層の高分子樹脂膜をエツチン
グにより孔を穿ち、上記フオトレジストおよび上
記上層の高分子樹脂膜をマスクとして上記下層の
無機絶縁膜をエツチングした後、上記上層の高分
子樹脂膜を再度上記フオトレジストをマスクとし
てエツチングし、上記孔の側面部を所定量除去す
ることを特徴とする半導体装置の製造方法。
1. A method for manufacturing a semiconductor device having a multilayer wiring structure, in which a through hole is formed in an interlayer insulating film, in which an interlayer insulating film is formed in which at least an upper layer is a polymer resin film and a lower layer is an inorganic insulating film, and the interlayer insulating film is After etching holes in the upper polymer resin film using the photoresist formed above the insulating film as a mask, and etching the lower inorganic insulating film using the photoresist and the upper polymer resin film as masks. . A method of manufacturing a semiconductor device, comprising etching the upper polymer resin film again using the photoresist as a mask to remove a predetermined amount of the side surface of the hole.
JP14136782A 1982-08-13 1982-08-13 Manufacture of semiconductor device Granted JPS5931028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14136782A JPS5931028A (en) 1982-08-13 1982-08-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14136782A JPS5931028A (en) 1982-08-13 1982-08-13 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5931028A JPS5931028A (en) 1984-02-18
JPH0138370B2 true JPH0138370B2 (en) 1989-08-14

Family

ID=15290331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14136782A Granted JPS5931028A (en) 1982-08-13 1982-08-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5931028A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710936A (en) * 1980-06-25 1982-01-20 Sanyo Electric Co Ltd Forming method for contact hole

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710936A (en) * 1980-06-25 1982-01-20 Sanyo Electric Co Ltd Forming method for contact hole

Also Published As

Publication number Publication date
JPS5931028A (en) 1984-02-18

Similar Documents

Publication Publication Date Title
JP2964537B2 (en) Semiconductor device and manufacturing method thereof
US5470793A (en) Method of via formation for the multilevel interconnect integrated circuits
JPH08213422A (en) Semiconductor device and bonding pad structure thereof
JP2011009581A (en) Process of producing semiconductor device and the semiconductor device
US20200075457A1 (en) Semiconductor device and fabrication method thereof
JP3111977B2 (en) Method for manufacturing semiconductor device
JPH0138370B2 (en)
JP3235581B2 (en) Semiconductor device and manufacturing method thereof
JPS6059752A (en) Manufacture of semiconductor device
JPS6360539B2 (en)
JPS59169154A (en) Semiconductor device
JPH0586661B2 (en)
JP3331756B2 (en) Wiring formation method
JPS60210851A (en) Semiconductor device and manufacture thereof
JP2705556B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS62155537A (en) Manufacture of semiconductor device
JPS62136857A (en) Manufacture of semiconductor device
JPH10178091A (en) Multilayer interconnection of semiconductor device and formation thereof
JPS61107743A (en) Manufacture of semiconductor device
JP2001110893A (en) Semiconductor integrated circuit device and its manufacturing method
JPS6039849A (en) Manufacture of semiconductor device
KR0182043B1 (en) Method for plating metal-insulating layer
JPS59117236A (en) Semiconductor device
JPH0555164A (en) Manufacture of semiconductor device
JP2002083867A (en) Semiconductor device and production method therefor